Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Eligibility
2.2. Toxicity Evaluation
2.3. Response Evaluation
2.4. Correlative Studies
2.4.1. Quality of Life Assessment
2.4.2. Flow Cytometry for T-Cell Immunophenotype and Immunohistochemical (IHC) Analysis of PD-L1
2.4.3. DNA Methylation
3. Statistical Methods
4. Results
4.1. Patient Characteristics
4.2. Toxicity
4.3. Response
4.4. Quality of Life
4.5. Correlative Biology
4.6. DNA Methylation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorman, M.F.; Ji, L.; Ko, R.H.; Barnette, P.; Bostrom, B.; Hutchinson, R.; Raetz, E.; Seibel, N.L.; Twist, C.J.; Eckroth, E.; et al. Outcome for children treated for relapsed or refractory acute myelogenous leukemia (rAML): A Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr. Blood Cancer 2010, 55, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Sander, A.; Zimmermann, M.; Dworzak, M.; Fleischhack, G.; von Neuhoff, C.; Reinhardt, D.; Kaspers, G.J.L.; Creutzig, U. Consequent and intensified relapse therapy improved survival in pediatric AML: Results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia 2010, 24, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- McCall, D.; Roth, M.; Mahadeo, K.M.; Toepfer, L.; Nunez, C.; Short, N.J.; Daver, N.G.; Kadia, T.M.; DiNardo, C.D.; Yi, J.S.; et al. Gilteritinib combination therapies in pediatric patients with FLT3-mutated acute myeloid leukemia. Blood Adv. 2021, 5, 5215–5219. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.A.; Alonzo, T.A.; Gerbing, R.; Brown, P.; Fox, E.; Choi, J.; Fisher, B.; Hirsch, B.; Kahwash, S.; Getz, K.; et al. Sorafenib in Combination with Standard Chemotherapy for Children with High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML1031. J. Clin. Oncol. 2022, 40, 2023–2035. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E. Pediatric Acute Myeloid Leukemia Enters the Molecularly Targeted Era Via FLT3 Inhibition. J. Clin. Oncol. 2022, 40, 2058–2060. [Google Scholar] [CrossRef] [PubMed]
- Gamis, A.S.; Alonzo, T.A.; Meshinchi, S.; Sung, L.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Kahwash, S.B.; Heerema-McKenney, A.; Winter, L.; et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: Results from the randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 2014, 32, 3021–3032. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Jiang, F.; Lv, X.; Zhang, R.; Lu, A.; Zhang, G. A Mini-Review for Cancer Immunotherapy: Molecular Understanding of PD-1/PD-L1 Pathway & Translational Blockade of Immune Checkpoints. Int. J. Mol. Sci. 2016, 17, 1151. [Google Scholar] [CrossRef]
- Dolen, Y.; Esendagli, G. Myeloid leukemia cells with a B7-2(+) subpopulation provoke Th-cell responses and become immuno-suppressive through the modulation of B7 ligands. Eur. J. Immunol. 2013, 43, 747–757. [Google Scholar] [CrossRef]
- Zhang, L.; Gajewski, T.F.; Kline, J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 2009, 114, 1545–1552. [Google Scholar] [CrossRef]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.; et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Assi, R.; Daver, N.; Benton, C.B.; Kadia, T.; Thompson, P.A.; Borthakur, G.; Alvarado, Y.; Jabbour, E.J.; Konopleva, M.; et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol. 2019, 6, e480–e488. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Basu, S.; Garcia-Manero, G.; Cortes, J.E.; Ravandi, F.; Jabbour, E.J.; Hendrickson, R.S.; Pierce, B.S.; Ning, J.; Konopleva, M.; et al. Phase IB/II Study of Nivolumab in Combination with Azacytidine (AZA) in Patients (pts) with Relapsed Acute Myeloid Leukemia (AML). Blood 2016, 128, 763. [Google Scholar] [CrossRef]
- Gomez-Llobell, M.; Raíndo, A.P.; Medina, J.C.; Centurión, I.G.; Orgueira, A.M. Immune Checkpoint Inhibitors in Acute Myeloid Leukemia: A Meta-Analysis. Front. Oncol. 2022, 12, 882531. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020, 21, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021, 37, 1012–1027. [Google Scholar] [CrossRef] [PubMed]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Krug, B.; De Jay, N.; Harutyunyan, A.S.; Deshmukh, S.; Marchione, D.M.; Guilhamon, P.; Bertrand, K.C.; Mikael, L.G.; McConechy, M.K.; Chen, C.C.; et al. Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell 2019, 35, 782–797.e8. [Google Scholar] [CrossRef]
- Bullinger, L.; Ehrich, M.; Dohner, K.; Schlenk, R.F.; Döhner, H.; Nelson, M.R.; Boom, D.V.D. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood 2010, 115, 636–642. [Google Scholar] [CrossRef]
- Orskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Grønbæk, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 2015, 6, 9612–9626. [Google Scholar] [CrossRef] [PubMed]
- Issa, J.-P. The myelodysplastic syndrome as a prototypical epigenetic disease. Blood 2013, 121, 3811–3817. [Google Scholar] [CrossRef] [PubMed]
- Juo, Y.Y.; Gong, X.J.; Mishra, A.; Cui, X.; Baylin, S.B.; Azad, N.S.; Ahuja, N. Epigenetic therapy for solid tumors: From bench science to clinical trials. Epigenomics 2015, 7, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Pepe, S.; Scalzulli, E.; Colafigli, G.; Di Prima, A.; Diverio, D.; Mancini, M.; Latagliata, R.; Martelli, M.; Foà, R.; Breccia, M. Predictive factors for response and survival in elderly acute myeloid leukemia patients treated with hypomethylating agents: A real-life experience. Ann. Hematol. 2020, 99, 2405–2416. [Google Scholar] [CrossRef] [PubMed]
- Stomper, J.; Rotondo, J.C.; Greve, G.; Lübbert, M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: Mechanisms of resistance and novel HMA-based therapies. Leukemia 2021, 35, 1873–1889. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Triche, T., Jr.; Malvar, J.; Gaynon, P.; Sposto, R.; Yang, X.; Bittencourt, H.; Place, A.E.; Messinger, Y.; Fraser, C.; et al. A phase 1 study of azacitidine combined with chemotherapy in childhood leukemia: A report from TACL consortium. Blood 2018, 131, 1145–1148. [Google Scholar] [CrossRef]
- Pommert, L.; Schafer, E.S.; Malvar, J.; Gossai, N.; Florendo, E.; Pulakanti, K.; Heimbruch, K.; Stelloh, C.; Chi, Y.; Sposto, R.; et al. Decitabine and vorinostat with FLAG chemotherapy in pediatric relapsed/refractory AML: Report from the therapeutic advances in childhood leukemia and lymphoma (TACL) consortium. Am. J. Hematol. 2022, 97, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Boddu, P.; Garcia-Manero, G.; Yadav, S.S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018, 32, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Royston, D.J.; Gao, Q.; Nguyen, N.; Maslak, P.; Dogan, A.; Roshal, M. Single-Tube 10-Fluorochrome Analysis for Efficient Flow Cytometric Evaluation of Minimal Residual Disease in Plasma Cell Myeloma. Am. J. Clin. Pathol. 2016, 146, 41–49. [Google Scholar] [CrossRef]
- Ilie, M.; Khambata-Ford, S.; Copie-Bergman, C.; Huang, L.; Juco, J.; Hofman, V.; Hofman, P. Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms. PLoS ONE 2017, 12, e0183023. [Google Scholar] [CrossRef]
- O’Connell, C.L.; Baer, M.R.; Orskov, A.D.; Saini, S.K.; Duong, V.H.; Kropf, P.; Hansen, J.W.; Tsao-Wei, D.; Jang, H.S.; Emadi, A.; et al. Safety, Outcomes, and T-Cell Characteristics in Patients with Relapsed or Refractory MDS or CMML Treated with Atezolizumab in Combination with Guadecitabine. Clin. Cancer Res. 2022, 28, 5306–5316. [Google Scholar] [CrossRef]
- Bolouri, H.; Farrar, J.E.; Triche, T., Jr.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.A.; et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Reville, P.K.; Kantarjian, H.M.; Ravandi, F.; Jabbour, E.; DiNardo, C.D.; Daver, N.; Pemmaraju, N.; Ohanian, M.; Alvarado, Y.; Xiao, L.; et al. Nivolumab maintenance in high-risk acute myeloid leukemia patients: A single-arm, open-label, phase II study. Blood Cancer J. 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Kohler, N.; Ruess, D.A.; Kesselring, R.; Zeiser, R. The Role of Immune Checkpoint Molecules for Relapse After Allogeneic Hematopoietic Cell Transplantation. Front. Immunol. 2021, 12, 634435. [Google Scholar] [CrossRef] [PubMed]
- Albring, J.C.; Inselmann, S.; Sauer, T.; Schliemann, C.; Altvater, B.; Kailayangiri, S.; Rössig, C.; Hartmann, W.; Knorrenschild, J.R.; Sohlbach, K.; et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transplant. 2017, 52, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Saberian, C.; Abdel-Wahab, N.; Abudayyeh, A.; Rafei, H.; Joseph, J.; Rondon, G.; Whited, L.; Gruschkus, S.; Fa’Ak, F.; Daher, M.; et al. Post-transplantation cyclophosphamide reduces the incidence of acute graft-versus-host disease in patients with acute myeloid leukemia/myelodysplastic syndromes who receive immune checkpoint inhibitors after allogeneic hematopoietic stem cell transplantation. J. Immunother. Cancer 2021, 9, e001818. [Google Scholar] [CrossRef] [PubMed]
- Oran, B.; Garcia-Manero, G.; Saliba, R.M.; Alfayez, M.; Al-Atrash, G.; Ciurea, S.O.; Jabbour, E.J.; Mehta, R.S.; Popat, U.R.; Ravandi, F.; et al. Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer 2020, 126, 2193–2205. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef] [PubMed]
- Roboz, G.J.; Ravandi, F.; Wei, A.H.; Dombret, H.; Thol, F.; Voso, M.T.; Schuh, A.C.; Porkka, K.; La Torre, I.; Skikne, B.S.; et al. Oral azacitidine prolongs survival of patients with AML in remission independently of measurable residual disease status. Blood 2022, 139, 2145–2155. [Google Scholar] [CrossRef]
- Huls, G.; Chitu, D.A.; Havelange, V.; Jongen-Lavrencic, M.; van de Loosdrecht, A.A.; Biemond, B.J.; Sinnige, H.; Hodossy, B.; Graux, C.; Kooy, R.v.M.; et al. Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood 2019, 133, 1457–1464. [Google Scholar] [CrossRef]
- Alfayez, M.; Ivan, D.; Pemmaraju, N.; Daver, N.; DiNardo, C.D. Systemic Immunotherapy Effective for Refractory Extramedullary Acute Myeloid Leukemia. JCO Precis. Oncol. 2019, 3. [Google Scholar] [CrossRef]
- Jiang, C.; Cai, X.; Zhang, H.; Xia, X.; Zhang, B.; Xia, L. Activity and Immune Correlates of a Programmed Death-1 Blockade Antibody in the treatment of Refractory Solid Tumors. J. Cancer 2018, 9, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Neskey, D.M.; Horton, J.D.; Paulos, C.M.; Knochelmann, H.M.; Armeson, K.E.; Young, M.R.I. Immunological effects of nivolumab immunotherapy in patients with oral cavity squamous cell carcinoma. BMC Cancer 2020, 20, 229. [Google Scholar] [CrossRef] [PubMed]
Days | -5-7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 15 | 29-36 |
IT cytarabine | X | |||||||||
Nivolumab | X | X | ||||||||
5-azacytidine | X | X | X | X | X | X | X | |||
Nivolumab dose |
| |||||||||
5-azacytidine |
| |||||||||
IT Cytarabine |
|
Variable | Study Phase | |||
---|---|---|---|---|
Phase I (n = 8) | Phase II (n = 5) | Total (n = 13) | ||
Median Age at enrollment, in years (range) | 13.3 (2.7, 19.9) | 12 (1.8, 20.6) | 13.7 (1.8, 20.6) | |
Sex | Male | 5 (62%) | 2 (40%) | 7 (54%) |
Female | 3 (38%) | 3 (60%) | 6 (46%) | |
Race | White | 4 (50%) | 2 (40%) | 6 (46%) |
Black or African American | 0 (0%) | 1 (20%) | 1 (8%) | |
Native Hawaiian/Pac. Isl. | 1 (12%) | 0 (0%) | 1 (8%) | |
Not Reported | 3 (38%) | 2 (40%) | 5 (38%) | |
Ethnicity | Hispanic/Latino | 4 (50%) | 2 (40%) | 6 (46%) |
Non-Hispanic/Latino | 4 (50%) | 3 (60%) | 7 (54%) | |
Median number of prior therapy attempts | 4.5 (2, 9) | 2 (1, 7) | 4 (1, 9) | |
Prior HSCT | No | 6 (75%) | 3 (60%) | 9 (69%) |
Yes | 2 (25%) | 2 (40%) | 4 (31%) | |
Prior Failure | 1 | 0 (0%) | 2 (40%) | 2 (15%) |
2+ | 8 (100%) | 3 (60%) | 11 (85%) | |
Prior Response | Never achieved CR | 4 (50%) | 2 (40%) | 6 (46%) |
CR for ≤12 Months | 4 (50%) | 1 (20%) | 5 (39%) | |
CR for >12 Months | 0 (0%) | 2 (40%) | 2 (15%) | |
Disease burden on study | ||||
Median (range) % bone marrow blasts | 78 (12, 95) | 40 (7, 91) | 70 (7, 95) | |
Presence of peripheral blast | No | 4 (50%) | 2 (40%) | 6 (46%) |
Yes | 4 (50%) | 3 (60%) | 7 (54%) | |
CNS disease | Negative | 8 (100%) | 5 (100%) | 13 (100%) |
Study Outcomes | ||||
DLT † | No | 6 (100%) | 5 (100%) | 11 (100%) |
Response † | SD | 2 (29%) | 2 (40%) | 4 (33%) |
PD | 5 (71%) | 3 (60%) | 8 (67%) | |
Vital status | Alive | 0 (0%) | 1 (20%) | 1 (8%) |
Deceased | 8 (100%) | 4 (80%) | 13 (92%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, A.; Chi, Y.-Y.; Malvar, J.; Lamble, A.; Chaudhury, S.; Agarwal, A.; Li, H.-T.; Liang, G.; Leong, R.; Brown, P.A.; et al. Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium. Cancers 2024, 16, 496. https://doi.org/10.3390/cancers16030496
Verma A, Chi Y-Y, Malvar J, Lamble A, Chaudhury S, Agarwal A, Li H-T, Liang G, Leong R, Brown PA, et al. Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium. Cancers. 2024; 16(3):496. https://doi.org/10.3390/cancers16030496
Chicago/Turabian StyleVerma, Anupam, Yueh-Yun Chi, Jemily Malvar, Adam Lamble, Sonali Chaudhury, Archana Agarwal, Hong-Tao Li, Gangning Liang, Roy Leong, Patrick A. Brown, and et al. 2024. "Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium" Cancers 16, no. 3: 496. https://doi.org/10.3390/cancers16030496
APA StyleVerma, A., Chi, Y. -Y., Malvar, J., Lamble, A., Chaudhury, S., Agarwal, A., Li, H. -T., Liang, G., Leong, R., Brown, P. A., Kaplan, J., Schafer, E. S., Slone, T., Pauly, M., Chang, B. H., Stieglitz, E., Wayne, A. S., Hijiya, N., & Bhojwani, D. (2024). Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium. Cancers, 16(3), 496. https://doi.org/10.3390/cancers16030496