Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Bibliography Assembly
2.3. Screening Process and Data Extraction
2.4. Inclusion of Studies and Exclusion Criteria
2.5. Flowchart Representation
3. Primary Biological Functions and Regulatory Mechanisms of Cyclins in Cell Cycle Control
Cyclin | Dependent CDK | Other Binding Proteins | Function |
---|---|---|---|
A | CDK1, CDK2 | CDC6 | S-G2 Transition, G2 Phase Progression. Pagano et al. [52] |
B | CDK1 | TGFBR2 | Entry and Exit of M Phase. Hayles et al. [53] |
C | CDK8 | MED Proteins | Transcription Initiation. Rickert et al. [54] |
D | CDK4, CDK6 | p21 | pRb Phosphorylation, G1 Progression. Matsushime et al. [55] |
E | CDK2 | p21, p27 | pRb Phosphorylation, G1-S Phase Transition. Koff et al. [56] |
Deciphering the Pivotal Role of Cell Cycle Proteins in Endometriosis Pathogenesis
Angiogenesis in the Context of Cell Cycle Proteins in Endometriosis
4. Cytoskeletal Proteins and Their Vital Biological Functions
4.1. Cytoskeletal Proteins: Potential Contributors in Endometriosis
4.1.1. RNA Modulation of Cytoskeletal Dynamics in Endometriosis
4.1.2. Genes in Endometriosis: Cell Adhesion and Actin Cytoskeleton
4.1.3. TGF-β and EMT Interplay in Endometriosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SPE | Superficial Peritoneal Endometriosis |
OMA | Ovarian Endometriosis |
DIE | Deeply Infiltrating Endometriosis |
PE | Polypoid Endometriosis |
NPE | Nonpolyposis Endometriosis |
EMT | Epithelial–Mesenchymal Transition |
TGF-β1 | Transforming Growth Factor Beta 1 |
DK | Cyclin-Dependent Kinase |
CDKI | Cyclin-Dependent Kinase Inhibitors |
IL-2 | Interleukin-2 |
IL-3 | Interleukin-3 |
INF-γ | Interferon-gamma |
APC/C | Anaphase-Promoting Complex/Cyclosome |
PFDN1 | Prefoldin 1 |
RasV12 | Activated Ras oncogene variant |
PLC | Phospholipase C |
β-catenin | Beta-Catenin |
RhoA | Ras homolog gene family, member A |
RhoC | Ras homolog gene family, member C |
CDK2 | Cyclin-Dependent Kinase 2 |
MnBP | Mono-n-butyl phthalate |
NUcks1 | Nuclear casein and Cyclin-Dependent Kinase substrate 1 |
CCNB1 | Cyclin B1 gene |
CCNG1 | Cyclin G1 gene |
CRC | Colorectal Cancer |
TNM | Tumor–Node–Metastasis |
CDK4 | Cyclin-Dependent Kinase 4 |
CDK6 | Cyclin-Dependent Kinase 6 |
CPEB3 | Polyadenylation Element Binding Protein 3 |
p21/WAF1 | Cyclin-Dependent Kinase Inhibitor 1 |
p27kip1 | Cyclin-Dependent Kinase Inhibitor 1B |
Jab1 | Jun 1 activation domain binding protein |
PI3K | Phosphoinositide 3-kinase |
VEGF | Vascular Endothelial Growth Factor |
NUCKS1 | Nuclear casein and Cyclin-Dependent Kinase substrate 1 |
MenSC | Mesenchymal stem cells derived from menstrual blood |
E-MenSC | Mesenchymal Stem Cells derived from patients with endometriosis |
NE-MenSC | Mesenchymal Stem Cells derived from healthy women |
MMP | Matrix Metalloproteinase |
BAX/BCL-2 ratio | Ratio of BAX to BCL-2 proteins |
IL1β, IL6, IL8 | Interleukin 1 beta, Interleukin 6, Interleukin 8 |
NF-κB | Nuclear Factor-kappa B |
ER-α | Estrogen Receptor Alpha |
Pak1 | p21-activated kinase 1 |
E2 | Estradiol |
MPA | Medroxyprogesterone Acetate |
p16 | Cyclin-Dependent Kinase Inhibitor 2A |
p16INK4a | p16 Inhibitor Kinase 4a |
TM | Tubal Metaplasia |
G-actin | Globular actin |
F-actin | Filamentous actin |
ECM | Extracellular Matrix |
miR-142-3p | MicroRNA-142-3p |
PGE2 | Prostaglandin E2 |
HMGB1 | High Mobility Group 1 Protein |
ITGA7 | Integrin Alpha 7 |
ITGBL1 | Integrin Subunit Beta-Like 1 |
SORBS1 | Sorbin and SH3 Domain Containing 1 |
IGHM | Immunoglobulin Heavy Constant Mu |
PTEN | Phosphatase and Tensin Homologue |
MMP9 | Matrix Metalloproteinase 9 |
ROCK2 | Rho-Related Protein Kinase 2 |
CFL2 | Cofilin 2 |
RAC1 | Ras-Related C3 Botulinum Toxin Substrate 1 |
WASL | Neural Wiskott–Aldrich Syndrome Protein-Like |
SOX2 | SRY-Box Transcription Factor 2 |
MSI2 | Musashi RNA-Binding Protein 2 |
CTNNB1 | Catenin Beta 1 (Beta-Catenin) |
MRP4 | Multidrug Resistance Protein 4 |
INTU | Inverted Planar Cell Polarity Protein |
α-actinin-1 | Alpha-Actinin-1 |
References
- Bonavina, G.; Taylor, H.S. Endometriosis-Associated Infertility: From Pathophysiology to Tailored Treatment. Front. Endocrinol. 2022, 13, 1020827. [Google Scholar] [CrossRef]
- Sacco, K.; Portelli, M.; Pollacco, J.; Schembri-Wismayer, P.; Calleja-Agius, J. The Role of Prostaglandin E2 in Endometriosis. Gynecol. Endocrinol. 2012, 28, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S. Endometriosis: A Complex Systemic Disease with Multiple Manifestations. Fertil. Steril. 2019, 112, 235–236. [Google Scholar] [CrossRef]
- Stratton, P.; Berkley, K.J. Chronic Pelvic Pain and Endometriosis: Translational Evidence of the Relationship and Implications. Hum. Reprod. Update 2011, 17, 327–346. [Google Scholar] [CrossRef]
- Becker, K.; Heinemann, K.; Imthurn, B.; Marions, L.; Moehner, S.; Gerlinger, C.; Serrani, M.; Faustmann, T. Real World Data on Symptomology and Diagnostic Approaches of 27,840 Women Living with Endometriosis. Sci. Rep. 2021, 11, 20404. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Yang, W.-X. Epithelial-to-Mesenchymal Transition in the Development of Endometriosis. Oncotarget 2017, 8, 41679–41689. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, M.; Zhang, T.; Deng, J.; Xia, X.; Fang, X. microRNA-141 Inhibits TGF-Β1-Induced Epithelial-to-Mesenchymal Transition through Inhibition of the TGF-Β1/SMAD2 Signalling Pathway in Endometriosis. Arch. Gynecol. Obstet. 2020, 301, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Koninckx, P.R.; Fernandes, R.; Ussia, A.; Schindler, L.; Wattiez, A.; Al-Suwaidi, S.; Amro, B.; Al-Maamari, B.; Hakim, Z.; Tahlak, M. Pathogenesis Based Diagnosis and Treatment of Endometriosis. Front. Endocrinol. 2021, 12, 745548. [Google Scholar] [CrossRef]
- Malvezzi, H.; Marengo, E.B.; Podgaec, S.; de Azevedo Piccinato, C. Endometriosis: Current Challenges in Modeling a Multifactorial Disease of Unknown Etiology. J. Transl. Med. 2020, 18, 311. [Google Scholar] [CrossRef]
- Herington, J.L.; Bruner-Tran, K.L.; Lucas, J.A.; Osteen, K.G. Immune Interactions in Endometriosis. Expert Rev. Clin. Immunol. 2011, 7, 611–626. [Google Scholar] [CrossRef]
- Ong, M.S.; Deng, S.; Halim, C.E.; Cai, W.; Tan, T.Z.; Huang, R.Y.-J.; Sethi, G.; Hooi, S.C.; Kumar, A.P.; Yap, C.T. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers 2020, 12, 238. [Google Scholar] [CrossRef]
- Hamidi, H.; Ivaska, J. Every Step of the Way: Integrins in Cancer Progression and Metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef]
- Sherr, C.J.; Roberts, J.M. Living with or without Cyclins and Cyclin-Dependent Kinases. Genes Dev. 2004, 18, 2699–2711. [Google Scholar] [CrossRef]
- Wolgemuth, D.J.; Manterola, M.; Vasileva, A. Role of Cyclins in Controlling Progression of Mammalian Spermatogenesis. Int. J. Dev. Biol. 2013, 57, 159–168. [Google Scholar] [CrossRef]
- Lees, E. Cyclin Dependent Kinase Regulation. Curr. Opin. Cell Biol. 1995, 7, 773–780. [Google Scholar] [CrossRef]
- Glotzer, M.; Murray, A.W.; Kirschner, M.W. Cyclin Is Degraded by the Ubiquitin Pathway. Nature 1991, 349, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Sandal, T. Molecular Aspects of the Mammalian Cell Cycle and Cancer. Oncologist 2002, 7, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Fleifel, D.; Cook, J.G. G1 Dynamics at the Crossroads of Pluripotency and Cancer. Cancers 2023, 15, 4559. [Google Scholar] [CrossRef]
- Mademtzoglou, D.; Relaix, F. From Cyclins to CDKIs: Cell Cycle Regulation of Skeletal Muscle Stem Cell Quiescence and Activation. Exp. Cell Res. 2022, 420, 113275. [Google Scholar] [CrossRef] [PubMed]
- Schirripa, A. Cyclin-Dependent Kinase Inhibitors in Malignant Hematopoiesis. Front. Oncol. 2022, 12, 916682. [Google Scholar] [CrossRef]
- Niu, Y.; Xu, J.; Sun, T. Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: Current Status, Resistance, and Combination Strategies. J. Cancer 2019, 10, 5504–5517. [Google Scholar] [CrossRef]
- Mughal, M.J.; Bhadresha, K.; Kwok, H.F. CDK Inhibitors from Past to Present: A New Wave of Cancer Therapy. Semin. Cancer Biol. 2023, 88, 106–122. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective Inhibition of CDK4/6: A Safe and Effective Strategy for Developing Anticancer Drugs. Acta Pharm. Sin. B 2021, 11, 30–54. [Google Scholar] [CrossRef]
- Neganova, I.; Lako, M. G1 to S Phase Cell Cycle Transition in Somatic and Embryonic Stem Cells. J. Anat. 2008, 213, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Qie, S.; Diehl, J.A. Cyclin D1, Cancer Progression, and Opportunities in Cancer Treatment. J. Mol. Med. 2016, 94, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Amani, J.; Gorjizadeh, N.; Younesi, S.; Najafi, M.; Ashrafi, A.M.; Irian, S.; Gorjizadeh, N.; Azizian, K. Cyclin-Dependent Kinase Inhibitors (CDKIs) and the DNA Damage Response: The Link between Signaling Pathways and Cancer. DNA Repair 2021, 102, 103103. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rüttinger, D.; Li, R.; Si, L.-S.; Wang, Y.-L. Analysis of the Immunological Microenvironment at the Tumor Site in Patients with Non-Small Cell Lung Cancer. Langenbecks Arch. Surg. 2003, 388, 406–412. [Google Scholar] [CrossRef]
- Xue, V.W.; Chung, J.Y.-F.; Córdoba, C.A.G.; Cheung, A.H.-K.; Kang, W.; Lam, E.W.-F.; Leung, K.-T.; To, K.-F.; Lan, H.-Y.; Tang, P.M.-K. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers 2020, 12, 3099. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A.; Howe, P.H. The Tale of Transforming Growth Factor-Beta (TGFbeta) Signaling: A Soigné Enigma. IUBMB Life 2009, 61, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021, 81, 317–331. [Google Scholar] [CrossRef]
- Wianny, F.; Real, F.X.; Mummery, C.L.; Van Rooijen, M.; Lahti, J.; Samarut, J.; Savatier, P. G1-Phase Regulators, Cyclin D1, Cyclin D2, and Cyclin D3: Up-Regulation at Gastrulation and Dynamic Expression during Neurulation. Dev. Dyn. 1998, 212, 49–62. [Google Scholar] [CrossRef]
- Hume, S.; Dianov, G.L.; Ramadan, K. A Unified Model for the G1/S Cell Cycle Transition. Nucleic Acids Res. 2020, 48, 12483–12501. [Google Scholar] [CrossRef]
- Fauré, A.; Thieffry, D. Logical Modelling of Cell Cycle Control in Eukaryotes: A Comparative Study. Mol. BioSyst. 2009, 5, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Chibazakura, T.; Kamachi, K.; Ohara, M.; Tane, S.; Yoshikawa, H.; Roberts, J.M. Cyclin A Promotes S-Phase Entry via Interaction with the Replication Licensing Factor Mcm7. Mol. Cell. Biol. 2011, 31, 248. [Google Scholar] [CrossRef]
- Fagundes, R.; Teixeira, L.K. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front. Cell Dev. Biol. 2021, 9, 774845. [Google Scholar] [CrossRef] [PubMed]
- Spurlock, C.F.; Tossberg, J.T.; Matlock, B.K.; Olsen, N.J.; Aune, T.M. Methotrexate Inhibits NF-κB Activity via Long Intergenic (Noncoding) RNA-P21 Induction. Arthritis Rheumatol. 2014, 66, 2947–2957. [Google Scholar] [CrossRef]
- Tung, J.J.; Hansen, D.V.; Ban, K.H.; Loktev, A.V.; Summers, M.K.; Adler, J.R.; Jackson, P.K. A Role for the Anaphase-Promoting Complex Inhibitor Emi2/XErp1, a Homolog of Early Mitotic Inhibitor 1, in Cytostatic Factor Arrest of Xenopus Eggs. Proc. Natl. Acad. Sci. USA 2005, 102, 4318–4323. [Google Scholar] [CrossRef]
- Liu, W.; Wu, G.; Li, W.; Lobur, D.; Wan, Y. Cdh1-Anaphase-Promoting Complex Targets Skp2 for Destruction in Transforming Growth Factor β-Induced Growth Inhibition. Mol. Cell. Biol. 2007, 27, 2967. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The Role of CDC25C in Cell Cycle Regulation and Clinical Cancer Therapy: A Systematic Review. Cancer Cell Int. 2020, 20, 213. [Google Scholar] [CrossRef]
- Liu, J.F.; Xiong, N.; Campos, S.M.; Wright, A.A.; Krasner, C.; Schumer, S.; Horowitz, N.; Veneris, J.; Tayob, N.; Morrissey, S.; et al. Phase II Study of the WEE1 Inhibitor Adavosertib in Recurrent Uterine Serous Carcinoma. J. Clin. Oncol. 2021, 39, 1531–1539. [Google Scholar] [CrossRef]
- Bazile, F.; Gagné, J.-P.; Mercier, G.; Lo, K.S.; Pascal, A.; Vasilescu, J.; Figeys, D.; Poirier, G.G.; Kubiak, J.Z.; Chesnel, F. Differential Proteomic Screen to Evidence Proteins Ubiquitinated upon Mitotic Exit in Cell-Free Extract of Xenopus Laevis Embryos. J. Proteome Res. 2008, 7, 4701–4714. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Peterson, N.G.; Sawyer, J.K.; Fox, D.T. Accelerated Cell Cycles Enable Organ Regeneration under Developmental Time Constraints in the Drosophila Hindgut. Dev. Cell 2021, 56, 2059–2072.e3. [Google Scholar] [CrossRef]
- De Luca, A.; De Falco, M.; Baldi, A.; Paggi, M.G. Cyclin T: Three Forms for Different Roles in Physiological and Pathological Functions. J. Cell. Physiol. 2003, 194, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ježek, J.; Smethurst, D.G.J.; Stieg, D.C.; Kiss, Z.A.C.; Hanley, S.E.; Ganesan, V.; Chang, K.-T.; Cooper, K.F.; Strich, R. Cyclin C: The Story of a Non-Cycling Cyclin. Biology 2019, 8, 3. [Google Scholar] [CrossRef]
- Rickert, P.; Corden, J.L.; Lees, E. Cyclin C/CDK8 and Cyclin H/CDK7/P36 Are Biochemically Distinct CTD Kinases. Oncogene 1999, 18, 1093–1102. [Google Scholar] [CrossRef]
- Malumbres, M. Cyclin-Dependent Kinases. Genome Biol. 2014, 15, 122. [Google Scholar] [CrossRef]
- Łukasik, P.; Załuski, M.; Gutowska, I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development–Review. Int. J. Mol. Sci. 2021, 22, 2935. [Google Scholar] [CrossRef]
- Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int. J. Mol. Sci. 2020, 21, 1960. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Leone, G.W.; Wang, H. Cyclin D-CDK4/6 Functions in Cancer. Adv. Cancer Res. 2020, 148, 147–169. [Google Scholar] [CrossRef]
- Topacio, B.R.; Zatulovskiy, E.; Cristea, S.; Xie, S.; Tambo, C.S.; Rubin, S.M.; Sage, J.; Kõivomägi, M.; Skotheim, J.M. Cyclin D-Cdk4,6 Drives Cell-Cycle Progression via the Retinoblastoma Protein’s C-Terminal Helix. Mol. Cell 2019, 74, 758–770.e4. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Pepperkok, R.; Verde, F.; Ansorge, W.; Draetta, G. Cyclin A Is Required at Two Points in the Human Cell Cycle. EMBO J. 1992, 11, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Hayles, J.; Fisher, D.; Woollard, A.; Nurse, P. Temporal Order of S Phase and Mitosis in Fission Yeast Is Determined by the State of the P34cdc2-Mitotic B Cyclin Complex. Cell 1994, 78, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Rickert, P.; Seghezzi, W.; Shanahan, F.; Cho, H.; Lees, E. Cyclin C/CDK8 Is a Novel CTD Kinase Associated with RNA Polymerase II. Oncogene 1996, 12, 2631–2640. [Google Scholar] [PubMed]
- Matsushime, H.; Quelle, D.E.; Shurtleff, S.A.; Shibuya, M.; Sherr, C.J.; Kato, J.Y. D-Type Cyclin-Dependent Kinase Activity in Mammalian Cells. Mol. Cell Biol. 1994, 14, 2066–2076. [Google Scholar] [CrossRef]
- Koff, A.; Ohtsuki, M.; Polyak, K.; Roberts, J.M.; Massagué, J. Negative Regulation of G1 in Mammalian Cells: Inhibition of Cyclin E-Dependent Kinase by TGF-β. Science 1993, 260, 536–539. [Google Scholar] [CrossRef]
- Braun-Dullaeus, R.C.; Mann, M.J.; Dzau, V.J. Cell Cycle Progression. Circulation 1998, 98, 82–89. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zhang, G. Cell Cycle Regulation and Anticancer Drug Discovery. Cancer Biol. Med. 2017, 14, 348–362. [Google Scholar] [CrossRef]
- Mikhaleva, L.M.; Radzinsky, V.E.; Orazov, M.R.; Khovanskaya, T.N.; Sorokina, A.V.; Mikhalev, S.A.; Volkova, S.V.; Shustova, V.B.; Sinelnikov, M.Y. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int. J. Womens Health 2021, 13, 525–537. [Google Scholar] [CrossRef]
- Aznaurova, Y.B.; Zhumataev, M.B.; Roberts, T.K.; Aliper, A.M.; Zhavoronkov, A.A. Molecular Aspects of Development and Regulation of Endometriosis. Reprod. Biol. Endocrinol. 2014, 12, 50. [Google Scholar] [CrossRef]
- Mazumder, S.; DuPree, E.L.; Almasan, A. A Dual Role of Cyclin E in Cell Proliferation and Apotosis May Provide a Target for Cancer Therapy. Curr. Cancer Drug Targets 2004, 4, 65–75. [Google Scholar] [CrossRef]
- Shiozawa, T.; Li, S.F.; Nakayama, K.; Nikaido, T.; Fujii, S. Relationship between the Expression of Cyclins/Cyclin-Dependent Kinases and Sex-Steroid Receptors/Ki67 in Normal Human Endometrial Glands and Stroma during the Menstrual Cycle. Mol. Hum. Reprod. 1996, 2, 745–752. [Google Scholar] [CrossRef]
- Wang, D.; Shi, W.; Tang, Y.; Liu, Y.; He, K.; Hu, Y.; Li, J.; Yang, Y.; Song, J. Prefoldin 1 Promotes EMT and Lung Cancer Progression by Suppressing Cyclin A Expression. Oncogene 2017, 36, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.Y.; Gardner, L.; Hughes, J.; Cindrova-Davies, T.; Gomez, M.J.; Farrell, L.; Hollinshead, M.; Marsh, S.G.E.; Brosens, J.J.; Critchley, H.O.; et al. Long-Term, Hormone-Responsive Organoid Cultures of Human Endometrium in a Chemically Defined Medium. Nat. Cell Biol. 2017, 19, 568–577. [Google Scholar] [CrossRef]
- Horie, K.; Yamamoto, H.; Karube, K.; Takebayashi, K.; Yoshino, H.; Yoshioka, H.; Watanabe, J. Cyclin A Is a Reliable Proliferation Marker in Endometrial Cancer Cell Lines. Oncol. Lett. 2019, 17, 4455–4462. [Google Scholar] [CrossRef]
- Tang, L.; Wang, T.-T.; Wu, Y.-T.; Zhou, C.-Y.; Huang, H.-F. High Expression Levels of Cyclin B1 and Polo-like Kinase 1 in Ectopic Endometrial Cells Associated with Abnormal Cell Cycle Regulation of Endometriosis. Fertil. Steril. 2009, 91, 979–987. [Google Scholar] [CrossRef]
- Circulating Non-Coding RNAs as Non-Invasive Diagnostic Markers of Endometriosis: A Comprehensive Meta-Analysis. Available online: https://ouci.dntb.gov.ua/en/works/73QPoeol/ (accessed on 11 November 2023).
- Chen, M.-F.; Wu, C.-T.; Chen, Y.-J.; Keng, P.C.; Chen, W.-C. Cell Killing and Radiosensitization by Caffeic Acid Phenethyl Ester (CAPE) in Lung Cancer Cells. J. Radiat. Res. 2004, 45, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.-C.; Chen, Y.-C.; Chen, M.-J.; Chang, C.-W.; Lai, G.-L.; Tzeng, C.-R. Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. Int. J. Mol. Sci. 2020, 21, 1794. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, B.; Ma, Y.; Kuang, J.; Liang, J.; Yuan, Y. NUCKS1 Promotes Proliferation, Invasion and Migration of Non-Small Cell Lung Cancer by Upregulating CDK1 Expression. Cancer Manag. Res. 2020, 12, 13311–13323. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, B.; Wang, X.; Xiao, M.; Zhang, K.; Ye, W.; Zhao, D.; Wang, X.; Yu, Y.; Li, J.; et al. Roles of Increased NUCKS1 Expression in Endometriosis. BMC Women’s Health 2023, 23, 432. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, R.; Yao, Y.; Qian, L.; Zhao, Y.; Huang, X. Identification of Endometriosis-Associated Genes and Pathways Based on Bioinformatic Analysis. Medicine 2021, 100, e26530. [Google Scholar] [CrossRef] [PubMed]
- Takashima, S.; Saito, H.; Takahashi, N.; Imai, K.; Kudo, S.; Atari, M.; Saito, Y.; Motoyama, S.; Minamiya, Y. Strong Expression of Cyclin B2 mRNA Correlates with a Poor Prognosis in Patients with Non-Small Cell Lung Cancer. Tumor Biol. 2014, 35, 4257–4265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, H.; Wang, X.; Zhao, X.; Sun, L.; Cheng, Y.; Jiang, X.; Li, J.; Zhang, G. CPEB3, an RNA-Binding Protein, Modulates the Behavior of Endometriosis-Derived Stromal Cells via Regulating CXCL12. DNA Cell Biol. 2022, 41, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Zarkadoulas, N.; Pergialiotis, V.; Dimitroulis, D.; Stefanidis, K.; Verikokos, C.; Perrea, D.N.; Kontzoglou, K. A Potential Role of Cyclin-Dependent Kinase Inhibitor 1 (P21/WAF1) in the Pathogenesis of Endometriosis: Directions for Future Research. Med. Hypotheses 2019, 133, 109414. [Google Scholar] [CrossRef]
- Gonçalves, G.A. P27kip1 as a Key Regulator of Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 221, 1–4. [Google Scholar] [CrossRef]
- Molatore, S.; Kiermaier, E.; Jung, C.B.; Lee, M.; Pulz, E.; Höfler, H.; Atkinson, M.J.; Pellegata, N.S. Characterization of a Naturally-Occurring P27 Mutation Predisposing to Multiple Endocrine Tumors. Mol. Cancer 2010, 9, 116. [Google Scholar] [CrossRef]
- Le Sage, C.; Nagel, R.; Egan, D.A.; Schrier, M.; Mesman, E.; Mangiola, A.; Anile, C.; Maira, G.; Mercatelli, N.; Ciafrè, S.A.; et al. Regulation of the p27Kip1 Tumor Suppressor by miR-221 and miR-222 Promotes Cancer Cell Proliferation. EMBO J. 2007, 26, 3699–3708. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, T.; Nasu, K.; Aoyagi, Y.; Takebayashi, K.; Narahara, H. Arcyriaflavin a, a Cyclin D1–Cyclin-Dependent Kinase4 Inhibitor, Induces Apoptosis and Inhibits Proliferation of Human Endometriotic Stromal Cells: A Potential Therapeutic Agent in Endometriosis. Reprod. Biol. Endocrinol. 2017, 15, 53. [Google Scholar] [CrossRef]
- Rocha, A.L.L.; Reis, F.M.; Taylor, R.N. Angiogenesis and Endometriosis. Obstet. Gynecol. Int. 2013, 2013, 859619. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell Cycle Proteins as Promising Targets in Cancer Therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Zeitvogel, A.; Baumann, R.; Starzinski-Powitz, A. Identification of an Invasive, N-Cadherin-Expressing Epithelial Cell Type in Endometriosis Using a New Cell Culture Model. Am. J. Pathol. 2001, 159, 1839–1852. [Google Scholar] [CrossRef]
- Sahraei, S.S.; Davoodi Asl, F.; Kalhor, N.; Sheykhhasan, M.; Fazaeli, H.; Moud, S.S.; Sheikholeslami, A. A Comparative Study of Gene Expression in Menstrual Blood-Derived Stromal Cells between Endometriosis and Healthy Women. BioMed Res. Int. 2022, 2022, 7053521. [Google Scholar] [CrossRef]
- Hirakawa, T.; Nasu, K.; Abe, W.; Aoyagi, Y.; Okamoto, M.; Kai, K.; Takebayashi, K.; Narahara, H. miR-503, a microRNA Epigenetically Repressed in Endometriosis, Induces Apoptosis and Cell-Cycle Arrest and Inhibits Cell Proliferation, Angiogenesis, and Contractility of Human Ovarian Endometriotic Stromal Cells. Hum. Reprod. 2016, 31, 2587–2597. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, H.W.; Kim, Y.H.; Koo, Y.H.; Chae, H.D.; Kim, C.H.; Lee, P.R.; Kang, B.M. Down-Regulation of P21-Activated Kinase 1 by Progestin and Its Increased Expression in the Eutopic Endometrium of Women with Endometriosis. Human Reprod. 2009, 24, 1133–1141. [Google Scholar] [CrossRef]
- Li, J.; Poi, M.J.; Tsai, M.-D. The Regulatory Mechanisms of Tumor Suppressor P16INK4A and Relevance to Cancer. Biochemistry 2011, 50, 5566–5582. [Google Scholar] [CrossRef]
- Horree, N.; Heintz, A.P.M.; Sie-Go, D.M.D.S.; van Diest, P.J. P16 Is Consistently Expressed in Endometrial Tubal Metaplasia. Cell Oncol. 2007, 29, 37–45. [Google Scholar] [CrossRef]
- Giannone, G.; Tuninetti, V.; Ghisoni, E.; Genta, S.; Scotto, G.; Mittica, G.; Valabrega, G. Role of Cyclin-Dependent Kinase Inhibitors in Endometrial Cancer. Int. J. Mol. Sci. 2019, 20, 2353. [Google Scholar] [CrossRef]
- Vadlamudi, R.K.; Li, F.; Barnes, C.J.; Bagheri-Yarmand, R.; Kumar, R. P41-Arc Subunit of Human Arp2/3 Complex Is a P21-Activated Kinase-1-Interacting Substrate. EMBO Rep. 2004, 5, 154–160. [Google Scholar] [CrossRef]
- Brayford, S.; Bryce, N.S.; Schevzov, G.; Haynes, E.M.; Bear, J.E.; Hardeman, E.C.; Gunning, P.W. Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge. Curr. Biol. 2016, 26, 1312–1318. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.X.; Zheng, Y. Characterization of the Interactions between the Small GTPase Cdc42 and Its GTPase-Activating Proteins and Putative Effectors. Comparison of Kinetic Properties of Cdc42 Binding to the Cdc42-Interactive Domains. J. Biol. Chem. 1997, 272, 21999–22007. [Google Scholar] [CrossRef]
- Kichina, J.V.; Goc, A.; Al-Husein, B.; Somanath, P.R.; Kandel, E.S. PAK1 AS A THERAPEUTIC TARGET. Expert Opin. Ther. Targets 2010, 14, 703–725. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Hu, M.; Zhen, J.; Lin, J.; Wang, Q.; Wang, R. Rac1/PAK1 Signaling Promotes Epithelial-Mesenchymal Transition of Podocytes In Vitro via Triggering β-Catenin Transcriptional Activity under High Glucose Conditions. Int. J. Biochem. Cell Biol. 2013, 45, 255–264. [Google Scholar] [CrossRef]
- Delorme, V.; Machacek, M.; DerMardirossian, C.; Anderson, K.L.; Wittmann, T.; Hanein, D.; Waterman-Storer, C.; Danuser, G.; Bokoch, G.M. Cofilin Activity Downstream of Pak1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks. Dev. Cell 2007, 13, 646–662. [Google Scholar] [CrossRef]
- Pyronneau, A.; He, Q.; Hwang, J.-Y.; Porch, M.; Contractor, A.; Zukin, R.S. Aberrant Rac1-Cofilin Signaling Mediates Defects in Dendritic Spines, Synaptic Function, and Sensory Perception in Fragile X Syndrome. Sci. Signal. 2017, 10, eaan0852. [Google Scholar] [CrossRef]
- Wrighton, K.H.; Lin, X.; Feng, X.-H. Phospho-Control of TGF-β Superfamily Signaling. Cell Res. 2009, 19, 8–20. [Google Scholar] [CrossRef]
- Tao, J.; Oladimeji, P.; Rider, L.; Diakonova, M. PAK1-Nck Regulates Cyclin D1 Promoter Activity in Response to Prolactin. Mol. Endocrinol. 2011, 25, 1565–1578. [Google Scholar] [CrossRef]
- Kundumani-Sridharan, V.; Singh, N.K.; Kumar, S.; Gadepalli, R.; Rao, G.N. Nuclear Factor of Activated T Cells C1 Mediates P21-Activated Kinase 1 Activation in the Modulation of Chemokine-Induced Human Aortic Smooth Muscle Cell F-Actin Stress Fiber Formation, Migration, and Proliferation and Injury-Induced Vascular Wall Remodeling. J. Biol. Chem. 2013, 288, 22150–22162. [Google Scholar] [CrossRef]
- Rashid, T.; Banerjee, M.; Nikolic, M. Phosphorylation of Pak1 by the P35/Cdk5 Kinase Affects Neuronal Morphology. J. Biol. Chem. 2001, 276, 49043–49052. [Google Scholar] [CrossRef]
- Prudnikova, T.Y.; Villamar-Cruz, O.; Rawat, S.J.; Cai, K.Q.; Chernoff, J. Effects of P21-Activated Kinase 1 Inhibition on 11q13 Amplified Ovarian Cancer Cells. Oncogene 2016, 35, 2178–2185. [Google Scholar] [CrossRef]
- Rubin, S.M.; Sage, J.; Skotheim, J.M. Integrating Old and New Paradigms of G1/S Control. Mol. Cell 2020, 80, 183–192. [Google Scholar] [CrossRef]
- Bukhari, A.B.; Chan, G.K.; Gamper, A.M. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front. Oncol. 2022, 12, 828684. [Google Scholar] [CrossRef]
- Lucena, R.; Alcaide-Gavilán, M.; Anastasia, S.D.; Kellogg, D.R. Wee1 and Cdc25 Are Controlled by Conserved PP2A-Dependent Mechanisms in Fission Yeast. Cell Cycle 2017, 16, 428–435. [Google Scholar] [CrossRef]
- Ferrari, G.; Cook, B.D.; Terushkin, V.; Pintucci, G.; Mignatti, P. Transforming Growth Factor-Beta 1 (TGF-Beta1) Induces Angiogenesis through Vascular Endothelial Growth Factor (VEGF)-Mediated Apoptosis. J. Cell. Physiol. 2009, 219, 449–458. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, S.; Cheng, L.; Liu, J. JAK/STAT and VEGF/PAK1 Signaling as Emerging Targets for Topical Treatment of Psoriasis: A Pilot Study. Int. J. Clin. Exp. Pathol. 2020, 13, 3111–3119. [Google Scholar]
- Rekhi, B.; Motghare, P. Cyclin D1 and p16INK4 Positive Endometrial Stromal Sarcoma: A Case Report with New Insights. Indian J. Pathol. Microbiol. 2014, 57, 606–608. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Yuan, X.; Ou, Y.; Zhu, X.; Cheng, Z.; Zhang, P.; Wu, X.; Meng, Y.; Zhang, L. The Relationship between the Bcl-2/Bax Proteins and the Mitochondria-Mediated Apoptosis Pathway in the Differentiation of Adipose-Derived Stromal Cells into Neurons. PLoS ONE 2016, 11, e0163327. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Fan, L.; Tang, H.; Zuo, X.; Gu, D.; Lu, X.; Li, Y.; Wu, J.; Qin, S.; et al. Exploring the Significance of PAK1 through Chromosome Conformation Signatures in Ibrutinib-resistant Chronic Lymphocytic Leukaemia. Mol. Oncol. 2022, 16, 2920–2935. [Google Scholar] [CrossRef]
- Thiagalingam, S.; Kinzler, K.W.; Vogelstein, B. PAK1, a Gene That Can Regulate P53 Activity in Yeast. Proc. Nat. Acad. Sci. USA 1995, 92, 6062–6066. [Google Scholar] [CrossRef]
- Krause, K.; Wasner, M.; Reinhard, W.; Haugwitz, U.; Lange-zu Dohna, C.; Mössner, J.; Engeland, K. The Tumour Suppressor Protein P53 Can Repress Transcription of Cyclin B. Nucleic Acids Res. 2000, 28, 4410–4418. [Google Scholar] [CrossRef]
- Rocha, S.; Martin, A.M.; Meek, D.W.; Perkins, N.D. P53 Represses Cyclin D1 Transcription through Down Regulation of Bcl-3 and Inducing Increased Association of the P52 NF-κB Subunit with Histone Deacetylase 1. Mol. Cell. Biol. 2003, 23, 4713–4727. [Google Scholar] [CrossRef]
- Pollard, T.D.; Goldman, R.D. Overview of the Cytoskeleton from an Evolutionary Perspective. Cold Spring Harb. Perspect. Biol. 2018, 10, a030288. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Deng, S.; Gopal, V.; Yap, K.C.-H.; Halim, C.E.; Lye, M.L.; Ong, M.S.; Tan, T.Z.; Sethi, G.; Hooi, S.C.; et al. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers 2021, 13, 1882. [Google Scholar] [CrossRef] [PubMed]
- Haensel, D.; Dai, X. Epithelial-to-Mesenchymal Transition in Cutaneous Wound Healing: Where We Are and Where We Are Heading. Dev. Dyn. 2018, 247, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys. 2011, 40, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Shankar, J.; Nabi, I.R. Actin Cytoskeleton Regulation of Epithelial Mesenchymal Transition in Metastatic Cancer Cells. PLoS ONE 2015, 10, e0119954. [Google Scholar] [CrossRef]
- Pinto-Costa, R.; Sousa, M.M. Profilin as a Dual Regulator of Actin and Microtubule Dynamics. Cytoskeleton 2020, 77, 76–83. [Google Scholar] [CrossRef]
- Bamburg, J.R.; Minamide, L.S.; Wiggan, O.; Tahtamouni, L.H.; Kuhn, T.B. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021, 10, 2726. [Google Scholar] [CrossRef]
- Narita, A. ADF/Cofilin Regulation from a Structural Viewpoint. J. Muscle Res. Cell Motil. 2020, 41, 141–151. [Google Scholar] [CrossRef]
- Silacci, P.; Mazzolai, L.; Gauci, C.; Stergiopulos, N.; Yin, H.L.; Hayoz, D. Gelsolin Superfamily Proteins: Key Regulators of Cellular Functions. Cell. Mol. Life Sci. 2004, 61, 2614–2623. [Google Scholar] [CrossRef]
- Bucki, R.; Levental, I.; Kulakowska, A.; Janmey, P.A. Plasma Gelsolin: Function, Prognostic Value, and Potential Therapeutic Use. Curr. Protein Pept. Sci. 2008, 9, 541–551. [Google Scholar] [CrossRef]
- Gunning, P.W.; Hardeman, E.C.; Lappalainen, P.; Mulvihill, D.P. Tropomyosin—Master Regulator of Actin Filament Function in the Cytoskeleton. J. Cell Sci. 2015, 128, 2965–2974. [Google Scholar] [CrossRef] [PubMed]
- Manstein, D.J.; Meiring, J.C.M.; Hardeman, E.C.; Gunning, P.W. Actin-Tropomyosin Distribution in Non-Muscle Cells. J. Muscle Res. Cell Motil. 2020, 41, 11–22. [Google Scholar] [CrossRef]
- Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Prochniewicz, E.; Thomas, D.D. Actin-Myosin Interaction: Structure, Function and Drug Discovery. Int. J. Mol. Sci. 2018, 19, 2628. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin Superfamily Motor Proteins and Intracellular Transport. Nat. Rev. Mol. Cell Biol. 2009, 10, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, R. Dynein at the Kinetochore. J. Cell Sci. 2023, 136, jcs220269. [Google Scholar] [CrossRef]
- Capetanaki, Y. Desmin Cytoskeleton: A Potential Regulator of Muscle Mitochondrial Behavior and Function. Trends Cardiovasc. Med. 2002, 12, 339–348. [Google Scholar] [CrossRef]
- Zatloukal, K.; Stumptner, C.; Fuchsbichler, A.; Fickert, P.; Lackner, C.; Trauner, M.; Denk, H. The Keratin Cytoskeleton in Liver Diseases. J. Pathol. 2004, 204, 367–376. [Google Scholar] [CrossRef]
- Ridge, K.M.; Eriksson, J.E.; Pekny, M.; Goldman, R.D. Roles of Vimentin in Health and Disease. Genes Dev. 2022, 36, 391–407. [Google Scholar] [CrossRef]
- Lavogina, D.; Samuel, K.; Lavrits, A.; Meltsov, A.; Sõritsa, D.; Kadastik, Ü.; Peters, M.; Rinken, A.; Salumets, A. Chemosensitivity and Chemoresistance in Endometriosis—Differences for Ectopic versus Eutopic Cells. Reprod. Biomed. Online 2019, 39, 556–568. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, M.; Wang, S.; Han, Y.; Fang, X. Common and Specific Gene Signatures among Three Different Endometriosis Subtypes. PeerJ 2020, 8, e8730. [Google Scholar] [CrossRef] [PubMed]
- Sohler, F.; Sommer, A.; Wachter, D.L.; Agaimy, A.; Fischer, O.M.; Renner, S.P.; Burghaus, S.; Fasching, P.A.; Beckmann, M.W.; Fuhrmann, U.; et al. Tissue Remodeling and Nonendometrium-like Menstrual Cycling Are Hallmarks of Peritoneal Endometriosis Lesions. Reprod. Sci. 2013, 20, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Hall, A. The Cytoskeleton and Cancer. Cancer Metastasis Rev. 2009, 28, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, Q.; Li, L.; Jiang, J. Expression of Talin-1 in Endometriosis and Its Possible Role in Pathogenesis. Reprod. Biol. Endocrinol. 2021, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, R.; Hu, R.; Yao, J.; Yang, Y. PEG2-Induced Pyroptosis Regulates the Expression of HMGB1 and Promotes hEM15A Migration in Endometriosis. Int. J. Mol. Sci. 2022, 23, 11707. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.A.; de Rooij, J. Cadherin Mechanotransduction in Leader-Follower Cell Specification during Collective Migration. Exp. Cell Res. 2019, 376, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Reviczká, A.; Háková, H.; Švajdler, P.; Rabajdová, M.; Ostró, A. Predictive Factors of Endometriosis Progression into Ovarian Cancer. J. Ovarian Res. 2022, 15, 5. [Google Scholar] [CrossRef]
- Chen, J.-J.; Xiao, Z.-J.; Meng, X.; Wang, Y.; Yu, M.K.; Huang, W.Q.; Sun, X.; Chen, H.; Duan, Y.-G.; Jiang, X.; et al. MRP4 Sustains Wnt/β-Catenin Signaling for Pregnancy, Endometriosis and Endometrial Cancer. Theranostics 2019, 9, 5049–5064. [Google Scholar] [CrossRef]
- Yoo, J.-Y.; Ku, B.J.; Kim, T.H.; Ahn, J.I.; Ahn, J.Y.; Yang, W.S.; Lim, J.M.; Taketo, M.M.; Shin, J.-H.; Jeong, J.-W. β-Catenin Activates TGF-β-Induced Epithelial–Mesenchymal Transition in Adenomyosis. Exp. Mol. Med. 2020, 52, 1754–1765. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Liu, J.; Li, S.; Liu, P.; Zhang, X. Effect and Mechanisms of Kaempferol against Endometriosis Based on Network Pharmacology and in Vitro Experiments. BMC Complement. Med. Ther. 2022, 22, 254. [Google Scholar] [CrossRef]
- Peloggia, A.; Andres, M.P.; Abrão, M.S. Expression of Ezrin Protein and Phosphorylated Ezrin in Pelvic Endometriotic Lesions. Clinics 2022, 77, 100074. [Google Scholar] [CrossRef]
- Verma, R.; Verma, P.; Budhwar, S.; Singh, K. S100 Proteins: An Emerging Cynosure in Pregnancy & Adverse Reproductive Outcome. Indian J. Med. Res. 2018, 148, S100–S106. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ma, J.; Zhu, D.; Wang, Z.; Li, Y.; He, X.; Zhang, G.; Kang, X. The Role of S100A6 in Human Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2023, 13, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.-C.; Chen, M.-J.; Chen, P.-H.; Chang, C.-W.; Yu, M.-H.; Chen, Y.-J.; Tsai, E.-M.; Tsai, S.-F.; Kuo, W.-S.; Tzeng, C.-R. Integration of Genome-Wide Association Study and Expression Quantitative Trait Locus Mapping for Identification of Endometriosis-Associated Genes. Sci. Rep. 2021, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Toniyan, K.A.; Povorova, V.V.; Gorbacheva, E.Y.; Boyarintsev, V.V.; Ogneva, I.V. Organization of the Cytoskeleton in Ectopic Foci of the Endometrium with Rare Localization. Biomedicines 2021, 9, 998. [Google Scholar] [CrossRef]
- Yotova, I.; Hudson, Q.J.; Pauler, F.M.; Proestling, K.; Haslinger, I.; Kuessel, L.; Perricos, A.; Husslein, H.; Wenzl, R. LINC01133 Inhibits Invasion and Promotes Proliferation in an Endometriosis Epithelial Cell Line. Int. J. Mol. Sci. 2021, 22, 8385. [Google Scholar] [CrossRef]
- Börschel, C.S.; Stejskalova, A.; Schäfer, S.D.; Kiesel, L.; Götte, M. miR-142-3p Reduces the Size, Migration, and Contractility of Endometrial and Endometriotic Stromal Cells by Targeting Integrin- and Rho GTPase-Related Pathways That Regulate Cytoskeletal Function. Biomedicines 2020, 8, 291. [Google Scholar] [CrossRef]
- Xie, N.; Meng, Q.; Zhang, Y.; Luo, Z.; Xue, F.; Liu, S.; Li, Y.; Huang, Y. MicroRNA-142-3p Suppresses Cell Proliferation, Invasion and Epithelial-to-Mesenchymal Transition via RAC1-ERK1/2 Signaling in Colorectal Cancer. Mol. Med. Rep. 2021, 24, 568. [Google Scholar] [CrossRef]
- Adammek, M.; Greve, B.; Kässens, N.; Schneider, C.; Brüggemann, K.; Schüring, A.N.; Starzinski-Powitz, A.; Kiesel, L.; Götte, M. MicroRNA miR-145 Inhibits Proliferation, Invasiveness, and Stem Cell Phenotype of an in Vitro Endometriosis Model by Targeting Multiple Cytoskeletal Elements and Pluripotency Factors. Fertil. Steril. 2013, 99, 1346–1355.e5. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gao, Y. Screening Differentially Expressed Genes between Endometriosis and Ovarian Cancer to Find New Biomarkers for Endometriosis. Ann. Med. 2021, 53, 1377–1389. [Google Scholar] [CrossRef]
- Ping, S.; Ma, C.; Liu, P.; Yang, L.; Yang, X.; Wu, Q.; Zhao, X.; Gong, B. Molecular Mechanisms Underlying Endometriosis Pathogenesis Revealed by Bioinformatics Analysis of Microarray Data. Arch. Gynecol. Obstet. 2016, 293, 797–804. [Google Scholar] [CrossRef]
- Albertsen, H.M.; Ward, K. Genes Linked to Endometriosis by GWAS Are Integral to Cytoskeleton Regulation and Suggests That Mesothelial Barrier Homeostasis Is a Factor in the Pathogenesis of Endometriosis. Reprod. Sci. 2017, 24, 803–811. [Google Scholar] [CrossRef]
- Yu, Y.-X.; Xiu, Y.-L.; Chen, X.; Li, Y.-L. Transforming Growth Factor-Beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia. Chin. Med. J. 2017, 130, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Park, M.-J.; Kim, B.-S.; Choi, H.-J.; Joo, B.; Lee, K.S.; Choi, J.-H.; Chung, T.-W.; Ha, K.-T. Transforming Growth Factor Β1 Enhances Adhesion of Endometrial Cells to Mesothelium by Regulating Integrin Expression. BMB Rep. 2017, 50, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lockhart, M.G.; Amir, M.M.; Winnall, W.R.; Rogers, P.A.W.; Girling, J.E. Differential TGFB1-Signalling in Endometrium from Women with Endometriosis: Importance of Appropriate Housekeeping Genes. J. Endometr. Pelvic Pain Disord. 2014, 6, 41–54. [Google Scholar] [CrossRef]
- Zubrzycka, A.; Migdalska-Sęk, M.; Jędrzejczyk, S.; Brzeziańska-Lasota, E. The Expression of TGF-Β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int. J. Mol. Sci. 2023, 24, 2453. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, B.P. New Insights of Epithelial-Mesenchymal Transition in Cancer Metastasis. Acta Biochim. Biophys. Sin. 2008, 40, 643–650. [Google Scholar] [CrossRef]
- Zavadil, J.; Narasimhan, M.; Blumenberg, M.; Schneider, R.J. Transforming Growth Factor-Beta and microRNA:mRNA Regulatory Networks in Epithelial Plasticity. Cells Tissues Organs 2007, 185, 157–161. [Google Scholar] [CrossRef]
- Zhu, S.; Si, M.-L.; Wu, H.; Mo, Y.-Y. MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1). J. Biol. Chem. 2007, 282, 14328–14336. [Google Scholar] [CrossRef]
Cytoskeletal Protein | Characteristics and Biological Functions | References |
---|---|---|
Actin |
| Dominguez et al., Shankar et al. [115,116] |
Profilin |
| Pinto-Costa et al. [117] |
Cofilin |
| Bamburg et al., Narita et al. [118,119] |
Gelsolin |
| Silacci et al., Bucki et al. [120,121] |
Tropomyosin |
| Gunning et al., Manstein et al. [122,123] |
Microtubules |
| Goodson et al. [124] |
Myosin |
| Guhathakurta et al. [125] |
Kinesins |
| Hirokawa et al. [126] |
Dynein |
| Gassmann et al. [127] |
Other Cytoskeletal Proteins |
| Capetanaki et al., Zatloukal et al., Ridge et al. [128,129,130] |
Molecule/Protein Name | Experimental Model | Function | Related Genes/Pathways | References |
---|---|---|---|---|
Monomethyl auristatin E | Primary Human Endometriotic Stromal Cells (ESCs) obtained from patients with endometriosis |
| - | Lavogina et al. [131] |
Talin-1 | Primary Human Endometriotic Stromal Cells (ESCs) obtained from patients with endometriosis |
| N-cadherin, MMP-2, integrin β3, E-cadherin | Tang et al. [135] |
Long intergenic non-coding RNA 01133 (LINC01133) | Endometriotic Epithelial Cell line 12Z |
| TESK1, Cofilin | Yotova et al. [147] |
MicroRNA-142-3p (miR-142-3p) | St-T1b cell line |
| ROCK2, CFL2, RAC1, WASL | Börschel et al. [148] |
MicroRNA-145 (miR-145) | Primary Human Endometriotic Stromal Cells (ESCs) obtained from patients with endometriosis |
| FASCIN-1, SOX2, MSI2 | Adammek et al. [150] |
Prostaglandin E2 (PGE2) | Eutopic Stromal Cell Line (hEM15A) |
| HMGB1, E-cadherin, vimentin | Sacco et al. [2] |
miR-503 | Human Endometriotic Cyst Stromal Cells (ECSCs) |
| Rho/Rho-related helical protein kinase pathways, cyclin D1, Bcl-2, VEGF-A | Hirakawa et al. [84] |
TGF-β1 | Ectopic and eutopic endometrium obtained from patients with endometriosis |
| SMAD3, ILK, miR-21, Integrins αV, α6, β1, β4, TGF-βRI | Zubrzycka et al. [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymański, M.; Bonowicz, K.; Antosik, P.; Jerka, D.; Głowacka, M.; Soroka, M.; Steinbrink, K.; Kleszczyński, K.; Gagat, M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers 2024, 16, 836. https://doi.org/10.3390/cancers16040836
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers. 2024; 16(4):836. https://doi.org/10.3390/cancers16040836
Chicago/Turabian StyleSzymański, Marcin, Klaudia Bonowicz, Paulina Antosik, Dominika Jerka, Mariola Głowacka, Małgorzata Soroka, Kerstin Steinbrink, Konrad Kleszczyński, and Maciej Gagat. 2024. "Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology" Cancers 16, no. 4: 836. https://doi.org/10.3390/cancers16040836
APA StyleSzymański, M., Bonowicz, K., Antosik, P., Jerka, D., Głowacka, M., Soroka, M., Steinbrink, K., Kleszczyński, K., & Gagat, M. (2024). Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers, 16(4), 836. https://doi.org/10.3390/cancers16040836