Current Treatment Methods in Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Surgical Resection and Liver Transplantation
3. Minimally Invasive Procedures
3.1. Local Ablative Therapies
3.2. Transarterial Therapies
3.3. Radiation Therapy
4. Systemic Therapy
4.1. Targeted Therapies
4.2. Combination Therapies
4.3. Sorafenib and Ferroptosis
5. Immunotherapy
6. Role of Aetiology of the HCC in Survival Outcomes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chakraborty, E.; Sarkar, D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 2798. [Google Scholar] [CrossRef] [PubMed]
- Asafo-Agyei, K.O.; Samant, H. Hepatocellular Carcinoma. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Ntellas, P.; Chau, I. Updates on Systemic Therapy for Hepatocellular Carcinoma. In American Society of Clinical Oncology Educational Book; ASCO: Alexandria, VA, USA, 2024; Volume 44, p. e430028. [Google Scholar] [CrossRef]
- Sun, V.C.; Sarna, L. Symptom management in hepatocellular carcinoma. Clin. J. Oncol. Nurs. 2008, 12, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Tümen, D.; Heumann, P.; Gülow, K.; Demirci, C.N.; Cosma, L.S.; Müller, M.; Kandulski, A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022, 10, 3202. [Google Scholar] [CrossRef]
- Lin, S.; Hoffmann, K.; Schemmer, P. Treatment of hepatocellular carcinoma: A systematic review. Liver Cancer 2012, 1, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Sahu, M.K.; Tripathy, A.; Uthansingh, K.; Behera, M. Hepatocellular carcinoma treatment: Hurdles, advances and prospects. Hepat. Oncol. 2018, 5, Hep08. [Google Scholar] [CrossRef]
- de Lope, C.R.; Tremosini, S.; Forner, A.; Reig, M.; Bruix, J. Management of HCC. J. Hepatol. 2012, 56, S75–S87. [Google Scholar] [CrossRef]
- Daher, S.; Massarwa, M.; Benson, A.A.; Khoury, T. Current and Future Treatment of Hepatocellular Carcinoma: An Updated Comprehensive Review. J. Clin. Transl. Hepatol. 2018, 6, 69–78. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef]
- Ansari, D.; Andersson, R. Radiofrequency ablation or percutaneous ethanol injection for the treatment of liver tumors. World J. Gastroenterol. 2012, 18, 1003–1008. [Google Scholar] [CrossRef]
- Mendiratta-Lala, M.; Masch, W.R.; Shampain, K.; Zhang, A.; Jo, A.S.; Moorman, S.; Aslam, A.; Maturen, K.E.; Davenport, M.S. MRI Assessment of Hepatocellular Carcinoma after Local-Regional Therapy: A Comprehensive Review. Radiol. Imaging Cancer 2020, 2, e190024. [Google Scholar] [CrossRef]
- Shiina, S.; Sato, K.; Tateishi, R.; Shimizu, M.; Ohama, H.; Hatanaka, T.; Takawa, M.; Nagamatsu, H.; Imai, Y. Percutaneous Ablation for Hepatocellular Carcinoma: Comparison of Various Ablation Techniques and Surgery. Can. J. Gastroenterol. Hepatol. 2018, 2018, 4756147. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Chin, H.M.; Hoverson, J.; Court, C.; Wagner, T.; Newman, N.B. Treatment of localized hepatocellular carcinoma: Resection vs. ablation vs. radiation. Ann. Palliat. Med. 2024, 13, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Omata, M.; Cheng, A.L.; Kokudo, N.; Kudo, M.; Lee, J.M.; Jia, J.; Tateishi, R.; Han, K.H.; Chawla, Y.K.; Shiina, S.; et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update. Hepatol. Int. 2017, 11, 317–370. [Google Scholar] [CrossRef]
- El Dorry, A.K.; Shaker, M.K.; El-Fouly, N.F.; Hussien, A.; El-Folly, R.F.; El Fouly, A.H.; Abd El Tawab, K. Effectiveness of combined therapy radiofrequency ablation/transarterial chemoembolization versus transarterial chemoembolization/radiofrequency ablation on management of hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 2021, 33, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Y.; Liu, S.S.; Xu, L.F.; Sun, H.L.; Chen, Y.T. Meta-analysis of radiofrequency ablation in combination with transarterial chemoembolization for hepatocellular carcinoma. World J. Gastroenterol. 2013, 19, 3872–3882. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, G.; Liao, M.; Huang, J. Individual or combined transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma: A time-to-event meta-analysis. World J. Surg. Oncol. 2021, 19, 81. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Ren, M.; Lu, X.; Lu, G.; He, S. Efficacy and Safety of Radiofrequency Ablation Combined with Transcatheter Arterial Chemoembolization for Hepatocellular Carcinomas Compared with Radiofrequency Ablation Alone: A Time-to-Event Meta-Analysis. Korean J. Radiol. 2016, 17, 93–102. [Google Scholar] [CrossRef]
- Radosevic, A.; Quesada, R.; Serlavos, C.; Sánchez, J.; Zugazaga, A.; Sierra, A.; Coll, S.; Busto, M.; Aguilar, G.; Flores, D.; et al. Microwave versus radiofrequency ablation for the treatment of liver malignancies: A randomized controlled phase 2 trial. Sci. Rep. 2022, 12, 316. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Y.; Hu, C. Radiofrequency ablation versus microwave ablation for hepatocellular carcinoma with cirrhosis: A propensity score analysis. Transl. Cancer Res. 2024, 13, 1807–1820. [Google Scholar] [CrossRef]
- Ng, K.K.; Poon, R.T.; Chan, S.C.; Chok, K.S.; Cheung, T.T.; Tung, H.; Chu, F.; Tso, W.K.; Yu, W.C.; Lo, C.M.; et al. High-intensity focused ultrasound for hepatocellular carcinoma: A single-center experience. Ann. Surg. 2011, 253, 981–987. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Zhang, J.; Zhang, W.; Gong, J.; Ma, R. TACE Combined with HIFU Versus Surgical Resection for Single Hepatocellular Carcinoma with Child-Pugh B Cirrhosis in Overall Survival and Progression-Free Survival: A Retrospective Study. Technol. Cancer Res. Treat. 2021, 20, 15330338211060180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Guo, J.X.; Zhang, Z.C.; Jiang, N.; Zhang, Z.Y.; Pan, L.J. Therapeutic options for intermediate-advanced hepatocellular carcinoma. World J. Gastroenterol. 2011, 17, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, E.; Lee, H.M. Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers 2024, 16, 666. [Google Scholar] [CrossRef]
- Kotsifa, E.; Vergadis, C.; Vailas, M.; Machairas, N.; Kykalos, S.; Damaskos, C.; Garmpis, N.; Lianos, G.D.; Schizas, D. Transarterial Chemoembolization for Hepatocellular Carcinoma: Why, When, How? J. Pers. Med. 2022, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, L.; Zhang, W. Neoadjuvant treatment strategies for hepatocellular carcinoma. World J. Gastrointest. Surg. 2021, 13, 1550–1566. [Google Scholar] [CrossRef]
- Chang, Y.; Jeong, S.W.; Young Jang, J.; Jae Kim, Y. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 8165. [Google Scholar] [CrossRef]
- Lammer, J.; Malagari, K.; Vogl, T.; Pilleul, F.; Denys, A.; Watkinson, A.; Pitton, M.; Sergent, G.; Pfammatter, T.; Terraz, S.; et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study. Cardiovasc. Interv. Radiol. 2010, 33, 41–52. [Google Scholar] [CrossRef]
- Golfieri, R.; Giampalma, E.; Renzulli, M.; Cioni, R.; Bargellini, I.; Bartolozzi, C.; Breatta, A.D.; Gandini, G.; Nani, R.; Gasparini, D.; et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br. J. Cancer 2014, 111, 255–264. [Google Scholar] [CrossRef]
- Facciorusso, A.; Di Maso, M.; Muscatiello, N. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma: A meta-analysis. Dig. Liver Dis. 2016, 48, 571–577. [Google Scholar] [CrossRef]
- Hatanaka, T.; Arai, H.; Kakizaki, S. Balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma. World J. Hepatol. 2018, 10, 485–495. [Google Scholar] [CrossRef]
- Chen, Q.W.; Ying, H.F.; Gao, S.; Shen, Y.H.; Meng, Z.Q.; Chen, H.; Chen, Z.; Teng, W.J. Radiofrequency ablation plus chemoembolization versus radiofrequency ablation alone for hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 309–314. [Google Scholar] [CrossRef]
- Huo, Y.R.; Eslick, G.D. Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared With Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2015, 1, 756–765. [Google Scholar] [CrossRef]
- Liu, C.; Li, T.; He, J.T.; Shao, H. TACE combined with microwave ablation therapy vs. TACE alone for treatment of early- and intermediate-stage hepatocellular carcinomas larger than 5 cm: A meta-analysis. Diagn. Interv. Radiol. 2020, 26, 575–583. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 2020, 69, 1492–1501. [Google Scholar] [CrossRef]
- Kallini, J.R.; Gabr, A.; Salem, R.; Lewandowski, R.J. Transarterial Radioembolization with Yttrium-90 for the Treatment of Hepatocellular Carcinoma. Adv. Ther. 2016, 33, 699–714. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ji, H.; Zhao, X.; Lu, H. Transarterial Y90 radioembolization versus chemoembolization for patients with hepatocellular carcinoma: A meta-analysis. Biosci. Trends 2015, 9, 289–298. [Google Scholar] [CrossRef]
- Brown, A.M.; Kassab, I.; Massani, M.; Townsend, W.; Singal, A.G.; Soydal, C.; Moreno-Luna, L.; Roberts, L.R.; Chen, V.L.; Parikh, N.D. TACE versus TARE for patients with hepatocellular carcinoma: Overall and individual patient level meta analysis. Cancer Med. 2023, 12, 2590–2599. [Google Scholar] [CrossRef]
- Phan, N.H.; Chun, H.J.; Oh, J.S.; Kim, S.H.; Choi, B.G. TACE vs. TARE for HCC ≥ 8 cm: A propensity score analysis. In Abdominal Radiology; Springer Nature: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Dhondt, E.; Lambert, B.; Hermie, L.; Huyck, L.; Vanlangenhove, P.; Geerts, A.; Verhelst, X.; Aerts, M.; Vanlander, A.; Berrevoet, F.; et al. (90)Y Radioembolization versus Drug-eluting Bead Chemoembolization for Unresectable Hepatocellular Carcinoma: Results from the TRACE Phase II Randomized Controlled Trial. Radiology 2022, 303, 699–710. [Google Scholar] [CrossRef]
- Martelletti, C.; Ricotti, A.; Gesualdo, M.; Carucci, P.; Gaia, S.; Rolle, E.; Burlone, M.E.; Okolicsanyi, S.; Mattalia, A.; Pirisi, M.; et al. Radioembolization vs sorafenib in locally advanced hepatocellular carcinoma with portal vein tumor thrombosis: A propensity score and Bayesian analysis. J. Dig. Dis. 2021, 22, 496–502. [Google Scholar] [CrossRef]
- Spreafico, C.; Sposito, C.; Vaiani, M.; Cascella, T.; Bhoori, S.; Morosi, C.; Lanocita, R.; Romito, R.; Chiesa, C.; Maccauro, M.; et al. Development of a prognostic score to predict response to Yttrium-90 radioembolization for hepatocellular carcinoma with portal vein invasion. J. Hepatol. 2018, 68, 724–732. [Google Scholar] [CrossRef]
- Öcal, O.; Schütte, K.; Zech, C.J.; Loewe, C.; van Delden, O.; Vandecaveye, V.; Verslype, C.; Gebauer, B.; Sengel, C.; Bargellini, I.; et al. Addition of Y-90 radioembolization increases tumor response and local disease control in hepatocellular carcinoma patients receiving sorafenib. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4716–4726. [Google Scholar] [CrossRef]
- Chen, C.P. Role of Radiotherapy in the Treatment of Hepatocellular Carcinoma. J. Clin. Transl. Hepatol. 2019, 7, 183–190. [Google Scholar] [CrossRef]
- Sapir, E.; Tao, Y.; Schipper, M.J.; Bazzi, L.; Novelli, P.M.; Devlin, P.; Owen, D.; Cuneo, K.C.; Lawrence, T.S.; Parikh, N.D.; et al. Stereotactic Body Radiation Therapy as an Alternative to Transarterial Chemoembolization for Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 122–130. [Google Scholar] [CrossRef]
- Jacob, R.; Turley, F.; Redden, D.T.; Saddekni, S.; Aal, A.K.; Keene, K.; Yang, E.; Zarzour, J.; Bolus, D.; Smith, J.K.; et al. Adjuvant stereotactic body radiotherapy following transarterial chemoembolization in patients with non-resectable hepatocellular carcinoma tumours of ≥ 3 cm. HPB 2015, 17, 140–149. [Google Scholar] [CrossRef]
- Bae, S.H.; Chun, S.-J.; Chung, J.-H.; Kim, E.; Kang, J.-K.; Jang, W.I.; Moon, J.E.; Roquette, I.; Mirabel, X.; Kimura, T.; et al. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Meta-Analysis and International Stereotactic Radiosurgery Society Practice Guidelines. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 337–351. [Google Scholar] [CrossRef]
- Dawson, L.A.; Winter, K.A.; Knox, J.J.; Zhu, A.X.; Krishnan, S.; Guha, C.; Kachnic, L.A.; Gillin, M.; Hong, T.S.; Craig, T.; et al. NRG/RTOG 1112: Randomized phase III study of sorafenib vs. stereotactic body radiation therapy (SBRT) followed by sorafenib in hepatocellular carcinoma (HCC). J. Clin. Oncol. 2023, 41, 489. [Google Scholar] [CrossRef]
- Shirono, T.; Koga, H.; Niizeki, T.; Nagamatsu, H.; Iwamoto, H.; Shimose, S.; Nakano, M.; Okamura, S.; Noda, Y.; Kamachi, N.; et al. Usefulness of a novel transarterial chemoinfusion plus external-beam radiation therapy for advanced hepatocellular carcinoma with tumor thrombi in the inferior vena cava and right atrium: Case study. Cancer Rep. 2022, 5, e1539. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Yang, L.; Meng, Y.; Li, A.; Pan, M. External-beam radiation therapy versus surgery in the treatment of hepatocellular carcinoma with inferior vena cava/right atrium tumor thrombi. Asia Pac. J. Clin. Oncol. 2019, 15, 316–322. [Google Scholar] [CrossRef]
- Su, K.; Wang, F.; Li, X.; Chi, H.; Zhang, J.; He, K.; Wang, Z.; Wen, L.; Song, Y.; Chen, J.; et al. Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): A multicenter experience over a ten-year period. Front. Immunol. 2023, 14, 5959. [Google Scholar] [CrossRef]
- Zaki, P.; Chuong, M.D.; Schaub, S.K.; Lo, S.S.; Ibrahim, M.; Apisarnthanarax, S. Proton Beam Therapy and Photon-Based Magnetic Resonance Image-Guided Radiation Therapy: The Next Frontiers of Radiation Therapy for Hepatocellular Carcinoma. Technol. Cancer Res. Treat. 2023, 22, 15330338231206335. [Google Scholar] [CrossRef]
- Gandhi, M.; Choo, S.P.; Thng, C.H.; Tan, S.B.; Low, A.S.; Cheow, P.C.; Goh, A.S.; Tay, K.H.; Lo, R.H.; Goh, B.K.; et al. Single administration of Selective Internal Radiation Therapy versus continuous treatment with sorafeNIB in locally advanced hepatocellular carcinoma (SIRveNIB): Study protocol for a phase iii randomized controlled trial. BMC Cancer 2016, 16, 856. [Google Scholar] [CrossRef]
- Chow, P.K.H.; Gandhi, M.; Tan, S.B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients with Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Chen, K.W.; Ou, T.M.; Hsu, C.W.; Horng, C.T.; Lee, C.C.; Tsai, Y.Y.; Tsai, C.C.; Liou, Y.S.; Yang, C.C.; Hsueh, C.W.; et al. Current systemic treatment of hepatocellular carcinoma: A review of the literature. World J. Hepatol. 2015, 7, 1412–1420. [Google Scholar] [CrossRef]
- Lazzaro, A.; Hartshorn, K.L. A Comprehensive Narrative Review on the History, Current Landscape, and Future Directions of Hepatocellular Carcinoma (HCC) Systemic Therapy. Cancers 2023, 15, 2506. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.L.; Bronowicki, J.P.; Chen, X.P.; Dagher, L.; Furuse, J.; Geschwind, J.H.; de Guevara, L.L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Palmer, D.H.; Ma, Y.T.; Peck-Radosavljevic, M.; Ross, P.; Graham, J.; Fartoux, L.; Deptala, A.; Studeny, M.; Schnell, D.; Hocke, J.; et al. A multicentre, open-label, phase-I/randomised phase-II study to evaluate safety, pharmacokinetics, and efficacy of nintedanib vs. sorafenib in European patients with advanced hepatocellular carcinoma. Br. J. Cancer 2018, 118, 1162–1168. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Sacco, R.; Ramai, D.; Tortora, R.; di Costanzo, G.G.; Burlone, M.E.; Pirisi, M.; Federico, P.; Daniele, B.; Silletta, M.; Gallo, P.; et al. Role of Etiology in Hepatocellular Carcinoma Patients Treated with Lenvatinib: A Counterfactual Event-Based Mediation Analysis. Cancers 2023, 15, 381. [Google Scholar] [CrossRef]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international propensity score matching analysis. ESMO Open 2022, 7, 100591. [Google Scholar] [CrossRef]
- Rimini, M.; Persano, M.; Tada, T.; Suda, G.; Shimose, S.; Kudo, M.; Cheon, J.; Finkelmeier, F.; Lim, H.Y.; Presa, J.; et al. Survival outcomes from atezolizumab plus bevacizumab versus Lenvatinib in Child Pugh B unresectable hepatocellular carcinoma patients. J. Cancer Res. Clin. Oncol. 2023, 149, 7565–7577. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Kelley, R.K.; Ryoo, B.Y.; Merle, P.; Park, J.W.; Bolondi, L.; Chan, S.L.; Lim, H.Y.; Baron, A.D.; Parnis, F.; Knox, J.; et al. Second-line cabozantinib after sorafenib treatment for advanced hepatocellular carcinoma: A subgroup analysis of the phase 3 CELESTIAL trial. ESMO Open 2020, 5, e000714. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Ciuleanu, T.; Bazin, I.; Lungulescu, D.; Miron, L.; Bondarenko, I.; Deptala, A.; Rodriguez-Torres, M.; Giantonio, B.; Fox, N.L.; Wissel, P.; et al. A randomized, double-blind, placebo-controlled phase II study to assess the efficacy and safety of mapatumumab with sorafenib in patients with advanced hepatocellular carcinoma. Ann. Oncol. 2016, 27, 680–687. [Google Scholar] [CrossRef]
- Peng, Z.; Fan, W.; Zhu, B.; Wang, G.; Sun, J.; Xiao, C.; Huang, F.; Tang, R.; Cheng, Y.; Huang, Z.; et al. Lenvatinib Combined With Transarterial Chemoembolization as First-Line Treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH). J. Clin. Oncol. 2023, 41, 117–127. [Google Scholar] [CrossRef]
- Li, J.; Cao, F.; Yin, H.-l.; Huang, Z.-j.; Lin, Z.-t.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, Y.; Pan, Z.; Glandorff, C.; Sun, M. Ferroptosis: A new hunter of hepatocellular carcinoma. Cell Death Discov. 2024, 10, 136. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, C.; Zhang, Y.; Tian, X.; Wang, H.; Wu, J.; Jiang, S. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma. Biomed. Pharmacother. 2024, 170, 116074. [Google Scholar] [CrossRef]
- Milana, F.; Polidoro, M.A.; Famularo, S.; Lleo, A.; Boldorini, R.; Donadon, M.; Torzilli, G. Surgical Strategies for Recurrent Hepatocellular Carcinoma after Resection: A Review of Current Evidence. Cancers 2023, 15, 508. [Google Scholar] [CrossRef]
- Oura, K.; Morishita, A.; Tani, J.; Masaki, T. Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int. J. Mol. Sci. 2021, 22, 5801. [Google Scholar] [CrossRef]
- Jiang, D.; Ma, X.; Zhang, X.; Cheng, B.; Wang, R.; Liu, Y.; Zhang, X. New techniques: A roadmap for the development of HCC immunotherapy. Front. Immunol. 2023, 14, 1121162. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Lou, Y.; Fu, Q.; Chen, Q.; Wei, T.; Yang, J.; Tang, J.; Wang, J.; Chen, Y.; et al. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology 2018, 67, 1872–1889. [Google Scholar] [CrossRef]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef]
- Woo, S.R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef]
- Donisi, C.; Puzzoni, M.; Ziranu, P.; Lai, E.; Mariani, S.; Saba, G.; Impera, V.; Dubois, M.; Persano, M.; Migliari, M.; et al. Immune Checkpoint Inhibitors in the Treatment of HCC. Front. Oncol. 2020, 10, 601240. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Chen, B. Nivolumab as Programmed Death-1 (PD-1) Inhibitor for Targeted Immunotherapy in Tumor. J. Cancer 2017, 8, 410–416. [Google Scholar] [CrossRef]
- Saung, M.T.; Pelosof, L.; Casak, S.; Donoghue, M.; Lemery, S.; Yuan, M.; Rodriguez, L.; Schotland, P.; Chuk, M.; Davis, G.; et al. FDA Approval Summary: Nivolumab Plus Ipilimumab for the Treatment of Patients with Hepatocellular Carcinoma Previously Treated with Sorafenib. Oncologist 2021, 26, 797–806. [Google Scholar] [CrossRef]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracián, A.C.; Acosta-Rivera, M.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.; et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J. Hepatol. 2021, 75, 600–609. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Trojan, J.; Meyer, T.; Yau, T.; Melero, I.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Kang, Y.K.; et al. Nivolumab in sorafenib-naive and sorafenib-experienced patients with advanced hepatocellular carcinoma: 5-year follow-up from CheckMate 040. Ann. Oncol. 2024, 35, 381–391. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Vogel, A.; Finn, R.S.; Blanchet Zumofen, M.H.; Heuser, C.; Alvarez, J.S.; Leibfried, M.; Mitchell, C.R.; Batson, S.; Redhead, G.; Gaillard, V.E.; et al. Atezolizumab in Combination with Bevacizumab for the Management of Patients with Hepatocellular Carcinoma in the First-Line Setting: Systematic Literature Review and Meta-Analysis. Liver Cancer 2023, 12, 510–520. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Liu, T.-H.; Nicholas, A.; Soyama, A.; Yuan, C.-T.; Chen, T.-C.; Eguchi, S.; Yoshizumi, T.; Itoh, S.; Nakamura, N.; et al. Clinical Outcomes and Histologic Findings of Patients With Hepatocellular Carcinoma With Durable Partial Response or Durable Stable Disease After Receiving Atezolizumab Plus Bevacizumab. J. Clin. Oncol. 2024, 42, JCO.24.00645. [Google Scholar] [CrossRef]
- Adjuvant Treatment with Atezolizumab and Bevacizumab May Delay Recurrence After Surgical Resection in Patients with Liver Cancer. Available online: https://www.aacr.org/about-the-aacr/newsroom/news-releases/adjuvant-treatment-with-atezolizumab-and-bevacizumab-may-delay-recurrence-after-surgical-resection-in-patients-with-liver-cancer/ (accessed on 11 November 2024).
- Verset, G.; Borbath, I.; Karwal, M.; Verslype, C.; Van Vlierberghe, H.; Kardosh, A.; Zagonel, V.; Stal, P.; Sarker, D.; Palmer, D.H.; et al. Pembrolizumab Monotherapy for Previously Untreated Advanced Hepatocellular Carcinoma: Data from the Open-Label, Phase II KEYNOTE-224 Trial. Clin. Cancer Res. 2022, 28, 2547–2554. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Ducreux, M.; Abou-Alfa, G.; Ren, Z.; Edeline, J.; Li, Z.; Assenat, E.; Rimassa, L.; Blanc, J.; Ross, P.; Fang, W.; et al. O-1 Results from a global phase 2 study of tislelizumab, an investigational PD-1 antibody, in patients with unresectable hepatocellular carcinoma. Ann. Oncol. 2021, 32, S217. [Google Scholar] [CrossRef]
- Ren, Z.; Ducreux, M.; Abou-Alfa, G.K.; Merle, P.; Fang, W.; Edeline, J.; Li, Z.; Wu, L.; Assenat, E.; Hu, S.; et al. Tislelizumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma (RATIONALE-208): A Multicenter, Non-Randomized, Open-Label, Phase 2 Trial. Liver Cancer 2023, 12, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Kudo, M.; Meyer, T.; Bai, Y.; Guo, Y.; Meng, Z.; Satoh, T.; Marino, D.; Assenat, E.; Li, S.; et al. Tislelizumab vs Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1651–1659. [Google Scholar] [CrossRef]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.; Lim, H.Y.; Yau, T.; et al. Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients With Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. J. Clin. Oncol. 2021, 39, 2991–3001. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Chan, S.L.; Kudo, M.; Lau, G.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; De Toni, E.N.; et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J. Clin. Oncol. 2022, 40, 379. [Google Scholar] [CrossRef]
- France, N.L.; Blair, H.A. Tremelimumab: A Review in Advanced or Unresectable Hepatocellular Carcinoma. Target. Oncol. 2024, 19, 115–123. [Google Scholar] [CrossRef]
- Zhou, G.; Sprengers, D.; Boor, P.P.C.; Doukas, M.; Schutz, H.; Mancham, S.; Pedroza-Gonzalez, A.; Polak, W.G.; de Jonge, J.; Gaspersz, M.; et al. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas. Gastroenterology 2017, 153, 1107–1119.e1110. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Liu, X.; Ma, H.; Zhang, H.; Song, X.; Gao, L.; Liang, X.; Ma, C. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut 2015, 64, 1593–1604. [Google Scholar] [CrossRef]
- Gomes de Morais, A.L.; Cerdá, S.; de Miguel, M. New Checkpoint Inhibitors on the Road: Targeting TIM-3 in Solid Tumors. Curr. Oncol. Rep. 2022, 24, 651–658. [Google Scholar] [CrossRef]
- Nadal, E.; Saleh, M.; Aix, S.P.; Ochoa-de-Olza, M.; Patel, S.P.; Antonia, S.; Zhao, Y.; Gueorguieva, I.; Man, M.; Estrem, S.T.; et al. A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer. BMC Cancer 2023, 23, 708. [Google Scholar] [CrossRef]
- Galle, P.R.; Decaens, T.; Kudo, M.; Qin, S.; Fonseca, L.; Sangro, B.; Karachiwala, H.; Park, J.-W.; Gane, E.; Pinter, M.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): First results from CheckMate 9DW. J. Clin. Oncol. 2024, 42, LBA4008. [Google Scholar] [CrossRef]
- Exposito, M.J.; Akce, M.; Alvarez, J.; Assenat, E.; Balart, L.; Baron, A.; Decaens, T.; Heurgue-Berlot, A.; Martin, A.; Paik, S.; et al. Abstract No. 526 CheckMate-9DX: Phase 3, randomized, double-blind study of adjuvant nivolumab vs placebo for patients with hepatocellular carcinoma (HCC) at high risk of recurrence after curative resection or ablation. J. Vasc. Interv. Radiol. 2019, 30, S227–S228. [Google Scholar] [CrossRef]
- Prieto, J.; Melero, I.; Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 681–700. [Google Scholar] [CrossRef]
- Qin, S.; Chan, S.L.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; Chen, Z.; Jia, W.; Jin, Y.; Guo, Y.; et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet 2023, 402, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kaseb, A.; Cheng, A.-L.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; Verset, G.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): Final results of a randomised phase 3 study. Lancet Gastroenterol. Hepatol. 2024, 9, 310–322. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; Li, Q.; Lu, Y.; Chen, Y.; Guo, Y.; et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2-3 study. Lancet Oncol. 2021, 22, 977–990. [Google Scholar] [CrossRef]
- Kudo, M.; Guo, Y.; Hua, Y.; Zhao, M.; Xing, W.; Zhang, Y.; Liu, R.; Ren, Z.; Gu, S.; Lin, Z.; et al. TALENTACE: A phase III, open-label, randomized study of on-demand transarterial chemoembolization combined with atezolizumab + bevacizumab or on-demand transarterial chemoembolization alone in patients with untreated hepatocellular carcinoma. J. Clin. Oncol. 2022, 40, TPS487. [Google Scholar] [CrossRef]
- Foerster, F.; Kloeckner, R.; Reig, M.; Chan, S.L.; Chung, J.W.; Merle, P.; Park, J.-W.; Piscaglia, F.; Vogel, A.; Gaillard, V.; et al. ABC-HCC: A phase IIIb, randomized, multicenter, open-label trial of atezolizumab plus bevacizumab versus transarterial chemoembolization (TACE) in intermediate-stage hepatocellular carcinoma. J. Clin. Oncol. 2022, 40, TPS498. [Google Scholar] [CrossRef]
- Llovet, J.; Finn, R.S.; Ren, Z.; Guo, Y.; Han, G.; Lin, H.; Zheng, J.; Ogasawara, S.; Li, H.; Kim, J.H.; et al. LBA3 Transarterial chemoembolization (TACE) with or without lenvatinib (len) + pembrolizumab (pembro) for intermediate-stage hepatocellular carcinoma (HCC): Phase III LEAP-012 study. Ann. Oncol. 2024, 35, S1229. [Google Scholar] [CrossRef]
- Llovet, J.M.; Vogel, A.; Madoff, D.C.; Finn, R.S.; Ogasawara, S.; Ren, Z.; Mody, K.; Li, J.J.; Siegel, A.B.; Dubrovsky, L.; et al. Randomized Phase 3 LEAP-012 Study: Transarterial Chemoembolization With or Without Lenvatinib Plus Pembrolizumab for Intermediate-Stage Hepatocellular Carcinoma Not Amenable to Curative Treatment. Cardiovasc. Interv. Radiol. 2022, 45, 405–412. [Google Scholar] [CrossRef]
- Saborowski, A.; Waldschmidt, D.; Hinrichs, J.; Ettrich, T.J.; Martens, U.M.; Mekolli, A.; Toni, E.N.D.; Berg, T.; Geißler, M.; Hausner, G.; et al. IMMUTACE: A biomarker-orientated phase II, single-arm, open-label AIO study of transarterial chemoembolization (TACE) in combination with nivolumab performed for intermediate-stage hepatocellular carcinoma (HCC.; AIO-HEP-0217)—Updated efficacy results. J. Clin. Oncol. 2022, 40, 4116. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Erinjeri, J.; Qin, S.; Ren, Z.; Chan, S.; Arai, Y.; Heo, J.; Mai, A.; Escobar, J.; et al. EMERALD-1: A phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. J. Clin. Oncol. 2024, 42, LBA432. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Ungchusri, E.; Patel, M.; Pillai, A.; Ha, T.V.; Liao, C.-Y.; Ahmed, O. Introducing yttrium-90 radioembolization to atezolizumab and bevacizumab regimen for intermediate and advanced stage hepatocellular carcinoma: A preliminary report of safety and effectiveness. J. Clin. Oncol. 2023, 41, e16231. [Google Scholar] [CrossRef]
- Iyer, R.; Noonan, A.; Spieler, B.; White, S.; Kulik, L.; Underwood, D.; Heilbron, E.; Nguyen, B.; Wetherill, G.; Salem, R. EMERALD-Y90: A Phase 2 Study to Evaluate Transarterial Radioembolization Followed by Durvalumab and Bevacizumab for the Treatment of Unresectable Hepatocellular Carcinoma Eligible for Embolization. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, e487. [Google Scholar] [CrossRef]
- Kimura, T.; Fujiwara, T.; Kameoka, T.; Adachi, Y.; Kariya, S. The Current Role of Stereotactic Body Radiation Therapy (SBRT) in Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 4383. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.L.; Kung, J.W.C.; Chan, S.L. Neoadjuvant immunotherapy for early-stage hepatocellular carcinoma: The arts and science. ESMO Gastrointest. Oncol. 2023, 1, 15–20. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Zhang, B.; Yue, J.; Shi, X.; Cui, K.; Liu, Z.; Chang, Z.; Sun, Z.; Li, M.; et al. Neoadjuvant tislelizumab plus stereotactic body radiotherapy and adjuvant tislelizumab in early-stage resectable hepatocellular carcinoma: The Notable-HCC phase 1b trial. Nat. Commun. 2024, 15, 3260. [Google Scholar] [CrossRef]
- Rimini, M.; Kudo, M.; Tada, T.; Shigeo, S.; Kang, W.; Suda, G.; Jefremow, A.; Burgio, V.; Iavarone, M.; Tortora, R.; et al. Nonalcoholic steatohepatitis in hepatocarcinoma: New insights about its prognostic role in patients treated with lenvatinib. ESMO Open 2021, 6, 100330. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Shalapour, S.; Lin, X.-J.; Bastian, I.N.; Brain, J.; Burt, A.D.; Aksenov, A.A.; Vrbanac, A.F.; Li, W.; Perkins, A.; Matsutani, T.; et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017, 551, 340–345. [Google Scholar] [CrossRef]
- Behary, J.; Amorim, N.; Jiang, X.T.; Raposo, A.; Gong, L.; McGovern, E.; Ibrahim, R.; Chu, F.; Stephens, C.; Jebeili, H.; et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat. Commun. 2021, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Meneghel, P.; Farinati, F.; Russo, F.P.; Pelizzaro, F.; Gambato, M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig. Liver Dis. 2024, 56, 579–588. [Google Scholar] [CrossRef] [PubMed]
Stage | Performance Status (PS) | Liver Function (Child-Pugh Score) | Tumour Extend | ||
---|---|---|---|---|---|
Stage 0 | Very early stage | PS 0 | Child-Pugh A | solitary lesion ≤ 2 cm in diameter | minimally invasive procedures |
Stage A | Early stage | PS 0–2 | Child-Pugh A–C | solitary lesion > 2 cm or early multifocal disease—up to 3 lesions measuring less than 3 cm | |
Stage B | Intermediate stage | PS 0 | Child-Pugh A–C | multifocal disease: >1 lesion with at least one > 3 cm, or >3 lesions regardless of their size | |
Stage C | Advanced stage | PS 1–2 | Child-Pugh A–C | vascular invasion and/or nodal disease and/or metastatic disease | |
Stage D | End-stage disease | PS > 2 | Child-Pugh C | any tumour burden |
Trial | Design | n | HCC | mOS | TTP | PFS | ORR | AEs |
---|---|---|---|---|---|---|---|---|
SHARP NCT00105443 | Sorafenib vs. placebo | 602 | Advanced HCC with Child-Pugh A with no prior systemic therapy | 10.7 vs. 7.9 months | Median time to radiological progression 5.5 vs. 2.8 months Median time to symptomatic progression 4.1 vs. 4.9 months | - | - | Diarrhoea, fatigue, weight loss, anorexia, nausea, hand-foot skin reaction |
HR 0.69; 95% CI 0.55–0.87; p = 0.00583 | HR 0.58; 95% CI 0.45–0.74; p < 0.001 | |||||||
REFLECT NCT01761266 | Lenvatinib vs. sorafenib | 954 | Unresectable HCC with no prior systemic therapy | 13.6 vs. 12.3 months | 8.9 vs. 3.7 months | 7.4 vs. 3.7 months | 24.1% vs. 9.2% | Hypertension, hand-foot skin reaction, dysphonia, weight loss, increased ALAT and ASPAT level, fatigue, diarrhoea |
HR 0.92; 95% CI 0.79–1.06 |
Drug | Trial Name | Phase | Design | HCC | Endpoint | n | NCT |
---|---|---|---|---|---|---|---|
Nivolumab | CheckMate040 | I | Nivolumab + ipilimumab vs. sorafenib | Advanced HCC | AEs, SAEs | 659 | NCT01658878 |
II | |||||||
Nivolumab | CheckMate 459 | III | Nivolumab vs. sorafenib | Advanced HCC | OS | 743 | NCT02576509 |
Atezolizumab | IMbrave150 | III | Atezolizumab + bevacizumab vs. sorafenib | locally advanced or metastatic HCC, no prior systemic treatment | OS | 558 | NCT03434379 |
PFS-IRF Per RECIST | |||||||
Pembrolizumab | MK-3475-224/KEYNOTE-224 | II | Pembrolizumab | Cohort I: advanced HCC, no curative option after progression on sorafenib / intolerance of sorafenib | ORR | 156 | NCT02702414 |
Cohort II: advanced HCC, not received treatment for systemic disease | |||||||
Pembrolizumab | MK-3475-394/KEYNOTE-394 | III | Pembrolizumab + BSC vs. placebo + BSC | advanced HCC, previously systemically treated | OS | 453 | NCT03062358 |
Pembrolizumab | MK-3475-937/KEYNOTE-937 | III | Pembrolizumab vs. placebo | Adjuvant therapy for HCC, complete radiological response after surgical resection or local ablation | RFS | 950 | NCT03867084 |
OS | |||||||
Tremelimumab | - | II | durvalumab vs. tremelimumab monotherapyvs. durvalumab + tremelimumab vs. durvalumab + bevacizumab | Advanced HCC | DLTs | 433 | NCT02519348 |
TEAEs | |||||||
TESAEs | |||||||
Tremelimumab | HIMALAYA | III | durvalumab + tremelimumab vs. durvalumab monotherapy vs. sorafenib | unresectable HCC, no prior systemic therapy | OS | 1324 | NCT03298451 |
Tislelizumab | RATIONALE-208 | II | Tislelizumab | Patients with previously treated HCC | OS | 249 | NCT03419897 |
Tislelizumab | RATIONALE-301 | III | Tislelizumab vs. sorafenib | Unresectable HCC | OS | 674 | NCT03412773 |
Nivolumab | - | I | galunisertib + nivolumab | recurrent or refractory NSCLC or HCC | MTD | 41 | NCT02423343 |
II | |||||||
Nivolumab | CheckMate 9DX | III | Nivolumab vs. placebo | HCC before complete resection or complete response after local ablation, high risk of recurrence | RFS | 545 | NCT03383458 |
Pembrolizumab | MK-7902-002/E7080-G000-311/LEAP-002 | III | Lenvatinib + pembrolizumab vs. lenvatinib + placebo | first-line therapy for advanced HCC | PFS | 794 | NCT03713593 |
OS | |||||||
Camrelizumab | CARES-310 | III | Camrelizumab (SHR-1210) + apatinib vs. sorafenib | first-line therapy for advanced HCC | PFS | 543 | NCT03764293 |
OS | |||||||
Sintilimab | ORIENT-32 | II | Sintilimab + IBI305 vs. sorafenib | first-line therapy for advanced HCC | PFS | 595 | NCT03794440 |
III | OS | ||||||
Camrelizumab | - | III | Camrelizumab + FOLFOX4 vs. placebo + FOLFOX4 | Advanced HCC, no prior systemic treatment | OS | 396 | NCT03605706 |
Trial | Design | OS | ORR | PFS | TPP | DOR |
---|---|---|---|---|---|---|
CheckMate 459 NCT02576509 | Nivolumab vs. sorafenib | 16.4 vs. 14.7 months | 15.4% vs. 7.0% | 3.68 vs. 3.75 months | - | - |
IMbrave150 NCT03434379 | Atezolizumab + bevacizumab vs. sorafenib | CCOD—30 months | 27.3% vs. 11.9% | 6.83 vs. 4.27 months | 8.57 vs. 5.59 months | NA vs. 6.28 months |
19.22 vs. 13.40 months | ||||||
KEYNOTE-394 NCT03062358 | Pembrolizumab + BSC vs. placebo + BSC | 14.6 vs. 13.0 months | 12.7% vs. 1.3% | 2.6 vs. 2.3 months | 2.7 vs. 1.7 months | 23.9 vs. 5.6 months |
RATIONALE-301 NCT03412773 | Tislelizumab vs. sorafenib | 15.9 vs. 14.1 months | 14.3% vs. 5.4% | 2.1 vs. 3.4 months | - | 36.1 vs. 11.0 months |
HIMALAYA NCT03298451 | Durvalumab 1500 mg + tremelimumab 300 mg × 1 dose vs. durvalumab 1500 mg + tremelimumab 75 mg × 4 doses vs. durvalumab 1500 mg monotherapy vs. sorafenib 400 mg × 2 | 16.43 vs. 16.36 vs. 16.56 vs. 13.77 months | 20.1% vs. 17.0% vs. 17.0% vs. 5.1% | 3.78 vs. 3.65 vs. 3.65 vs. 4.07 months | 3.75 vs. 5.42 vs. 3.75 vs. 5.55 months | 22.34 vs. 14.75 vs. 16.82 vs. 18.43 months |
LEAP—002 NCT03713593 | Lenvatinib + pembrolizumab vs. lenvatinib + placebo | 21.2 vs. 19.0 months | 26.1% vs. 17.5% | 8.2 vs. 8.1 months | 8.3 vs. 8.2 months | 4.1 vs. 4.0 months |
CARES-310 NCT03764293 | Camrelizumab + apatinib vs. sorafenib | 22.1 vs. 15.2 months | 25% vs. 6% | 5.6 vs. 3.7 months | - | 14.8 vs. 9.2 months |
COSMIC-312 NCT03755791 | Cabozantinib + atezolizumab vs. sorafenib | 16.5 vs. 15.5 months | - | 6.9 vs. 4.3 months | - | - |
Phase | Drugs | Procedure | Setting | NCT |
---|---|---|---|---|
II | Nivolumab | TACE | intermediate stage HCC | NCT04268888 (TACE-3) |
III | ||||
II | Nivolumab | TACE | Intermediate Stage HCC | NCT03572582 (IMMUTACE) |
III | Nivolumab with or without ipilimumab | TACE | Intermediate Stage HCC | NCT04340193 (CheckMate 74W) |
II | Lenvatinib and Pembrolizumab | TACE | Advanced HCC | NCT04246177 (LEAP-012) |
II | Apatinib and Camrelizumab | TACE | C staged HCC in BCLC classification | NCT04191889 (TRIPLET) |
III | Lenvatinib and camrelizumab | TACE | BCLC C patients with the goal of conversion resection | NCT05738616 (LEN-TAC Study) |
III | Atezolizumab and bevacizumab | TACE | Unresectable HCC | NCT047126430 (TALENTACE) |
IIIb | Atezolizumab and bevacizumab | TACE | Intermediate stage HCC with no curative treatment option | NCT04803994 (ABC-HCC) |
III | Durvalumab with or without bevacizumab | TACE | Unresectable HCC | NCT03778957 (EMERALD-1) |
III | Durvalumab plus tremelimumab with or without bevacizumab | TACE | Locoregional HCC not amenable to curative therapy | NCT05301842 (EMERALD-3) |
Early Phase I | Atezolizumab and bevacizumab | SBRT | Resectable HCC | NCT04857684 |
II | Atezolizumab and bevacizumab | SBRT | Solitary HCC with the presence of PVTT | NCT05137899 (ADVANCE HCC) |
Ib | Tislelizumab | SBRT | Early-stage resectable HCC | NCT05185531 (Notable-HCC) |
II | Durvalumab and bevacizumab | TARE | Unresectable HCC amenable to locoregional therapy | NCT06040099 (EMERALD-Y90) |
II | Durvalumab | TARE | Locally advanced HCC | NCT04124991 (SOLID) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa, K.; Fudalej, M.; Cencelewicz-Lesikow, A.; Badowska-Kozakiewicz, A.; Czerw, A.; Deptała, A. Current Treatment Methods in Hepatocellular Carcinoma. Cancers 2024, 16, 4059. https://doi.org/10.3390/cancers16234059
Krupa K, Fudalej M, Cencelewicz-Lesikow A, Badowska-Kozakiewicz A, Czerw A, Deptała A. Current Treatment Methods in Hepatocellular Carcinoma. Cancers. 2024; 16(23):4059. https://doi.org/10.3390/cancers16234059
Chicago/Turabian StyleKrupa, Kamila, Marta Fudalej, Anna Cencelewicz-Lesikow, Anna Badowska-Kozakiewicz, Aleksandra Czerw, and Andrzej Deptała. 2024. "Current Treatment Methods in Hepatocellular Carcinoma" Cancers 16, no. 23: 4059. https://doi.org/10.3390/cancers16234059
APA StyleKrupa, K., Fudalej, M., Cencelewicz-Lesikow, A., Badowska-Kozakiewicz, A., Czerw, A., & Deptała, A. (2024). Current Treatment Methods in Hepatocellular Carcinoma. Cancers, 16(23), 4059. https://doi.org/10.3390/cancers16234059