Risk Factors for Venous Thromboembolism in Acute Promyelocytic Leukemia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Diagnostic Procedures, and Treatment
2.2. Data Collection
2.3. Thrombotic Events and Therapy
2.4. Statistical Analyses
3. Results
3.1. VTE Events
3.2. Predictors for VTE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- David, S.; Mathews, V. Mechanisms and management of coagulopathy in acute promyelocytic leukemia. Thromb. Res. 2018, 164 (Suppl. S1), S82–S88. [Google Scholar] [CrossRef] [PubMed]
- Hambley, B.C.; Tomuleasa, C.; Ghiaur, G. Coagulopathy in Acute Promyelocytic Leukemia: Can We Go Beyond Supportive Care? Front. Med. 2021, 8, 722614. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Raghupathy, R.; Lee, C.Y.Y.; Yung, Y.; Chu, H.T.; Ni, M.Y.; Xiao, X.; Flores, F.P.; Yim, R.; Lee, P.; et al. Acute promyelocytic leukaemia: Population-based study of epidemiology and outcome with ATRA and oral-ATO from 1991 to 2021. BMC Cancer 2023, 23, 141. [Google Scholar] [CrossRef] [PubMed]
- Dally, N.; Hoffman, R.; Haddad, N.; Sarig, G.; Rowe, J.M.; Brenner, B. Predictive factors of bleeding and thrombosis during induction therapy in acute promyelocytic leukemia-a single center experience in 34 patients. Thromb. Res. 2005, 116, 109–114. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.; Sorà, F.; Rossi, E.; Chiusolo, P.; Laurenti, L.; Fianchi, L.; Zini, G.; Pagano, L.; Sica, S.; Leone, G. The risk of thrombosis in patients with acute leukemia: Occurrence of thrombosis at diagnosis and during treatment. J. Thromb. Haemost. 2005, 3, 1985–1992. [Google Scholar] [CrossRef]
- Breccia, M.; Avvisati, G.; Latagliata, R.; Carmosino, I.; Guarini, A.; De Propris, M.S.; Gentilini, F.; Petti, M.C.; Cimino, G.; Mandelli, F.; et al. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features. Leukemia 2007, 21, 79–83. [Google Scholar] [CrossRef]
- Montesinos, P.; Bergua, J.M.; Vellenga, E.; Rayón, C.; Parody, R.; de la Serna, J.; León, A.; Esteve, J.; Milone, G.; Debén, G.; et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors. Blood 2009, 113, 775–783. [Google Scholar] [CrossRef]
- Chang, H.; Kuo, M.C.; Shih, L.Y.; Wu, J.H.; Lin, T.L.; Dunn, P.; Tang, T.C.; Hung, Y.S.; Wang, P.N. Acute promyelocytic leukemia-associated thrombosis. Acta Haematol. 2013, 130, 1–6. [Google Scholar] [CrossRef]
- Mitrovic, M.; Suvajdzic, N.; Elezovic, I.; Bogdanovic, A.; Djordjevic, V.; Miljic, P.; Djunic, I.; Gvozdenov, M.; Colovic, N.; Virijevic Met, a.l. Thrombotic events in acute promyelocytic leukemia. Thromb. Res. 2015, 135, 588–593. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, M.; Yang, X.; Zhang, W.; Yang, R.; Wei, X.; Wei, X.; Duan, L.; Wang, C.; Mi, R.; et al. The value of FDP/FIB and D-dimer/FIB ratios in predicting high-risk APL-related thrombosis. Leuk. Res. 2019, 79, 34–37. [Google Scholar] [CrossRef]
- Xiao, M.; Zhou, P.; Liu, Y.; Wei, S.; Li, D.; Li, W.; Niu, X.; Niu, J.; Zhang, Y.; Cao, W.; et al. Predictive factors for differentiating thrombohemorrhagic disorders in high-risk acute promyelocytic leukemia. Thromb. Res. 2022, 210, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, X. Risk factors of thrombosis in Chinese subjects with acute promyelocytic leukemia. Thromb. J. 2021, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Hisada, Y.; Archibald, S.J.; Bansal, K.; Chen, Y.; Dai, C.; Dwarampudi, S.; Balas, N.; Hageman, L.; Key, N.S.; Bhatia, S.; et al. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. J. Thromb. Haemost. 2024, 22, 1984–1996. [Google Scholar] [CrossRef] [PubMed]
- Ben Salah, M.; Bchir, M.; Berred, R.; Kharrat, R.; Ben Abdennebi, Y.; Aissaoui, L.; Ben Lakhal, R.; Benneji, H.; Meddeb, B. PB1802: Acute promyelocytic leukemia and thrombosis: How to identify the high-risk patients? HemaSphere 2022, 6, 1682–1683. [Google Scholar] [CrossRef]
- Song, X.; Chi, C.; Gao, W.; Sun, W.; Liu, Y.; Zhang, X.; Huang, X.; Zhu, J.; Wang, Y. Biochemical risk factors and outcomes of acute promyelocytic leukemia patients with thrombotic events: A matched pair analysis. J. Thromb. Thrombolysis 2024, 57, 828–841. [Google Scholar] [CrossRef]
- Al-Ani, F.; Wang, Y.P.; Lazo-Langner, A. Development of a Clinical Prediction Rule for Venous Thromboembolism in Patients with Acute Leukemia. Thromb. Haemost. 2020, 120, 322–328. [Google Scholar] [CrossRef]
- Paterno, G.; Palmieri, R.; Forte, V.; Del Prete, V.; Gurnari, C.; Guarnera, L.; Mallegni, F.; Pascale, M.R.; Buzzatti, E.; Mezzanotte, V.; et al. Predictors of Early Thrombotic Events in Adult Patients with Acute Myeloid Leukemia: A Real-World Experience. Cancers 2022, 14, 5640. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann. Intern. Med. 1985, 103, 620–625. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Slovak, M.L.; Campbell, L.J. An international system for human cytogenetic nomenclature. Hum. Genet. 2009, 126, 603–604. [Google Scholar]
- van Dongen, J.J.; Macintyre, E.A.; Gabert, J.A.; Delabesse, E.; Rossi, V.; Saglio, G.; Gottardi, E.; Rambaldi, A.; Dotti, G.; Griesinger, F.; et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: Investigation of minimal residual disease in acute leukemia. Leukemia 1999, 13, 1901–1928. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Swerdlow, S.H.; Harris, N.L.; Pileri, S.; Stein, H.; Jaffe, E.S. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood 2011, 117, 5019–5032. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Martín, G.; González, M.; León, A.; Rayón, C.; Rivas, C.; Colomer, D.; Amutio, E.; Capote, F.J.; Milone, G.A.; et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: A multicenter study by the PETHEMA group. Blood 2004, 103, 1237–1243. [Google Scholar] [CrossRef]
- Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; de la Serna, J.; Milone, G.; de Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.M.; et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: Further improvements in treatment outcome. Blood 2010, 115, 5137–5146. [Google Scholar] [CrossRef]
- Sanz, M.A.; Montesinos, P. Tratamiento de la Leucemia Promielocitica Aguda de Nuevo Diagnostico. Recomendaciones terapeuticas PETHEMA LPA 2012. (In Spanish). Available online: http://www.sehh.es/images/stories/recursos/pethema/protocolos/LAP-2012/1-PROTOCOLO-guia_LPA2012.pdf (accessed on 1 June 2024).
- Frankel, S.R.; Eardley, A.; Lauwers, G.; Weiss, M.; Warrell, R.P., Jr. The ‘retinoic acid syndrome’ in acute promyelocytic leukemia. Ann. Intern. Med. 1992, 117, 292–296. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef]
- Taylor, F.B., Jr.; Toh, C.H.; Hoots, W.K.; Wada, H.; Levi, M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef]
- Falanga, A.; Leader, A.; Ambaglio, C.; Bagoly, Z.; Castaman, G.; Elalamy, I.; Lecumberri, R.; Niessner, A.; Pabinger, I.; Szmit, S.; et al. EHA Guidelines on Management of Antithrombotic Treatments in Thrombocytopenic Patients with Cancer. Hemasphere 2022, 6, e750. [Google Scholar] [CrossRef]
- Martella, F.; Cerrano, M.; Di Cuonzo, D.; Secreto, C.; Olivi, M.; Apolito, V.; D’Ardia, S.; Frairia, C.; Giai, V.; Lanzarone, G.; et al. Frequency and risk factors for thrombosis in acute myeloid leukemia and high-risk myelodysplastic syndromes treated with intensive chemotherapy: A two centers observational study. Ann. Hematol. 2022, 101, 855–867. [Google Scholar] [CrossRef]
- Sabljic, N.; Mitrovic, M.; Pantic, N.; Thachil, J. Thrombosis in Acute Promyelocytic Leukemia: The Current Understanding. Hamostaseologie 2024. [Google Scholar] [CrossRef]
- Mitrovic, M.; Virijevic, M.; Pantic, N.; Pravdic, Z.; Sabljic, N.; Bukumiric, Z.; Cvetkovic, M.; Rajic, J.; Todorovic Balint, M.; Vidovic, A.; et al. P1692: Predictive model for vein thromboembolic events developed in patients with acute myeloid leukemia. Hemasphere 2022, 6 (Suppl. S6), 1573–1574. [Google Scholar] [CrossRef]
- Mitrovic, M.; Suvajdzic, N.; Bogdanovic, A.; Kurtovic, N.K.; Sretenovic, A.; Elezovic, I.; Tomin, D. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation ≥ 6: A new predictor of hemorrhagic early death in acute promyelocytic leukemia. Med. Oncol. 2013, 30, 478. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Wang, H.; Lv, X.; Qi, J.; Tang, Y.; Fan, Y.; Qiu, H.; Tang, X.; Fu, C.; Ruan, C.; et al. Investigation of fibrinogen in early bleeding of patients with newly diagnosed acute promyelocytic leukemia. Platelets 2021, 32, 677–683. [Google Scholar] [CrossRef]
- Kuroiwa, M.; Okamura, T.; Kanaji, T.; Okamura, S.; Harada, M.; Niho, Y. Effects of granulocyte colony-stimulating factor on the hemostatic system in healthy volunteers. Int. J. Hematol. 1996, 63, 311–316. [Google Scholar] [CrossRef]
- Topçuoğlu, P.; Arat, M.; Dalva, K.; Özcan, M. Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors. Bone Marrow Transplant. 2004, 33, 171–176. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Budnick, I.; Singh, M.; Thiruppathi, M.; Alharshawi, K.; Elshabrawy, H.; Holterman, M.J.; Prabhakar, B.S. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J. Interferon Cytokine Res. 2015, 35, 585–599. [Google Scholar] [CrossRef]
- Anderlini, P.; Körbling, M.; Dale, D.; Gratwohl, A.; Schmitz, N.; Stroncek, D.; Howe, C.; Leitman, S.; Horowitz, M.; Gluckman, E.; et al. Allogeneic blood stem cell transplantation: Considerations for donors. Blood 1997, 90, 903–908. [Google Scholar]
- Katsaros, K.M.; Speidl, W.S.; Demyanets, S.; Kastl, S.P.; Krychtiuk, K.A.; Wonnerth, A.; Zorn, G.; Tentzeris, I.; Farhan, S.; Maurer, G.; et al. G-CSF Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease. PLoS ONE 2015, 10, e0142532. [Google Scholar] [CrossRef]
- Jilma, B.; Hergovich, N.; Homoncik, M.; Jilma-Stohlawetz, P.; Kreuzer, C.; Eichler, H.G.; Zellner, M.; Pugin, J. Granulocyte colony-stimulating factor (G-CSF) downregulates its receptor (CD114) on neutrophils and induces gelatinase B release in humans. Br. J. Haematol. 2000, 111, 314–320. [Google Scholar] [CrossRef]
- Sabljic, N.; Pantic, N.; Virijevic, M.; Bukumiric, Z.; Novakovic, T.; Pravdic, Z.; Rajic, J.; Vidovic, A.; Suvajdzic, N.; Jaradeh, M.; et al. Application of Rotational Thromboelastometry in Patients with Acute Promyelocytic Leukemia. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221119809. [Google Scholar] [CrossRef]
Parameter | Patients Without VTE (n = 127) | Patients with VTE (n = 28) | p Value | |
---|---|---|---|---|
Age (years), mean ± SD | 43.76 ± 16.04 | 48.79 ± 16.34 | 0.137 a | |
Female gender (females), N (%) | 68 (53.5%) | 13 (46.4%) | 0.495 b | |
BMI > 30 kg/m2 | 22 (17.3%) | 8 (28.6%) | 0.220 b | |
ECOG PS, N (%) | 0 | 13 (10.2%) | 2 (7.1%) | 0.635 c |
1 | 52 (40.9%) | 14 (50%) | ||
2 | 28 (22%) | 7 (25%) | ||
3 | 28 (22%) | 3 (10.7%) | ||
4 | 6 (4.7%) | 2 (7.1%) | ||
Comorbidities, N (%) | Hypertension | 26 (20.5%) | 9 (32.1%) | 0.235 b |
Diabetes mellitus | 8 (6.3%) | 3 (10.7%) | 0.435 d | |
Atrial fibrillation | 4 (3.1%) | 1 (3.6%) | 0.987 d | |
Other | 15 (11.8%) | 5 (17.8%) | 0.537 d | |
History of previous thromboses, N (%) | 4 (3.1%) | 4 (14.3%) | 0.042 d | |
History of previous VTE, N (%) | 1 (0.8%) | 1 (3.6%) | 0.478 d | |
Bleeding at presentation, N (%) | No | 7 (5.5%) | 5 (17.9%) | 0.043 d |
Yes | 120 (94.5%) | 23 (82.1%) | ||
Differentiation syndrome, N (%) | 42 (33.1%) | 10 (35.7%) | 0.789 b | |
WBC (×109/L), median (range) | 4.4 (0.4–260.4) | 2.7 (0.3–118.6) | 0.103 c | |
Platelet count (×109/L), median (range) | 27 (0–279) | 30.5 (4–194) | 0.750 c | |
Hemoglobin (g/L), median (range) | 96 (39–160) | 103 (70–144) | 0.166 c | |
Fibrinogen (g/L), median (range) | 2.5 (0.4–6.9) | 3.48 (1.0–6.1) | 0.054 c | |
PT (%), median (range) | 63.5 (21–124) | 72.5 (38–137) | 0.010 c | |
APTT (s), median (range) | 25.7 (20.2–35.7) | 26 (15.9–44.2) | 0.376 c | |
D dimer (mg/L), median (range) | 26.2 (1.88–233) | 25.6 (0.7–250) | 0.749 c | |
ISTH DIC score, median (range) | 6 (2–8) | 5 (1–7) | 0.033 c | |
Peripheral blasts (%), median (range) | 7 (0–97) | 1 (0–83) | 0.149 c | |
PMC in peripheral blood (%), median (range) | 30 (0–94) | 18.5 (0–77) | 0.187 c | |
Cytogenetics, N (%) | t(15;17) | 98 (79.7%) | 22 (78.6%) | 0.577 d |
Normal karyotype | 21 (17.1%) | 4 (14.3%) | ||
Additional abnormalities | 4 (3.3%) | 2 (7.1%) | ||
PML/RARA type, N (%) | bcr1 | 44 (61.1%) | 11 (55%) | 0.648 d |
bcr2 | 3 (4.2%) | 0 (0%) | ||
bcr3 | 25 (34.7%) | 9 (45%) | ||
Sanz risk score, N (%) | Low | 29 (22.8%) | 7 (25%) | 0.180 c |
Intermediate | 48 (37.8%) | 15 (53.6%) | ||
High | 50 (39.4%) | 6 (21.4%) | ||
Al-Ani score, N (%) | Low risk (0–2) | 117 (99.2%) | 26 (96.3%) | 0.339 d |
High risk (≥3) | 1 (0.8%) | 1 (3.7%) | ||
Paterno score, N (%) | Low risk (0–1) | 109 (93.2%) | 24 (88.9%) | 0.432 d |
High risk (≥2) | 8 (6.8%) | 3 (11.1%) |
Parameter | Patients Without VTE (n = 111) | Patients with VTE (n = 23) | p Value |
---|---|---|---|
HLA-DR | 8 (6.7%) | 3 (11.1%) | 0.425 a |
MPO | 102 (95.3%) | 25 (96.2%) | 1.000 b |
CD2 | 27 (22.5%) | 7 (26.9%) | 0.629 a |
cCD3 | 9 (9.1%) | 3 (11.5%) | 0.713 b |
CD7 | 1 (0.8%) | 0 (0%) | 1.000 b |
CD13 | 120 (100%) | 27 (100%) | 1.000 b |
CD15 | 12 (10.1%) | 1 (3.7%) | 0.463 b |
CD19 | 6 (5%) | 2 (7.4%) | 0.639 b |
CD33 | 117 (97.5%) | 27 (100%) | 1.000 b |
CD34 | 34 (28.3%) | 8 (29.6%) | 0.893 b |
CD38 | 36 (40%) | 8 (32%) | 0.467 a |
CD56 | 12 (12%) | 4 (15.4%) | 0.741 b |
CD64 | 89 (74.8%) | 20 (74.1%) | 0.938 a |
CD114 | 50 (41.7%) | 19 (70.4%) | 0.007 a |
CD117 | 113 (94.2%) | 26 (96.3%) | 1.000 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabljic, N.; Pantic, N.; Virijevic, M.; Rajic, J.; Cvetkovic, M.; Trajkovic, L.; Pravdic, Z.; Bukumiric, Z.; Suvajdzic Vukovic, N.; Bogdanovic, A.; et al. Risk Factors for Venous Thromboembolism in Acute Promyelocytic Leukemia. Cancers 2024, 16, 4209. https://doi.org/10.3390/cancers16244209
Sabljic N, Pantic N, Virijevic M, Rajic J, Cvetkovic M, Trajkovic L, Pravdic Z, Bukumiric Z, Suvajdzic Vukovic N, Bogdanovic A, et al. Risk Factors for Venous Thromboembolism in Acute Promyelocytic Leukemia. Cancers. 2024; 16(24):4209. https://doi.org/10.3390/cancers16244209
Chicago/Turabian StyleSabljic, Nikica, Nikola Pantic, Marijana Virijevic, Jovan Rajic, Mirjana Cvetkovic, Lazar Trajkovic, Zlatko Pravdic, Zoran Bukumiric, Nada Suvajdzic Vukovic, Andrija Bogdanovic, and et al. 2024. "Risk Factors for Venous Thromboembolism in Acute Promyelocytic Leukemia" Cancers 16, no. 24: 4209. https://doi.org/10.3390/cancers16244209
APA StyleSabljic, N., Pantic, N., Virijevic, M., Rajic, J., Cvetkovic, M., Trajkovic, L., Pravdic, Z., Bukumiric, Z., Suvajdzic Vukovic, N., Bogdanovic, A., Vidovic, A., Todorovic Balint, M., Bila, J., Lekovic, D., Djunic, I., Antic, D., & Mitrovic, M. (2024). Risk Factors for Venous Thromboembolism in Acute Promyelocytic Leukemia. Cancers, 16(24), 4209. https://doi.org/10.3390/cancers16244209