Systematic Review-Based Treatment Algorithm for the Multidisciplinary Treatment of Lung Cancer Bone Metastases †
Simple Summary
Abstract
1. Introduction
2. Method
2.1. Eligible Criteria
2.2. Data Source and Collection Process
2.3. Risk of Bias and Quality Assessment
2.4. Statistics
2.5. Suggestion of a Treatment Algorithm
2.6. Protocol
3. Results
3.1. Study Selection and Characteristics
3.2. Quality Assessment
3.3. Clinical Results
4. Discussion
4.1. Implication from the Results
4.2. Role of Local Treatments
4.3. Role of Systemic Modalities
4.4. Clinical Workflow Suggestion
4.5. Limitations
4.6. Areas of Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Baldini, E.H.; Strauss, G.M. Women and lung cancer: Waiting to exhale. Chest 1997, 112, 229S–234S. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.; Zhao, S.; Miah, A.; Wei, L.; Patel, S.; Johns, A.; Grogan, M.; Bertino, E.M.; He, K.; Shields, P.G. Bone metastases, skeletal-related events, and survival in patients with metastatic non–small cell lung cancer treated with immune checkpoint inhibitors. J. Natl. Compr. Cancer Netw. 2021, 19, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Berenson, J.; Rajdev, L.; Broder, M. Managing bone complications of solid tumors. Cancer Biol. Ther. 2006, 5, 1086–1089. [Google Scholar] [CrossRef] [PubMed]
- Tsuya, A.; Kurata, T.; Tamura, K.; Fukuoka, M. Skeletal metastases in non-small cell lung cancer: A retrospective study. Lung Cancer 2007, 57, 229–232. [Google Scholar] [CrossRef]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression profiling of selected immune genes and trabecular microarchitecture in breast cancer skeletal metastases model: Effect of α–tocopherol acetate supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Theriault, R.L.; Lipton, A.; Porter, L.; Blayney, D.; Sinoff, C.; Wheeler, H.; Simeone, J.F.; Seaman, J.J.; Knight, R.D. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J. Clin. Oncol. 1998, 16, 2038–2044. [Google Scholar] [CrossRef]
- Coleman, R.; Hadji, P.; Body, J.-J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A. Bone health in cancer: ESMO clinical practice guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. New Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. New Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Cho, W.K.; Park, S.; Yoon, W.S.; Yang, D.S. Role of local ablative treatment in oligometastatic non-small cell lung cancer: A meta-analysis. Int. J. Surg. 2023, 109, 1006–1014. [Google Scholar] [CrossRef]
- Rim, C.H.; Cho, W.K.; Lee, J.H.; Kim, Y.S.; Suh, Y.-G.; Kim, K.H.; Chie, E.K.; Ahn, Y.C.; Group, O.W.; Association, K.C. Role of local treatment for oligometastasis: A comparability-based meta-analysis. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 953. [Google Scholar] [CrossRef]
- Laganà, M.; Gurizzan, C.; Roca, E.; Cortinovis, D.; Signorelli, D.; Pagani, F.; Bettini, A.; Bonomi, L.; Rinaldi, S.; Berardi, R. High prevalence and early occurrence of skeletal complications in EGFR mutated NSCLC patients with bone metastases. Front. Oncol. 2020, 10, 588862. [Google Scholar] [CrossRef] [PubMed]
- Ulas, A.; Bilici, A.; Tokluoglu, S.; Akinci, S.; Silay, K.; Turkoz, F.P.; Durnali, A.; Oksuzoglu, B.; Alkis, N. Risk factors for skeletal-related events in patients with non-small cell lung cancer patients with bone metastases. Ann. Oncol. 2015, 26, i29. [Google Scholar] [CrossRef]
- Yap, W.-K.; Shih, M.-C.; Kuo, C.; Pai, P.-C.; Chou, W.-C.; Chang, K.-P.; Tsai, M.-H.; Tsang, N.-M. Development and validation of a nomogram for assessing survival in patients with metastatic lung cancer referred for radiotherapy for bone metastases. JAMA Netw. Open 2018, 1, e183242. [Google Scholar] [CrossRef] [PubMed]
- Deberne, M.; Ropert, S.; Billemont, B.; Daniel, C.; Chapron, J.; Goldwasser, F. Inaugural bone metastases in non-small cell lung cancer: A specific prognostic entity? BMC Cancer 2014, 14, 416. [Google Scholar] [CrossRef]
- Ko, H.-W.; Chiu, C.-T.; Wang, C.-L.; Yang, T.-Y.; Liu, C.-Y.; Yu, C.-T.; Tseng, L.-C.; Kuo, C.-H.S.; Wang, C.-C.; Yang, M.-H. Overall survival improvement in patients with epidermal growth factor receptor-mutated non-small cell lung cancer and bone metastasis treated with denosumab. Cancers 2022, 14, 3470. [Google Scholar] [CrossRef]
- Chambard, L.; Girard, N.; Ollier, E.; Rousseau, J.-C.; Duboeuf, F.; Carlier, M.-C.; Brevet, M.; Szulc, P.; Pialat, J.-B.; Wegrzyn, J. Bone, muscle, and metabolic parameters predict survival in patients with synchronous bone metastases from lung cancers. Bone 2018, 108, 202–209. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Lim, A. 171P Systematic review-based treatment algorithm for multidisciplinary treatment of lung cancer bone metastases. In Proceedings of the European Lung Cancer Congress, Prague, Czech Republic, 20–23 March 2024. [Google Scholar]
- Lefebvre, C.; Glanville, J.; Briscoe, S.; Littlewood, A.; Marshall, C.; Metzendorf, M.I.; Noel-Storr, A.; Rader, T.; Shokraneh, F.; Thomas, J. Searching for and selecting studies. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Collaboration: London, UK, 2019; pp. 67–107. [Google Scholar]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, Canada, 2011; Volume 2, pp. 1–12. [Google Scholar]
- Cochran, W.G. The combination of estimates from different experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Cui, X.; Li, S.; Gu, J.; Lin, Z.; Lai, B.; Huang, L.; Feng, J.; Liu, B.; Zhou, Y. Retrospective study on the efficacy of bisphosphonates in tyrosine kinase inhibitor-treated patients with non-small cell lung cancer exhibiting bone metastasis. Oncol. Lett. 2019, 18, 5437–5447. [Google Scholar] [CrossRef]
- Pruksakorn, D.; Phanphaisarn, A.; Settakorn, J.; Arpornchayanon, U.; Tantraworasin, A.; Chaiyawat, P.; Teeyakasem, P. Prognostic score for life expectancy evaluation of lung cancer patients after bone metastasis. J. Bone Oncol. 2018, 10, 1–5. [Google Scholar] [CrossRef]
- Qiang, H.; Lei, Y.; Shen, Y.; Li, J.; Zhong, H.; Zhong, R.; Zhang, X.; Chang, Q.; Lu, J.; Feng, H. Pembrolizumab monotherapy or combination therapy for bone metastases in advanced non-small cell lung cancer: A real-world retrospective study. Transl. Lung Cancer Res. 2022, 11, 87. [Google Scholar] [CrossRef]
- Dohzono, S.; Sasaoka, R.; Takamatsu, K.; Hoshino, M.; Nakamura, H. Low paravertebral muscle mass in patients with bone metastases from lung cancer is associated with poor prognosis. Support. Care Cancer 2020, 28, 389–394. [Google Scholar] [CrossRef]
- Udagawa, H.; Niho, S.; Kirita, K.; Umemura, S.; Matsumoto, S.; Yoh, K.; Goto, K. Impact of denosumab use on the survival of untreated non-squamous non-small cell lung cancer patients with bone metastases. J. Cancer Res. Clin. Oncol. 2017, 143, 1075–1082. [Google Scholar] [CrossRef]
- Xu, S.; Cao, S.; Yu, Y. High systemic immune-inflammation index is a predictor of poor prognosis in patients with nonsmall cell lung cancer and bone metastasis. J. Cancer Res. Ther. 2021, 17, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Xiaomei, G.; Wei, J.; Chunxue, B.; Zhaochong, Z. EGFR-TKI Therapy Prolongs Survival In Non-small Cell Lung Cancer Patients With Brain Metastases or Bone Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, S621. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, R.; Zhang, Z.; Jiang, T.; Ren, S.; Ma, Z.; Zhao, S.; Zhou, C.; Zhang, J. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases. Sci. Rep. 2017, 7, 42979. [Google Scholar] [CrossRef] [PubMed]
- Sunaga, T.; Shimamoto, K.; Nakamura, S.; Takahashi, N.; Higashino, M.; Hozumi, T.; Matsui, M.; Nagatani, A.; Kokubu, F.; Kogo, M. The association between fever and prognosis in lung cancer patients with bone metastases receiving zoledronic acid. Chemotherapy 2017, 62, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Zhiyu, W.; Rui, Z.; Shuai, W.; Hui, Z. Surgical treatment of patients with lung cancer and bone metastases: A prospective, observational study. Lancet 2016, 388, S42. [Google Scholar] [CrossRef]
- Utzschneider, S.; Wicherek, E.; Weber, P.; Schmidt, G.; Jansson, V.; Dürr, H.R. Surgical treatment of bone metastases in patients with lung cancer. Int. Orthop. 2011, 35, 731–736. [Google Scholar] [CrossRef]
- Hayashi, K.; Tsuchiya, H. The role of surgery in the treatment of metastatic bone tumor. Int. J. Clin. Oncol. 2022, 27, 1238–1246. [Google Scholar] [CrossRef]
- Kvale, P.A.; Selecky, P.A.; Prakash, U.B. Palliative care in lung cancer: ACCP evidence-based clinical practice guidelines. Chest 2007, 132, 368S–403S. [Google Scholar] [CrossRef]
- Upadhya, A.; Yadav, K.S.; Misra, A. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-part I. Expert Opin. Drug Deliv. 2021, 18, 73–102. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. New Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R. Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. New Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Mamdani, H.; Matosevic, S.; Khalid, A.B.; Durm, G.; Jalal, S.I. Immunotherapy in lung cancer: Current landscape and future directions. Front. Immunol. 2022, 13, 823618. [Google Scholar] [CrossRef]
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R. Five-year outcomes from the randomized, phase III trials checkmate 017 and 057: Nivolumab versus docetaxel in previously treated non–small-cell lung cancer. J. Clin. Oncol. 2021, 39, 723. [Google Scholar] [CrossRef]
- Del Conte, A.; De Carlo, E.; Bertoli, E.; Stanzione, B.; Revelant, A.; Bertola, M.; Spina, M.; Bearz, A. Bone metastasis and immune checkpoint inhibitors in non-small cell lung cancer (NSCLC): Microenvironment and possible clinical implications. Int. J. Mol. Sci. 2022, 23, 6832. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.G.; Johnson, D.H.; Azzoli, C.G.; Sause, W.; Smith, T.J.; Baker Jr, S.; Olak, J.; Stover, D.; Strawn, J.R.; Turrisi, A.T. American Society of Clinical Oncology treatment of unresectable non–small-cell lung cancer guideline: Update 2003. J. Clin. Oncol. 2004, 22, 330–353. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Hirsh, V.; Siena, S.; Henry, D.H.; Woll, P.J.; Manegold, C.; Solal-Celigny, P.; Rodriguez, G.; Krzakowski, M.; Mehta, N.D. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: Subgroup analysis from a randomized phase 3 study. J. Thorac. Oncol. 2012, 7, 1823–1829. [Google Scholar] [CrossRef]
- Henry, D.; Vadhan-Raj, S.; Hirsh, V.; Von Moos, R.; Hungria, V.; Costa, L.; Woll, P.J.; Scagliotti, G.; Smith, G.; Feng, A. Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: An analysis of data from patients with solid tumors. Support. Care Cancer 2014, 22, 679–687. [Google Scholar] [CrossRef]
- Rosen, L.S.; Gordon, D.; Tchekmedyian, N.S.; Yanagihara, R.; Hirsh, V.; Krzakowski, M.; Pawlicki, M.; De Souza, P.; Zheng, M.; Urbanowitz, G. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: A randomized, phase III, double-blind, placebo-controlled trial. Cancer 2004, 100, 2613–2621. [Google Scholar] [CrossRef]
- Ibrahim, A.; Scher, N.; Williams, G.; Sridhara, R.; Li, N.; Chen, G.; Leighton, J.; Booth, B.; Gobburu, J.V.; Rahman, A. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin. Cancer Res. 2003, 9, 2394–2399. [Google Scholar]
- Party, E.L.C.W. Treatment of non-small cell lung cancer: Advanced (metastatic) disease. Guidelines of clinical practice made by the European Lung Cancer Working Party. Rev. Medicale De Brux. 2007, 28, 495–511. [Google Scholar]
- Facchinetti, F.; Pilotto, S.; Metro, G.; Baldini, E.; Bertolaccini, L.; Cappuzzo, F.; Delmonte, A.; Gasparini, S.; Inno, A.; Marchetti, A. Treatment of metastatic non-small cell lung cancer: 2018 guidelines of the Italian Association of Medical Oncology (AIOM). Tumori J. 2019, 105, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, H.; Ninomiya, K.; Kenmotsu, H.; Morise, M.; Daga, H.; Goto, Y.; Kozuki, T.; Miura, S.; Sasaki, T.; Tamiya, A. The Japanese Lung Cancer Society Guideline for non-small cell lung cancer, stage IV. Int. J. Clin. Oncol. 2019, 24, 731–770. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Fang, W.; Xu, H.; Wang, J.; Chen, Y.; Ding, Y.; Dong, X.; Fan, Y.; Gao, B.; Hu, J. Chinese expert consensus on the diagnosis and treatment of bone metastasis in lung cancer (2022 edition). J. Natl. Cancer Cent. 2023, 3, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E.; Brown, J.; Holen, I. Bone metastases. In Abeloff’s clinical oncology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 809–830.e3. [Google Scholar]
- Torigoe, T.; Imanishi, J.; Yazawa, Y.; Koyama, T.; Kadono, Y.; Oda, H.; Saita, K. Oncologic emergency in patients with skeletal metastasis of unknown primary. Acute Med. Surg. 2021, 8, e600. [Google Scholar] [CrossRef]
- Bosscher, M.R.; van Leeuwen, B.L.; Hoekstra, H.J. Current management of surgical oncologic emergencies. PLoS ONE 2015, 10, e0124641. [Google Scholar] [CrossRef]
Author, Publication Year, Country | Patient Recruit | Study Design | No. Patients | Specific Disease Entity | Age | Adeno/Sqcc/Others (%) | Smoker (%) | ECOG ≥2 (%) | Multiple Bone Mets (%) | Visceral Mets (%) | CTx Profile | MOS (Months) | CoI of Funding Sources |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lagana, 2022 Italian [13] | 2014–2019 | R | 247 | NSCLC, EGFR mutated | 50 | all adenocarcinoma | 66% | 9% | 1–2: 47% 3–4: 31% 5–10: 22% | 96 | Gefitinib: 67% Erlotinib: 16% Afatinib: 17% Osimertinib: 0.4% | 28 | None |
Ulas, 2018 Turkey [14] | 2000–2012 | R | 335 | NSCLC | 58 | 50.4/49.6% | 76.4% | 54% | 57.9% | Cisplatin/gemcitabine: 26.9% Cisplatin/etoposide:12.8% Cisplatin/vinorelbine: 9.0% Cisplatin/docetaxel: 8.1% Carboplatin/vinorelbine: 6.0% | 12 (w/o SRE) vs. 7 (SRE) | None | |
Ko, 2022 Taiwan [17] | 2016–2018 | R | 190 | NSCLC, EGFR mutated | none | 94.2/5.8% | 84.2% | 21% | 82.6% | Lung/pleura: 69.5% Liver: 17.4% Adrenal/renal: 15.8% Abdominal LNs: 8.4% | Gefitinib, Erlotinib: 36.8% Afatinib: 63.1% | 26.6 (denosumab) vs. 20.1 (no denosumab) | Government, academic |
Yap, 2019 Taiwan [15] | 2000–2013 | R | 477 | Lung cancer receiving bone RTx | mean age 62.86 | 55.8/11.1/33.1 | 49.9% | 35.2% | 14.5 | 5.2 | Government, academic | ||
Pruksakorn, 2018 Thailand [29] | 2006–2013 | R | 505 | Lung cancer | none | 61.4/25.9/6.5% | 27.9% | 70.3% | 29.9% | Cisplatin based CTx. | 4.9 | Academic | |
Cui X, 2019 China [28] | 2005–2017 | R | 129 | NSCLC, TKI-treated | 55.9 | 89.1/10.9 | 58.9% | 11.6% | 79.8% | Brain: 24.8% | CTx.: 52.7% EGFR TKI: 33.3% ALK TKI:4.7% | 28.3 (combination) vs. 22.0 | Government |
Xu S, 2021 China [33] | 2008–2010 | R | 234 | NSCLC | 57 | 70.9/27.4/1.7 | 45.7% | 30.8% | 82.5% | 40.2% | 8.9 | Government | |
Chambard, 2018 France [18] | 2011- | P | 64 | NSCLC | 65 | 100/0/0 | 85% | 39% | 87% | Lung: 25% Liver: 30% Brain: 19% Adrenal: 31% | paclitaxel/carboplatin: 58% pemetrexed/cisplatin: 20% EGFR inhibitor: 13% | 7 | Academic |
Deberne, 2014 France [16] | 2003–2010 | R | 55 | NSCLC | 62.5 | 78.2/3.6/18.2 | 38.1% | 81.8% | 54.5% | 8.15 | None | ||
Udagawa, 2017 Japan [32] | 2010–2014 | R | 149 | NSCLC | none | 91.2/8.7 | 66.4% | 16.8% | 77.9% | 64.4% | Platinum based CTx: 59.1% EGFR TKI: 40.3% | 21.4 (denosumab) vs. 12.7 (zoledronic acid) vs. 10.5 (No Tx) | None |
Qiang, H, 2022 China [30] | 2017–2020 | R | 110 | NSCLC pembrolizumab-treated | none | 56.3/27.3/16.4 | 60.0% | 5.5% | 32.7% | Pembro mono: 34.5% Pembro combination: 65.5% | 14.8 | Academic | |
Zhang G, 2017 China [35] | 2012–2015 | R | 552 | NSCLC, EGFR mutated | mean age 60 | 88.2/11.8% | 28.3% | 8.7% | 37.1% | CTx.: 49.5% TKI: 37.1% | 20.5 (biosphosphonate) vs. 19.5 (no biosphosphonate) | Government | |
Sunaga, 2017 Japan [36] | 2006–2014 | R | 98 | Lung cancer Zoledronic acid-treated | 70 | 80.6/19.4 | n | CTx.: 50% Non-CTx.: 50% | 109 (fever > 37) vs. 55 (no fever < 37) | None | |||
Dohzono, 2020 Japan [31] | 2009–2017 | R | 198 | Lung cancer | mean age 68.9 | 88/12% | 36% | 62% | 46% | EGFR TKI: 26% | 21.4 (EGFR TKI) vs. 6.1 (no TKI, NSCLC) vs. 4.9 (SCLC) | None |
Category | No of Pooled Studies | Heterogeneity p, I2% | Pooled HR (95% CI) |
---|---|---|---|
EGFR | 4 | <0.001, 87.4% | 2.109 (1.345–3.305) |
ECOG | 9 | 0.001, 69.5% | 2.007 (1.536–2.622) |
Visceral mets | 3 | <0.001, 50.1% | 2.060 (1.370–3.098) |
Bone mets character | 4 | 0.213, 33.2% | 1.910 (1.443–2.527) |
Body weight | 4 | 0.084, 54.8% | 1.805 (1.334–2.442) |
Anti-absorbant | 4 | 0.553, ~0% | 1.784 (1.448–2.196) |
Systemic Tx. | 5 | 0.365, 7.3% | 1.695 (1.407–2.041) |
SRE | 3 | 0.129, 51.1% | 1.616 (1.063–2.458) |
Smoker | 3 | 0.915, ~0.0% | 1.530 (1.306–1.793) |
Gender | 4 | 0.351, 8.4% | 1.482 (1.270–1.729) |
Histology | 3 | 0.609, ~0.0% | 1.450 (1.186–1.772) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, A.R.; Yoon, W.S.; Park, S.; Rim, C.H. Systematic Review-Based Treatment Algorithm for the Multidisciplinary Treatment of Lung Cancer Bone Metastases. Cancers 2024, 16, 4144. https://doi.org/10.3390/cancers16244144
Lim AR, Yoon WS, Park S, Rim CH. Systematic Review-Based Treatment Algorithm for the Multidisciplinary Treatment of Lung Cancer Bone Metastases. Cancers. 2024; 16(24):4144. https://doi.org/10.3390/cancers16244144
Chicago/Turabian StyleLim, Ah Reum, Won Sup Yoon, Sunmin Park, and Chai Hong Rim. 2024. "Systematic Review-Based Treatment Algorithm for the Multidisciplinary Treatment of Lung Cancer Bone Metastases" Cancers 16, no. 24: 4144. https://doi.org/10.3390/cancers16244144
APA StyleLim, A. R., Yoon, W. S., Park, S., & Rim, C. H. (2024). Systematic Review-Based Treatment Algorithm for the Multidisciplinary Treatment of Lung Cancer Bone Metastases. Cancers, 16(24), 4144. https://doi.org/10.3390/cancers16244144