Predictive Markers of Treatment Response to Neoadjuvant Systemic Therapy with Dual HER2-Blockade
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Immunohistochemistry and TIL Assessment
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Pathologic Complete Response Related Factors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; de Azambuja, E.; Castro, G., Jr.; Untch, M.; Smith, I.; Gianni, L.; et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin adjuvant (HERA) trial. Lancet 2017, 389, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.H.; Sledge, G.; Geyer, C.E., Jr.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: Planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 2014, 32, 3744–3752. [Google Scholar] [CrossRef] [PubMed]
- Killelea, B.K.; Yang, V.Q.; Mougalian, S.; Horowitz, N.R.; Pusztai, L.; Chagpar, A.B.; Lannin, D.R. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: Results from the national cancer database. J. Am. Coll. Surg. 2015, 220, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Yau, C.; Osdoit, M.; van der Noordaa, M.; Shad, S.; Wei, J.; de Croze, D.; Hamy, A.S.; Laé, M.; Reyal, F.; Sonke, G.S.; et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: A multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022, 23, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Pienkowski, T.; Im, Y.H.; Roman, L.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Swain, S.M.; Ewer, M.S.; Viale, G.; Delaloge, S.; Ferrero, J.M.; Verrill, M.; Colomer, R.; Vieira, C.; Werner, T.L.; Douthwaite, H.; et al. Pertuzumab, trastuzumab, and standard anthracycline- and taxane-based chemotherapy for the neoadjuvant treatment of patients with HER2-positive localized breast cancer (BERENICE): A phase II, open-label, multicenter, multinational cardiac safety study. Ann. Oncol. 2018, 29, 646–653. [Google Scholar] [CrossRef]
- Loibl, S.; Jackisch, C.; Schneeweiss, A.; Schmatloch, S.; Aktas, B.; Denkert, C.; Wiebringhaus, H.; Kümmel, S.; Warm, M.; Paepke, S.; et al. Dual HER2-blockade with pertuzumab and trastuzumab in HER2-positive early breast cancer: A subanalysis of data from the randomized phase III GeparSepto trial. Ann. Oncol. 2017, 28, 497–504. [Google Scholar] [CrossRef]
- Van Ramshorst, M.S.; van der Voort, A.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Dezentjé, V.O.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1630–1640. [Google Scholar] [CrossRef]
- Oh, D.Y.; Bang, Y.J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Calvert, A.H.; Newell, D.R.; Gumbrell, L.A.; O’Reilly, S.; Burnell, M.; Boxall, F.E.; Siddik, Z.H.; Judson, I.R.; Gore, M.E.; Wiltshaw, E. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J. Clin. Oncol. 1989, 7, 1748–1756. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.H.; Bae, S.J.; Kim, S.G.; Kim, M.H.; Kim, G.M.; Sohn, J.; Jeong, J.; Kim, J.H.; Ahn, S.G. Anaemia and pathologic complete response rate according to carboplatin dose in HER2+ breast cancer treated with neoadjuvant TCHP. Cancer Med. 2023, 12, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef]
- Cha, Y.J.; Ahn, S.G.; Bae, S.J.; Yoon, C.I.; Seo, J.; Jung, W.H.; Son, E.J.; Jeong, J. Comparison of tumor-infiltrating lymphocytes of breast cancer in core needle biopsies and resected specimens: A retrospective analysis. Breast Cancer Res. Treat. 2018, 171, 295–302. [Google Scholar] [CrossRef]
- Loi, S.; Michiels, S.; Adams, S.; Loibl, S.; Budczies, J.; Denkert, C.; Salgado, R. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: Clinical utility in an era of checkpoint inhibition. Ann. Oncol. 2021, 32, 1236–1244. [Google Scholar] [CrossRef]
- Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 2019, 37, 559–569. [Google Scholar] [CrossRef]
- Park, J.H.; Jonas, S.F.; Bataillon, G.; Criscitiello, C.; Salgado, R.; Loi, S.; Viale, G.; Lee, H.J.; Dieci, M.V.; Kim, S.B.; et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann. Oncol. 2019, 30, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Bianchini, G.; Thomas, M.; Belousov, A.; Cheang, M.C.; Koehler, A.; Gómez, P.; Semiglazov, V.; Eiermann, W.; Tjulandin, S.; et al. Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin. Cancer Res. 2014, 20, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, D.; Venet, D.; Ignatiadis, M.; Azim, H.A., Jr.; Maetens, M.; Rothé, F.; Salgado, R.; Bradbury, I.; Pusztai, L.; Harbeck, N.; et al. RNA sequencing to predict response to neoadjuvant anti-HER2 therapy: A secondary analysis of the neoALTTO randomized clinical trial. JAMA Oncol. 2017, 3, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Pogue-Geile, K.L.; Song, N.; Jeong, J.H.; Gavin, P.G.; Kim, S.R.; Blackmon, N.L.; Finnigan, M.; Rastogi, P.; Fehrenbacher, L.; Mamounas, E.P.; et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J. Clin. Oncol. 2015, 33, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Pascual, T.; De Angelis, C.; Gutierrez, C.; Llombart-Cussac, A.; Wang, T.; Cortés, J.; Rexer, B.; Paré, L.; Forero, A.; et al. HER2-enriched subtype and ERBB2 expression in HER2-positive breast cancer treated with dual HER2 blockade. J. Natl. Cancer Inst. 2020, 112, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Prat, A.; Tagliafico, E.; Paré, L.; Ficarra, G.; Bisagni, G.; Piacentini, F.; Generali, D.G.; Conte, P.; Guarneri, V. Integrated evaluation of PAM50 subtypes and immune modulation of PCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann. Oncol. 2016, 27, 1867–1873. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Martinez, A.; Krop, I.E.; Hillman, D.W.; Polley, M.Y.; Parker, J.S.; Huebner, L.; Hoadley, K.A.; Shepherd, J.; Tolaney, S.; Henry, N.L.; et al. Survival, pathologic response, and genomics in CALGB 40601 (Alliance), a neoadjuvant phase III trial of paclitaxel-trastuzumab with or without lapatinib in HER2-positive breast cancer. J. Clin. Oncol. 2020, 38, 4184–4193. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Xu, J.; Brogi, E.; Ventura, K.; Patil, S.; Ross, D.S.; Dang, C.; Robson, M.; Norton, L.; Morrow, M.; et al. Pathologic complete response rate according to HER2 detection methods in HER2-positive breast cancer treated with neoadjuvant systemic therapy. Breast Cancer Res. Treat. 2019, 177, 61–66. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Campbell, C.; Savas, P.; Nuciforo, P.; Aura, C.; de Azambuja, E.; Eidtmann, H.; Ellis, C.E.; Baselga, J.; et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: A secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015, 1, 448–454. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Barry, W.T.; Guo, H.; Dillon, D.; Tan, Y.B.; Fuhrman, K.; Osmani, W.; Getz, A.; Baltay, M.; Dang, C.; et al. The immune profile of small HER2-positive breast cancers: A secondary analysis from the APT trial. Ann. Oncol. 2019, 30, 575–581. [Google Scholar] [CrossRef]
- Bianchini, G.; Pusztai, L.; Pienkowski, T.; Im, Y.H.; Bianchi, G.V.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Galeota, E.; Magazzù, D.; et al. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann. Oncol. 2015, 26, 2429–2436. [Google Scholar] [CrossRef]
- Malainou, C.P.; Stachika, N.; Damianou, A.K.; Anastopoulos, A.; Ploumaki, I.; Triantafyllou, E.; Drougkas, K.; Gomatou, G.; Kotteas, E. Estrogen-receptor-low-positive breast cancer: Pathological and clinical perspectives. Curr. Oncol. 2023, 30, 9734–9745. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Karantza, V.; Calhoun, S.R.; Park, S.; Lee, S.; Kim, J.Y.; Yu, J.H.; Kim, S.W.; Lee, J.E.; Nam, S.J.; et al. Prevalence, treatment patterns, and prognosis of low estrogen receptor-positive (1% to 10%) breast cancer: A single institution’s experience in Korea. Breast Cancer Res. Treat. 2021, 189, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Schrodi, S.; Braun, M.; Andrulat, A.; Harbeck, N.; Mahner, S.; Kiechle, M.; Klein, E.; Schnelzer, A.; Schindlbeck, C.; Bauerfeind, I.; et al. Outcome of breast cancer patients with low hormone receptor positivity: Analysis of a 15-year population-based cohort. Ann. Oncol. 2021, 32, 1410–1424. [Google Scholar] [CrossRef] [PubMed]
- Paakkola, N.M.; Karakatsanis, A.; Mauri, D.; Foukakis, T.; Valachis, A. The prognostic and predictive impact of low estrogen receptor expression in early breast cancer: A systematic review and meta-analysis. ESMO Open 2021, 6, 100289. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Carey, L.A.; Adamo, B.; Vidal, M.; Tabernero, J.; Cortés, J.; Parker, J.S.; Perou, C.M.; Baselga, J. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. J. Natl. Cancer Inst. 2014, 106, dju152. [Google Scholar] [CrossRef] [PubMed]
- Agostinetto, E.; Rediti, M.; Fimereli, D.; Debien, V.; Piccart, M.; Aftimos, P.; Sotiriou, C.; de Azambuja, E. HER2-low breast cancer: Molecular characteristics and prognosis. Cancers 2021, 13, 2824. [Google Scholar] [CrossRef] [PubMed]
- Wein, L.; Savas, P.; Luen, S.J.; Virassamy, B.; Salgado, R.; Loi, S. Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: Current and future directions. Front. Oncol. 2017, 7, 156. [Google Scholar] [CrossRef]
- Geršak, K.; Geršak, B.M.; Gazić, B.; Klevišar Ivančič, A.; Drev, P.; Ružić Gorenjec, N.; Grašič Kuhar, C. The possible role of anti- and protumor-infiltrating lymphocytes in pathologic complete response in early breast cancer patients treated with neoadjuvant systemic therapy. Cancers 2023, 15, 4794. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Van den Eynden, G.; Roberto, S.; Fornili, M.; Bareche, Y.; Desmedt, C.; Rothé, F.; Maetens, M.; Venet, D.; Holgado, E.; et al. Tumor-infiltrating lymphocytes in patients receiving trastuzumab/pertuzumab-based chemotherapy: A tryphaena substudy. J. Natl. Cancer Inst. 2019, 111, 69–77. [Google Scholar] [CrossRef]
- Cortés, J.; Kim, S.B.; Chung, W.P.; Im, S.A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.M.; Petry, V.; Chung, C.F.; et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Han, D.; Zhou, M.; Wang, Q.; Tian, J.; Li, L.; Xu, F.; Zhou, E.; Yang, K. The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: A systematic review and meta-analysis. Future Oncol. 2017, 13, 843–857. [Google Scholar] [CrossRef]
Variables | HER2 IHC 2+ | HER2 IHC 3+ | Total | p Value |
---|---|---|---|---|
Age | 0.790 | |||
<50 | 33 (47.1) | 136 (48.9) | 169 (48.6) | |
≥50 | 37 (52.9) | 142 (51.1) | 179 (51.4) | |
HG * | 0.238 | |||
1 or 2 | 59 (86.8) | 190 (80.5) | 249 (81.9) | |
3 | 9 (13.2) | 46 (19.5) | 55 (18.1) | |
HR | <0.001 | |||
positive | 54 (77.1) | 104 (37.4) | 158 (45.4) | |
negative | 16 (22.9) | 174 (62.6) | 190 (54.6) | |
ER expression | <0.001 | |||
≥10% | 51 (72.9) | 81 (29.1) | 132 (37.9) | |
1–9% | 3 (4.3) | 23 (8.3) | 26 (7.5) | |
0 | 16 (22.9) | 174 (62.6) | 190 (54.6) | |
PR expression | <0.001 | |||
≥10% | 30 (42.9) | 36 (12.9) | 66 (19.0) | |
1–9% | 5 (7.1) | 22 (7.9) | 27 (7.8) | |
0 | 35 (50.0) | 220 (79.1) | 255 (73.3) | |
TIL levels * (%), median (IQR) | 10 (5–60) | 20 (8.75–50) | 20 (5–50) | 0.729 |
TIL levels * | 0.870 | |||
<30% | 41 (61.2) | 143 (60.1) | 184 (60.3) | |
≥30% | 26 (38.8) | 95 (39.9) | 121 (39.7) | |
Clinical tumor stage | 0.085 | |||
1 | 2 (2.9) | 7 (2.5) | 9 (2.6) | |
2 | 47 (67.1) | 147 (52.9) | 194 (55.7) | |
≥3 | 21 (30.0) | 124 (44.6) | 145 (41.7) | |
Clinical nodal status | 0.768 | |||
negative | 13 (18.6) | 56 (20.1) | 69 (19.8) | |
positive | 57 (81.4) | 222 (79.9) | 279 (80.2) | |
Ki-67 * (%), median (IQR) | 35 (20–65) | 30 (20–60) | 30 (20–60) | 0.743 |
Variables | Univariable | Multivariable Model 1 | Multivariable Model 2 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | ||||||
<50 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
≥50 | 1.68 (1.08–2.61) | 0.022 | 1.21 (0.69–2.13) | 0.515 | 1.18 (0.67–2.08) | 0.560 |
HG | ||||||
1 or 2 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
3 | 1.33 (0.71–2.49) | 0.369 | 0.73 (0.35–1.53) | 0.402 | 0.76 (0.36–1.58) | 0.457 |
ER expression | <0.001 | 0.002 | 0.002 | |||
≥10% | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
1–9% | 5.25 (3.22–8.56) | <0.001 | 3.47 (1.59–7.61) | 0.002 | 3.42 (1.56–7.48) | 0.002 |
0 | 8.20 (2.67–25.15) | <0.001 | 5.23 (1.53–17.86) | 0.008 | 5.25 (1.54–17.93) | 0.008 |
PR expression | <0.001 | 0.500 | 0.483 | |||
≥10% | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
1–9% | 4.81 (2.71–8.54) | <0.001 | 1.67 (0.71–3.91) | 0.240 | 1.68 (0.72–3.94) | 0.231 |
0 | 1.40 (0.56–3.48) | 0.469 | 1.22 (0.45–3.33) | 0.697 | 1.19 (0.44–3.26) | 0.735 |
HER2 | ||||||
IHC 2+ | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
IHC 3+ | 4.83 (2.76–8.44) | <0.001 | 3.07 (1.57–6.00) | 0.001 | 3.09 (1.58–6.05) | 0.001 |
TIL levels (per 10% increment) | 1.12 (1.03–1.22) | 0.008 | 1.11 (1.01–1.23) | 0.040 | - | - |
TIL levels | ||||||
<30% | 1 (Reference) | - | - | 1 (Reference) | ||
≥30% | 1.88 (1.15–3.08) | 0.012 | - | - | 1.88 (1.04–3.40) | 0.037 |
Clinical tumor stage | 0.599 | 0.405 | 0.401 | |||
1 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
2 | 0.53 (0.11–2.62) | 0.436 | 0.55 (0.10–3.23) | 0.504 | 0.51 (0.09–3.08) | 0.464 |
≥3 | 0.47 (0.09–2.33) | 0.354 | 0.39 (0.07–2.40) | 0.312 | 0.37 (0.06–2.31) | 0.289 |
Clinical nodal status | ||||||
negative | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
positive | 0.62 (0.35–1.11) | 0.107 | 0.58 (0.28–1.19) | 0.135 | 0.58 (0.28–1.18) | 0.133 |
Ki-67 * (%) | 1.01 (0.99–1.03) | 0.526 | - | - | - | - |
Variables | Univariable | Multivariable Model 1 | Multivariable Model 2 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | ||||||
<50 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
≥50 | 1.32 (0.70–2.49) | 0.389 | 1.47 (0.65–3.31) | 0.353 | 1.45 (0.64–3.27) | 0.371 |
HG | ||||||
1 or 2 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
3 | 0.86 (0.28–2.61) | 0.789 | 0.51 (0.13–1.99) | 0.512 | 0.61 (0.16–2.28) | 0.459 |
ER expression | ||||||
≥10% | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
1–9% | 8.20 (2.67–25.15) | <0.001 | 4.92 (1.36–17.84) | 0.015 | 4.96 (1.36–18.07) | 0.015 |
PR expression | 0.026 | 0.738 | 0.718 | |||
≥10% | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
1–9% | 2.63 (1.30–5.32) | 0.007 | 1.42 (0.85–3.47) | 0.438 | 1.44 (0.59–3.51) | 0.426 |
0 | 1.40 (0.56–3.48) | 0.469 | 1.13 (0.40–3.18) | 0.824 | 1.07 (0.38–3.07) | 0.895 |
HER2 | ||||||
IHC 2+ | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
IHC 3+ | 4.66 (2.23–9.73) | <0.001 | 4.69 (1.98–11.09) | <0.001 | 4.93 (2.06–11.82) | <0.001 |
TIL levels (per 10% increment) | 1.14 (1.01–1.30) | 0.034 | 1.22 (1.04–1.42) | 0.013 | - | - |
TIL levels | ||||||
<30% | 1 (Reference) | - | - | 1 (Reference) | ||
≥30% | 2.27 (1.12–4.60) | 0.024 | - | - | 3.24 (1.37–7.66) | 0.007 |
Clinical tumor stage | 0.640 | 0.980 | 0.953 | |||
1 | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
2 | 0.54 (0.09–3.36) | 0.505 | 0.89 (0.11–7.15) | 0.850 | 0.75 (0.09–5.97) | 0.783 |
≥3 | 0.69 (0.11–4.42) | 0.694 | 0.83 (0.10–7.19) | 0.867 | 0.71 (0.08–6.09) | 0.758 |
Clinical nodal status | ||||||
negative | 1 (Reference) | 1 (Reference) | 1 (Reference) | |||
positive | 0.96 (0.43–2.15) | 0.923 | 0.75 (0.28–2.01) | 0.572 | 0.76 (0.28–2.02) | 0.576 |
Ki-67 * (%) | 1.00 (0.96–1.04) | 0.919 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.J.; Kim, J.H.; Lee, M.J.; Baek, S.H.; Kook, Y.; Ahn, S.G.; Cha, Y.J.; Jeong, J. Predictive Markers of Treatment Response to Neoadjuvant Systemic Therapy with Dual HER2-Blockade. Cancers 2024, 16, 842. https://doi.org/10.3390/cancers16040842
Bae SJ, Kim JH, Lee MJ, Baek SH, Kook Y, Ahn SG, Cha YJ, Jeong J. Predictive Markers of Treatment Response to Neoadjuvant Systemic Therapy with Dual HER2-Blockade. Cancers. 2024; 16(4):842. https://doi.org/10.3390/cancers16040842
Chicago/Turabian StyleBae, Soong June, Jee Hung Kim, Min Ji Lee, Seung Ho Baek, Yoonwon Kook, Sung Gwe Ahn, Yoon Jin Cha, and Joon Jeong. 2024. "Predictive Markers of Treatment Response to Neoadjuvant Systemic Therapy with Dual HER2-Blockade" Cancers 16, no. 4: 842. https://doi.org/10.3390/cancers16040842
APA StyleBae, S. J., Kim, J. H., Lee, M. J., Baek, S. H., Kook, Y., Ahn, S. G., Cha, Y. J., & Jeong, J. (2024). Predictive Markers of Treatment Response to Neoadjuvant Systemic Therapy with Dual HER2-Blockade. Cancers, 16(4), 842. https://doi.org/10.3390/cancers16040842