miRNA–221 and miRNA–483–3p Dysregulation in Esophageal Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tumor Samples
2.2. Cell Lines
2.3. RNA Isolation from FFPE Surgical Specimens
2.4. MicroRNA Expression Profiling
2.5. Single microRNA Expression Assays
2.6. miR–221 and miR–483–3p Mimic Transfection
2.7. Bulk RNA Sequencing (RNA–seq) in Transfected OE–19 Cells
2.8. Data Analysis
3. Results
3.1. Discovery Dataset: Identification of Deregulated miRNAs in EAC
3.2. Replication Dataset (EACGSE Cohort): Single miRNA Analysis
3.3. Correlation between miRNA–221 Expression and EAC Clinicopathological Features
3.4. Correlation between miRNA–483–3p Expression and EAC Clinicopathological Features
3.5. Concurrent miRNA–221 and 483–3p Overexpression Is Correlated with Poor Survival
3.6. miRNA Overexpression and Transcriptome Analysis In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubecz, A.; Gall, I.; Solymosi, N.; Schweigert, M.; Peters, J.H.; Feith, M.; Stein, H.J. Temporal trends in long–term survival and cure rates in esophageal cancer: A SEER database analysis. J. Thorac. Oncol. 2012, 7, 443–447. [Google Scholar] [CrossRef]
- Velanovich, V.; Hollingsworth, J.; Suresh, P.; Ben–Menachem, T. Relationship of gastroesophageal reflux disease with adenocarcinoma of the distal esophagus and cardia. Dig. Surg. 2002, 19, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Curtius, K.; Rubenstein, J.H.; Chak, A.; Inadomi, J.M. Computational modelling suggests that Barrett’s oesophagus may be the precursor of all oesophageal adenocarcinomas. Gut 2020, 70, 1435–1440. [Google Scholar] [CrossRef]
- Rice, T.W.; Ishwaran, H.; Ferguson, M.K.; Blackstone, E.H.; Goldstraw, P. Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer. J. Thorac. Oncol. 2017, 12, 36–42. [Google Scholar] [CrossRef]
- Mattioli, S.; Ruffato, A.; Di Simone, M.P.; Corti, B.; D’Errico, A.; Lugaresi, M.L.; Mattioli, B.; D’Ovidio, F. Immunopathological patterns of the stomach in adenocarcinoma of the esophagus, cardia, and gastric antrum: Gastric profiles in Siewert type I and II tumors. Ann. Thorac. Surg. 2007, 83, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Ruffato, A.; Mattioli, S.; Perrone, O.; Lugaresi, M.; Di Simone, M.P.; D’Errico, A.; Malvi, D.; Aprile, M.R.; Raulli, G.; Frassineti, L. Esophagogastric metaplasia relates to nodal metastases in adenocarcinoma of esophagus and cardia. Ann. Thorac. Surg. 2013, 95, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Al–Batran, S.-E.; Hofheinz, R.D.; Pauligk, C.; Kopp, H.–G.; Haag, G.M.; Luley, K.B.; Meiler, J.; Homann, N.; Lorenzen, S.; Schmalenberg, H.; et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro–oesophageal junction adenocarcinoma (FLOT4–AIO): Results from the phase 2 part of a multicentre, open–label, randomised phase 2/3 trial. Lancet Oncol. 2016, 17, 1697–1708. [Google Scholar] [CrossRef]
- van der Kaaij, R.T.; Snaebjornsson, P.; Voncken, F.E.M.; van Dieren, J.M.; Jansen, E.P.M.; Sikorska, K.; Cats, A.; van Sandick, J.W. The prognostic and potentially predictive value of the Laurén classification in oesophageal adenocarcinoma. Eur. J. Cancer 2017, 76, 27–35. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Analysis Working Group: Asan University; BC Cancer Agency; Brigham and Women’s Hospital; Broad Institute; Brown University; Case Western Reserve University; Dana–Farber Cancer Institute; Duke University; Greater Poland Cancer Centre; et al. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Secrier, M.; Li, X.; de Silva, N.; Eldridge, M.D.; Contino, G.; Bornschein, J.; MacRae, S.; Grehan, N.; O’Donovan, M.; Miremadi, A.; et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 2016, 48, 1131–1141. [Google Scholar] [CrossRef]
- Isidori, F.; Bozzarelli, I.; Mastracci, L.; Malvi, D.; Lugaresi, M.; Molinari, C.; Söderström, H.; Räsänen, J.; D’Errico, A.; Fiocca, R.; et al. Targeted Sequencing of Sorted Esophageal Adenocarcinoma Cells Unveils Known and Novel Mutations in the Separated Subpopulations. Clin. Transl. Gastroenterol. 2020, 11, e00202. [Google Scholar] [CrossRef]
- Bornschein, J.; Wernisch, L.; Secrier, M.; Miremadi, A.; Perner, J.; MacRae, S.; O’Donovan, M.; Newton, R.; Menon, S.; Bower, L.; et al. Transcriptomic profiling reveals three molecular phenotypes of adenocarcinoma at the gastroesophageal junction. Int. J. Cancer 2019, 145, 3389–3401. [Google Scholar] [CrossRef]
- Jammula, S.; Katz–Summercorn, A.C.; Li, X.; Linossi, C.; Smyth, E.; Killcoyne, S.; Biasci, D.; Subash, V.V.; Abbas, S.; Blasko, A.; et al. Identification of Subtypes of Barrett’s Esophagus and Esophageal Adenocarcinoma Based on DNA Methylation Profiles and Integration of Transcriptome and Genome Data. Gastroenterology 2020, 158, 1682–1697. [Google Scholar] [CrossRef]
- Antonowicz, S.; Bodai, Z.; Wiggins, T.; Markar, S.R.; Boshier, P.R.; Goh, Y.M.; Adam, M.E.; Lu, H.; Kudo, H.; Rosini, F.; et al. Endogenous aldehyde accumulation generates genotoxicity and exhaled biomarkers in esophageal adenocarcinoma. Nat. Commun. 2021, 12, 1454. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Macfarlane, L. –A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef]
- Di Leva, G.; Croce, C.M. Roles of small RNAs in tumor formation. Trends Mol. Med. 2010, 16, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.Y.; Calin, G.A. MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip. Rev. RNA 2014, 5, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Feber, A.; Xi, L.; Luketich, J.D.; Pennathur, A.; Landreneau, R.J.; Wu, M.; Swanson, S.J.; Godfrey, T.E.; Litle, V.R. MicroRNA expression profiles of esophageal cancer. J. Thorac. Cardiovasc. Surg. 2008, 135, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, Y.; Wu, X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr. Pharm. Des. 2013, 19, 1292–1300. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, Z. –Y.; Zhang, Z.–Y.; Zhang, Y.; Wu, R. Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta–Analysis. Clin. Transl. Gastroenterol. 2018, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Smith, C. –M.; Watson, D.I.; Michael, M.Z.; Hussey, D.J. MicroRNAs, development of Barrett’s esophagus, and progression to esophageal adenocarcinoma. World J. Gastroenterol. 2010, 16, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Revilla–Nuin, B.; Parrilla, P.; Lozano, J.J.; de Haro, L.F.M.; Ortiz, A.; Martínez, C.; Munitiz, V.; de Angulo, D.R.; Bermejo, J.; Molina, J.; et al. Predictive value of MicroRNAs in the progression of barrett esophagus to adenocarcinoma in a long–term follow–up study. Ann. Surg. 2013, 257, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and so–called Intestinal–Type Carcinoma. An Attempt at a Histo–Clinical Classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Fiocca, R.; Mastracci, L.; Lugaresi, M.; Grillo, F.; D’Errico, A.; Malvi, D.; Spaggiari, P.; Tomezzoli, A.; Albarello, L.; Ristimäki, A.; et al. The Prognostic Impact of Histology in Esophageal and Esophago–Gastric Junction Adenocarcinoma. Cancers 2021, 13, 5211. [Google Scholar] [CrossRef]
- Rockett, J.C.; Larkin, K.; Darnton, S.J.; Morris, A.G.; Matthews, H.R. Five newly established oesophageal carcinoma cell lines: Phenotypic and immunological characterization. Br. J. Cancer 1997, 75, 258–263. [Google Scholar] [CrossRef]
- Babraham, B. FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 4 July 2023).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA–seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high–throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA–sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef]
- Boonstra, J.J.; van Marion, R.; Beer, D.G.; Lin, L.; Chaves, P.; Ribeiro, C.; Pereira, A.D.; Roque, L.; Darnton, S.J.; Altorki, N.K.; et al. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. JNCI J. Natl. Cancer Inst. 2010, 102, 271–274. [Google Scholar] [CrossRef]
- Hutchinson, J.N.; Ensminger, A.W.; Clemson, C.M.; Lynch, C.R.; Lawrence, J.B.; Chess, A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 2007, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Njei, B.; McCarty, T.R.; Birk, J.W. Trends in esophageal cancer survival in United States adults from 1973 to 2009: A SEER database analysis. J. Gastroenterol. Hepatol. 2016, 31, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef]
- Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; et al. Exome and whole–genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 2013, 45, 478–486. [Google Scholar] [CrossRef]
- Malumbres, M.; Carnero, A. Cell cycle deregulation: A common motif in cancer. Prog. Cell Cycle Res. 2003, 5, 5–18. [Google Scholar]
- Acunzo, M.; Romano, G.; Wernicke, D.; Croce, C.M. MicroRNA and cancer—A brief overview. Adv. Biol. Regul. 2015, 57, 1–9. [Google Scholar] [CrossRef]
- Santiago, K.; Chen Wongworawat, Y.; Khan, S. Differential MicroRNA–Signatures in Thyroid Cancer Subtypes. J. Oncol. 2020, 2020, 2052396. [Google Scholar] [CrossRef] [PubMed]
- Garzon, R.; Croce, C.M. MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol. 2008, 15, 352–358. [Google Scholar] [CrossRef]
- Gramantieri, L.; Fornari, F.; Ferracin, M.; Veronese, A.; Sabbioni, S.; Calin, G.A.; Grazi, G.L.; Croce, C.M.; Bolondi, L.; Negrini, M. MicroRNA–221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res. 2009, 15, 5073–5081. [Google Scholar] [CrossRef]
- Matsuzaki, J.; Suzuki, H.; Tsugawa, H.; Watanabe, M.; Hossain, S.; Arai, E.; Saito, Y.; Sekine, S.; Akaike, T.; Kanai, Y.; et al. Bile acids increase levels of microRNAs 221 and 222, leading to degradation of CDX2 during esophageal carcinogenesis. Gastroenterology 2013, 145, 1300–1311. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Herbst, A.; Kalinski, T.; Qin, J.; Wang, X.; Jiang, Z.; Benedix, F.; Franke, S.; Wartman, T.; et al. miR–221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Ann. Surg. 2016, 264, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Tie, Y.; Xu, C.; Zhang, Z.; Zhu, J.; Shi, Y.; Jiang, H.; Sun, Z.; Zheng, X. Identification of human fetal liver miRNAs by a novel method. FEBS Lett. 2005, 579, 3849–3854. [Google Scholar] [CrossRef] [PubMed]
- Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: A comprehensive review. Am. J. Med Genet. Part C Semin. Med. Genet. 2005, 137C, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Pepe, F.; Visone, R.; Veronese, A. The Glucose–Regulated MiR–483–3p Influences Key Signaling Pathways in Cancer. Cancers 2018, 10, 181. [Google Scholar] [CrossRef]
- Livingstone, C. IGF2 and cancer. Endocr. Relat. Cancer 2013, 20, R321–R339. [Google Scholar] [CrossRef]
- Rainier, S.; Johnson, L.A.; Dobry, C.J.; Ping, A.J.; Grundy, P.E.; Feinberg, A.P. Relaxation of imprinted genes in human cancer. Nature 1993, 362, 747–749. [Google Scholar] [CrossRef]
- Veronese, A.; Lupini, L.; Consiglio, J.; Visone, R.; Ferracin, M.; Fornari, F.; Zanesi, N.; Alder, H.; D’Elia, G.; Gramantieri, L.; et al. Oncogenic role of miR–483–3p at the IGF2/483 locus. Cancer Res. 2010, 70, 3140–3149. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Pei, M.; Li, J.; Xu, N.; Xiao, W.; Yu, Z.; Zhang, J.; Hong, L.; Guo, Z.; Lin, J.; et al. The miR–3648/FRAT1–FRAT2/c–Myc negative feedback loop modulates the metastasis and invasion of gastric cancer cells. Oncogene 2022, 41, 4823–4838. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Katoh, M. FRAT1 and FRAT2, clustered in human chromosome 10q24.1 region, are up–regulated in gastric cancer. Int. J. Oncol. 2001, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Sari, I.N.; Yang, Y. –G.; Wijaya, Y.T.; Jun, N.; Lee, S.; Kim, K.S.; Bajaj, J.; Oehler, V.G.; Kim, S.–H.; Choi, S.–Y.; et al. AMD1 is required for the maintenance of leukemic stem cells and promotes chronic myeloid leukemic growth. Oncogene 2021, 40, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, H.; Wang, J.; Xu, C.; Zhu, Y.; Tuluhong, D.; Li, X.; Wang, S.; Li, J. Polyamine synthesis enzyme AMD1 is closely related to the tumorigenesis and prognosis of human breast cancer. Exp. Cell Res. 2022, 417, 113235. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; You, X.; Cao, Q.; Huang, M.; Hong, L. –L.; Chen, X.–L.; Lei, L.; Ling, Z.–Q.; Chen, Y. Polyamine synthesis enzyme AMD1 is closely associated with tumorigenesis and prognosis of human gastric cancers. Carcinogenesis 2020, 41, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Behring, M.; Hale, K.; Al Diffalha, S.; Wang, K.; Manne, U.; Varambally, S. MTHFD1L, A Folate Cycle Enzyme, Is Involved in Progression of Colorectal Cancer. Transl. Oncol. 2019, 12, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Xu, I.M. –J.; Chiu, D.K.–C.; Lai, R.K.–H.; Tse, A.P.–W.; Lan Li, L.; Law, C.–T.; Tsang, F.H.–C.; Wei, L.L.; Chan, C.Y.–K.; et al. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. J. Clin. Investig. 2017, 127, 1856–1872. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, X.; Zhang, H.; Liang, B.; Zhang, J.; Zhang, Z.; Yang, Y. High expression of folate cycle enzyme MTHFD1L correlates with poor prognosis and increased proliferation and migration in colorectal cancer. J. Cancer 2020, 11, 4213–4221. [Google Scholar] [CrossRef]
- Yang, Y. –S.; Yuan, Y.; Hu, W.–P.; Shang, Q.–X.; Chen, L.–Q. The role of mitochondrial folate enzyme MTHFD1L in esophageal squamous cell carcinoma. Scand. J. Gastroenterol. 2018, 53, 533–540. [Google Scholar] [CrossRef]
- Tada, Y.; Yokomizo, A.; Shiota, M.; Song, Y.; Kashiwagi, E.; Kuroiwa, K.; Oda, Y.; Naito, S. Ectonucleoside triphosphate diphosphohydrolase 6 expression in testis and testicular cancer and its implication in cisplatin resistance. Oncol. Rep. 2011, 26, 161–167. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, L. New Insights into Long Non–Coding RNA MALAT1 in Cancer and Metastasis. Cancers 2019, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Q.; Wu, Y.; Hu, F.; Gu, L.; Chen, T.; Wang, W. lncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell–conditioned dendritic cells. Exp. Ther. Med. 2018, 16, 3951–3958. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzarelli, I.; Orsini, A.; Isidori, F.; Mastracci, L.; Malvi, D.; Lugaresi, M.; Fittipaldi, S.; Gozzellino, L.; Astolfi, A.; Räsänen, J.; et al. miRNA–221 and miRNA–483–3p Dysregulation in Esophageal Adenocarcinoma. Cancers 2024, 16, 591. https://doi.org/10.3390/cancers16030591
Bozzarelli I, Orsini A, Isidori F, Mastracci L, Malvi D, Lugaresi M, Fittipaldi S, Gozzellino L, Astolfi A, Räsänen J, et al. miRNA–221 and miRNA–483–3p Dysregulation in Esophageal Adenocarcinoma. Cancers. 2024; 16(3):591. https://doi.org/10.3390/cancers16030591
Chicago/Turabian StyleBozzarelli, Isotta, Arianna Orsini, Federica Isidori, Luca Mastracci, Deborah Malvi, Marialuisa Lugaresi, Silvia Fittipaldi, Livia Gozzellino, Annalisa Astolfi, Jari Räsänen, and et al. 2024. "miRNA–221 and miRNA–483–3p Dysregulation in Esophageal Adenocarcinoma" Cancers 16, no. 3: 591. https://doi.org/10.3390/cancers16030591
APA StyleBozzarelli, I., Orsini, A., Isidori, F., Mastracci, L., Malvi, D., Lugaresi, M., Fittipaldi, S., Gozzellino, L., Astolfi, A., Räsänen, J., D’Errico, A., Rosati, R., Fiocca, R., Seri, M., Krishnadath, K. K., Bonora, E., & Mattioli, S. (2024). miRNA–221 and miRNA–483–3p Dysregulation in Esophageal Adenocarcinoma. Cancers, 16(3), 591. https://doi.org/10.3390/cancers16030591