HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Treatment of Metastatic HER2-Positive Gastric Cancer
2.1. Introduction of Trastuzumab
2.2. Trastuzumab and Checkpoint Inhibition
2.3. Beyond Progression to Trastuzumab
3. Resistance to Trastuzumab
HER2-Positive or Not?
4. New Perspectives in HER2 Targeting
4.1. Monoclonal and Bispecific Antibodies
4.2. Antibody–Drug Conjugates (ADCs)
4.3. Small-Molecule Inhibitors
5. Other Developments in HER2 Targeting
6. Perioperative Treatment of HER2 Gastric Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Bang, Y.-J.; Feng-Yi, F.; Xu, J.M.; Lee, K.-W.; Jiao, S.-C.; Chong, J.L.; López-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015, 18, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.; Rha, S.; Oh, D.; Díez García, M.; van Laarhoven, H.; Chao, Y.; Di Bartolomeo, M.; Haj Mohammad, N.; Zhong, W.; Croydon, E.; et al. SO-7 Co-Occurring HER2 and PD-L1 Expression in Patients with HER2-Positive Trastuzumab-Refractory Gastric Cancer (GC)/Gastroesophageal Junction Adenocarcinoma (GEJA): Biomarker Analysis from the Trastuzumab Deruxtecan (T-DXd) DESTINY-Gastric03 Trial. Ann. Oncol. 2022, 33, S358–S359. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Werner, D.; Pauligk, C.; Steinmetz, K.; Kelsen, D.P.; Jäger, E.; Altmannsberger, H.M.; Robinson, E.; Tafe, L.J.; Tang, L.H.; et al. Prognosis of Metastatic Gastric and Gastroesophageal Junction Cancer by HER2 Status: A European and USA International Collaborative Analysis. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 2656–2662. [Google Scholar] [CrossRef] [PubMed]
- Sukawa, Y.; Yamamoto, H.; Nosho, K.; Ito, M.; Igarashi, H.; Naito, T.; Mitsuhashi, K.; Matsunaga, Y.; Takahashi, T.; Mikami, M.; et al. HER2 Expression and PI3K-Akt Pathway Alterations in Gastric Cancer. Digestion 2014, 89, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Worthylake, R.; Opresko, L.K.; Wiley, H.S. ErbB-2 Amplification Inhibits down-Regulation and Induces Constitutive Activation of Both ErbB-2 and Epidermal Growth Factor Receptors. J. Biol. Chem. 1999, 274, 8865–8874. [Google Scholar] [CrossRef] [PubMed]
- Okines, A.F.C.; Cunningham, D. Trastuzumab: A Novel Standard Option for Patients with HER-2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer. Ther. Adv. Gastroenterol. 2012, 5, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Pinkas-Kramarski, R.; Soussan, L.; Waterman, H.; Levkowitz, G.; Alroy, I.; Klapper, L.; Lavi, S.; Seger, R.; Ratzkin, B.J.; Sela, M.; et al. Diversification of Neu Differentiation Factor and Epidermal Growth Factor Signaling by Combinatorial Receptor Interactions. EMBO J. 1996, 15, 2452–2467. [Google Scholar] [CrossRef]
- Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR Interactive Pathway. Mol. Biosyst. 2015, 11, 1946–1954. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER Kinase Inhibition in Patients with HER2- and HER3-Mutant Cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Koh, Y.W.; Chang, H.-M.; Kim, T.H.; Yook, J.H.; Kim, B.S.; Jang, S.J.; Park, Y.S. Evaluation of HER2 Protein Expression in Gastric Carcinomas: Comparative Analysis of 1414 Cases of Whole-Tissue Sections and 595 Cases of Tissue Microarrays. Ann. Surg. Oncol. 2011, 18, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, S. Unraveling Trastuzumab and Lapatinib Inefficiency in Gastric Cancer: Future Steps (Review). Mol. Clin. Oncol. 2014, 2, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet Lond. Engl. 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, Y.; Yang, J.; Qi, Y.; Ming, Y.; Sun, M.; Shang, Y.; Yang, Y.; Zhu, X.; Gao, Q. Efficacy and Safety of Trastuzumab as Maintenance or Palliative Therapy in Advanced HER2-Positive Gastric Cancer. OncoTargets Ther. 2018, 11, 6091–6100. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Ahmad, H.; Shah, S.; Neelma, F.; Ullah, W. Robust Anti-Tumor Response in a Patient with Metastatic Gastroesophageal Junction Adenocarcinoma on Long-Term Maintenance Chemotherapy With Trastuzumab Alone: An Unusual Occurrence. Cureus 2020, 12, e11472. [Google Scholar] [CrossRef] [PubMed]
- Porth, I.; Hirsch, D.; Ceribas, Y.; Weidner, P.; Weichert, W.; Götze, T.O.; Perner, S.; Luley, K.; Heyer, C.M.; de la Torre, C.; et al. Comprehensive Biomarker Analysis of Long-Term Response to Trastuzumab in Patients with HER2-Positive Advanced Gastric or Gastroesophageal Adenocarcinoma. Eur. J. Cancer 2023, 183, 119–130. [Google Scholar] [CrossRef]
- Shah, M.A.; Xu, R.-H.; Bang, Y.-J.; Hoff, P.M.; Liu, T.; Herráez-Baranda, L.A.; Xia, F.; Garg, A.; Shing, M.; Tabernero, J. HELOISE: Phase IIIb Randomized Multicenter Study Comparing Standard-of-Care and Higher-Dose Trastuzumab Regimens Combined With Chemotherapy as First-Line Therapy in Patients With Human Epidermal Growth Factor Receptor 2-Positive Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2558–2567. [Google Scholar] [CrossRef]
- Bergen, E.S.; Pilla, L.; Auclin, E.; Ilhan-Mutlu, A.; Prager, G.W.; Pietrantonio, F.; Antista, M.; Ghelardi, F.; Basile, D.; Aprile, G.; et al. Optimal Treatment Strategy after First-Line Induction Therapy in Advanced HER2-Positive Oeso-Gastric Adenocarcinoma—A Retrospective, International, Multicentric AGEO Study. Gastric Cancer 2023, 26, 425–437. [Google Scholar] [CrossRef]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Moorahrend, E.; Maintz, C.; Goetze, T.O.; Hempel, D.; Thuss-Patience, P.; Gaillard, V.E.; Hegewisch-Becker, S. Clinical Practice Observation of Trastuzumab in Patients with Human Epidermal Growth Receptor 2-Positive Metastatic Adenocarcinoma of the Stomach or Gastroesophageal Junction. Oncologist 2020, 25, e1181–e1187. [Google Scholar] [CrossRef] [PubMed]
- Ter Veer, E.; Creemers, A.; De Waal, L.; Van Oijen, M.G.H.; Van Laarhoven, H.W.M. Comparing Cytotoxic Backbones for First-line Trastuzumab-containing Regimens in Human Epidermal Growth Factor Receptor 2-positive Advanced Oesophagogastric Cancer: A Meta-analysis. Int. J. Cancer 2018, 143, 438–448. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 Trial of Dual PD-1 and HER2 Blockade in HER2-Positive Gastric Cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.P.; Yanez, P.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.; et al. Pembrolizumab plus Trastuzumab and Chemotherapy for HER2-Positive Gastric or Gastro-Oesophageal Junction Adenocarcinoma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. Lancet 2023, 402, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients With HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef]
- Kim, C.G.; Jung, M.; Kim, H.S.; Lee, C.; Jeung, H.-C.; Koo, D.-H.; Bae, W.K.; Zang, D.Y.; Kim, B.J.; Kim, H.; et al. Trastuzumab Combined With Ramucirumab and Paclitaxel in Patients With Previously Treated Human Epidermal Growth Factor Receptor 2–Positive Advanced Gastric or Gastroesophageal Junction Cancer. J. Clin. Oncol. 2023, 41, 4394–4405. [Google Scholar] [CrossRef]
- Rha, S.Y.; Chung, H.C. Breakthroughs in the Systemic Treatment of HER2-Positive Advanced/Metastatic Gastric Cancer: From Singlet Chemotherapy to Triple Combination. J. Gastric Cancer 2023, 23, 224–249. [Google Scholar] [CrossRef]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander Killing Effect of DS -8201a, a Novel Anti-human Epidermal Growth Factor Receptor 2 Antibody–Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef]
- Takegawa, N.; Tsurutani, J.; Kawakami, H.; Yonesaka, K.; Kato, R.; Haratani, K.; Hayashi, H.; Takeda, M.; Nonagase, Y.; Maenishi, O.; et al. [Fam-] Trastuzumab Deruxtecan, Antitumor Activity Is Dependent on HER2 Expression Level Rather than on HER2 Amplification. Int. J. Cancer 2019, 145, 3414–3424. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.; Chao, J.; et al. Trastuzumab Deruxtecan in Patients in the USA and Europe with HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer with Disease Progression on or after a Trastuzumab-Containing Regimen (DESTINY-Gastric02): Primary and Updated Analyses from a Single-Arm, Phase 2 Study. Lancet Oncol. 2023, 24, 744–756. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Antiemesis Version 1; NCCN: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Tarantino, P.; Viale, G.; Press, M.F.; Hu, X.; Penault-Llorca, F.; Bardia, A.; Batistatou, A.; Burstein, H.J.; Carey, L.A.; Cortes, J.; et al. ESMO Expert Consensus Statements (ECS) on the Definition, Diagnosis, and Management of HER2-Low Breast Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2023, 34, 645–659. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Anti-Human Epidermal Growth Factor Receptor 2 Treatment-Naive Patients With Human Epidermal Growth Factor Receptor 2-Low Gastric or Gastroesophageal Junction Adenocarcinoma: Exploratory Cohort Results in a Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Pályi-Krekk, Z.; Barok, M.; Isola, J.; Tammi, M.; Szöllosi, J.; Nagy, P. Hyaluronan-Induced Masking of ErbB2 and CD44-Enhanced Trastuzumab Internalisation in Trastuzumab Resistant Breast Cancer. Eur. J. Cancer 2007, 43, 2423–2433. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Caporale, M.; Morano, F.; Scartozzi, M.; Gloghini, A.; De Vita, F.; Giommoni, E.; Fornaro, L.; Aprile, G.; Melisi, D.; et al. HER2 Loss in HER2-Positive Gastric or Gastroesophageal Cancer after Trastuzumab Therapy: Implication for Further Clinical Research. Int. J. Cancer 2016, 139, 2859–2864. [Google Scholar] [CrossRef]
- Saeki, H.; Oki, E.; Kashiwada, T.; Arigami, T.; Makiyama, A.; Iwatsuki, M.; Narita, Y.; Satake, H.; Matsuda, Y.; Sonoda, H.; et al. Re-Evaluation of HER2 Status in Patients with HER2-Positive Advanced or Recurrent Gastric Cancer Refractory to Trastuzumab (KSCC1604). Eur. J. Cancer 2018, 105, 41–49. [Google Scholar] [CrossRef]
- Seo, S.; Ryu, M.-H.; Park, Y.S.; Ahn, J.Y.; Park, Y.; Park, S.R.; Ryoo, B.-Y.; Lee, G.H.; Jung, H.-Y.; Kang, Y.-K. Loss of HER2 Positivity after Anti-HER2 Chemotherapy in HER2-Positive Gastric Cancer Patients: Results of the GASTric Cancer HER2 Reassessment Study 3 (GASTHER3). Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2019, 22, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Sanchez-Vega, F.; Jonsson, P.; Chatila, W.K.; Hechtman, J.F.; Ku, G.Y.; Riches, J.C.; Tuvy, Y.; Kundra, R.; Bouvier, N.; et al. Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discov. 2018, 8, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ebbing, E.A.; Medema, J.P.; Damhofer, H.; Meijer, S.L.; Krishnadath, K.K.; van Berge Henegouwen, M.I.; Bijlsma, M.F.; van Laarhoven, H.W.M. ADAM10-Mediated Release of Heregulin Confers Resistance to Trastuzumab by Activating HER3. Oncotarget 2016, 7, 10243–10254. [Google Scholar] [CrossRef] [PubMed]
- Sampera, A.; Sánchez-Martín, F.J.; Arpí, O.; Visa, L.; Iglesias, M.; Menéndez, S.; Gaye, É.; Dalmases, A.; Clavé, S.; Gelabert-Baldrich, M.; et al. HER-Family Ligands Promote Acquired Resistance to Trastuzumab in Gastric Cancer. Mol. Cancer Ther. 2019, 18, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Liu, J.; Zhang, J.; Wu, M.; Guo, L.; Liao, W. Development of Trastuzumab-Resistant Human Gastric Carcinoma Cell Lines and Mechanisms of Drug Resistance. Sci. Rep. 2015, 5, 11634. [Google Scholar] [CrossRef]
- Piro, G.; Carbone, C.; Cataldo, I.; Di Nicolantonio, F.; Giacopuzzi, S.; Aprile, G.; Simionato, F.; Boschi, F.; Zanotto, M.; Mina, M.M.; et al. An FGFR3 Autocrine Loop Sustains Acquired Resistance to Trastuzumab in Gastric Cancer Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 6164–6175. [Google Scholar] [CrossRef]
- Jin, M.H.; Nam, A.-R.; Park, J.E.; Bang, J.-H.; Bang, Y.-J.; Oh, D.-Y. Resistance Mechanism against Trastuzumab in HER2-Positive Cancer Cells and Its Negation by Src Inhibition. Mol. Cancer Ther. 2017, 16, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.Y.; Lee, J.; Jang, J.; Hong, J.Y.; Do, I.-G.; Park, S.H.; Park, J.O.; Choi, M.-G.; Sohn, T.S.; Bae, J.M.; et al. HER2-Positive Gastric Cancer with Concomitant MET and/or EGFR Overexpression: A Distinct Subset of Patients for Dual Inhibition Therapy. Int. J. Cancer 2015, 136, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Ebbing, E.A.; Steins, A.; Fessler, E.; Stathi, P.; Lesterhuis, W.J.; Krishnadath, K.K.; Vermeulen, L.; Medema, J.P.; Bijlsma, M.F.; Van Laarhoven, H.W.M. Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-B2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition. Gastroenterology 2017, 153, 63–76.e14. [Google Scholar] [CrossRef]
- Liu, W.; Chang, J.; Liu, M.; Yuan, J.; Zhang, J.; Qin, J.; Xia, X.; Wang, Y. Quantitative Proteomics Profiling Reveals Activation of mTOR Pathway in Trastuzumab Resistance. Oncotarget 2017, 8, 45793–45806. [Google Scholar] [CrossRef]
- Sukawa, Y.; Yamamoto, H.; Nosho, K.; Kunimoto, H.; Suzuki, H.; Adachi, Y.; Nakazawa, M.; Nobuoka, T.; Kawayama, M.; Mikami, M.; et al. Alterations in the Human Epidermal Growth Factor Receptor 2-Phosphatidylinositol 3-Kinase-v-Akt Pathway in Gastric Cancer. World J. Gastroenterol. 2012, 18, 6577–6586. [Google Scholar] [CrossRef] [PubMed]
- Mezynski, M.J.; Farrelly, A.M.; Cremona, M.; Carr, A.; Morgan, C.; Workman, J.; Armstrong, P.; McAuley, J.; Madden, S.; Fay, J.; et al. Targeting the PI3K and MAPK Pathways to Improve Response to HER2-Targeted Therapies in HER2-Positive Gastric Cancer. J. Transl. Med. 2021, 19, 184. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-S.; Liu, Z.-X.; Lu, Y.-X.; Bao, H.; Wu, X.; Zeng, Z.-L.; Liu, Z.; Zhao, Q.; He, C.-Y.; Lu, J.-H.; et al. Liquid Biopsies to Track Trastuzumab Resistance in Metastatic HER2-Positive Gastric Cancer. Gut 2019, 68, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y.; Okabe, H.; Oshima, N.; Hisamori, S.; Minamiguchi, S.; Muto, M.; Sakai, Y. PTEN Loss Is Associated with a Poor Response to Trastuzumab in HER2-Overexpressing Gastroesophageal Adenocarcinoma. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2017, 20, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, C.-K.; Chon, H.J.; Kim, J.H.; Park, H.S.; Heo, S.J.; Kim, H.J.; Kim, T.S.; Kwon, W.S.; Chung, H.C.; et al. PTEN Loss and Level of HER2 Amplification Is Associated with Trastuzumab Resistance and Prognosis in HER2-Positive Gastric Cancer. Oncotarget 2017, 8, 113494–113501. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pan, C.; Guo, L.; Wu, M.; Guo, J.; Peng, S.; Wu, Q.; Zuo, Q. A New Mechanism of Trastuzumab Resistance in Gastric Cancer: MACC1 Promotes the Warburg Effect via Activation of the PI3K/AKT Signaling Pathway. J. Hematol. Oncol. J. Hematol. Oncol. 2016, 9, 76. [Google Scholar] [CrossRef]
- Tang, L.; Long, Z.; Zhao, N.; Feng, G.; Guo, X.; Yu, M. NES1/KLK10 Promotes Trastuzumab Resistance via Activation of PI3K/AKT Signaling Pathway in Gastric Cancer. J. Cell. Biochem. 2018, 119, 6398–6407. [Google Scholar] [CrossRef]
- Yang, S.; Wang, B.; Liao, J.; Hong, Z.; Zhong, X.; Chen, S.; Wu, Z.; Zhang, X.; Zuo, Q. Molecular Mechanism of XB130 Adaptor Protein Mediates Trastuzumab Resistance in Gastric Cancer. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2023, 25, 685–695. [Google Scholar] [CrossRef]
- Sato, Y.; Yashiro, M.; Takakura, N. Heregulin Induces Resistance to Lapatinib-Mediated Growth Inhibition of HER2-Amplified Cancer Cells. Cancer Sci. 2013, 104, 1618–1625. [Google Scholar] [CrossRef]
- Nonagase, Y.; Yonesaka, K.; Kawakami, H.; Watanabe, S.; Haratani, K.; Takahama, T.; Takegawa, N.; Ueda, H.; Tanizaki, J.; Hayashi, H.; et al. Heregulin-Expressing HER2-Positive Breast and Gastric Cancer Exhibited Heterogeneous Susceptibility to the Anti-HER2 Agents Lapatinib, Trastuzumab and T-DM1. Oncotarget 2016, 7, 84860–84871. [Google Scholar] [CrossRef]
- Ohtsu, A.; Ajani, J.A.; Bai, Y.-X.; Bang, Y.-J.; Chung, H.-C.; Pan, H.-M.; Sahmoud, T.; Shen, L.; Yeh, K.-H.; Chin, K.; et al. Everolimus for Previously Treated Advanced Gastric Cancer: Results of the Randomized, Double-Blind, Phase III GRANITE-1 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3935–3943. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-Y.; Rosenberg, L.M.; Wang, X.; Zhou, Z.; Yue, P.; Fu, H.; Khuri, F.R. Activation of Akt and eIF4E Survival Pathways by Rapamycin-Mediated Mammalian Target of Rapamycin Inhibition. Cancer Res. 2005, 65, 7052–7058. [Google Scholar] [CrossRef] [PubMed]
- Elster, N.; Cremona, M.; Morgan, C.; Toomey, S.; Carr, A.; O’Grady, A.; Hennessy, B.T.; Eustace, A.J. A Preclinical Evaluation of the PI3K Alpha/Delta Dominant Inhibitor BAY 80-6946 in HER2-Positive Breast Cancer Models with Acquired Resistance to the HER2-Targeted Therapies Trastuzumab and Lapatinib. Breast Cancer Res. Treat. 2015, 149, 373–383. [Google Scholar] [CrossRef]
- O’Shea, J.; Cremona, M.; Morgan, C.; Milewska, M.; Holmes, F.; Espina, V.; Liotta, L.; O’Shaughnessy, J.; Toomey, S.; Madden, S.F.; et al. A Preclinical Evaluation of the MEK Inhibitor Refametinib in HER2-Positive Breast Cancer Cell Lines Including Those with Acquired Resistance to Trastuzumab or Lapatinib. Oncotarget 2017, 8, 85120–85135. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; He, Z.; Qin, C.; Zhang, P.; Sui, C.; Deng, X.; Fang, Y.; Li, G.; Shi, J. Inhibition of PFKFB3 in HER2-Positive Gastric Cancer Improves Sensitivity to Trastuzumab by Inducing Tumour Vessel Normalisation. Br. J. Cancer 2022, 127, 811–823. [Google Scholar] [CrossRef]
- Hofmann, M.; Stoss, O.; Shi, D.; Büttner, R.; van de Vijver, M.; Kim, W.; Ochiai, A.; Rüschoff, J.; Henkel, T. Assessment of a HER2 Scoring System for Gastric Cancer: Results from a Validation Study. Histopathology 2008, 52, 797–805. [Google Scholar] [CrossRef]
- Rüschoff, J.; Dietel, M.; Baretton, G.; Arbogast, S.; Walch, A.; Monges, G.; Chenard, M.-P.; Penault-Llorca, F.; Nagelmeier, I.; Schlake, W.; et al. HER2 Diagnostics in Gastric Cancer-Guideline Validation and Development of Standardized Immunohistochemical Testing. Virchows Arch. Int. J. Pathol. 2010, 457, 299–307. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Yamamoto, N.; Sano, T.; Chin, K.; Kawachi, H.; Takahari, D.; Ogura, M.; Ichimura, T.; Nakayama, I.; Osumi, H.; et al. Clinical Impact of Intratumoral HER2 Heterogeneity on Trastuzumab Efficacy in Patients with HER2-Positive Gastric Cancer. J. Gastroenterol. 2018, 53, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Haffner, I.; Schierle, K.; Raimúndez, E.; Geier, B.; Maier, D.; Hasenauer, J.; Luber, B.; Walch, A.; Kolbe, K.; Riera Knorrenschild, J.; et al. HER2 Expression, Test Deviations, and Their Impact on Survival in Metastatic Gastric Cancer: Results From the Prospective Multicenter VARIANZ Study. J. Clin. Oncol. 2021, 39, 1468–1478. [Google Scholar] [CrossRef]
- Park, S.R.; Park, Y.S.; Ryu, M.-H.; Ryoo, B.-Y.; Woo, C.G.; Jung, H.-Y.; Lee, J.H.; Lee, G.H.; Kang, Y.-K. Extra-Gain of HER2-Positive Cases through HER2 Reassessment in Primary and Metastatic Sites in Advanced Gastric Cancer with Initially HER2-Negative Primary Tumours: Results of GASTric Cancer HER2 Reassessment Study 1 (GASTHER1). Eur. J. Cancer 2016, 53, 42–50. [Google Scholar] [CrossRef]
- Bang, K.; Cheon, J.; Park, Y.S.; Kim, H.-D.; Ryu, M.-H.; Park, Y.; Moon, M.; Lee, H.; Kang, Y.-K. Association between HER2 Heterogeneity and Clinical Outcomes of HER2-Positive Gastric Cancer Patients Treated with Trastuzumab. Gastric Cancer 2022, 25, 794–803. [Google Scholar] [CrossRef]
- Moehler, M.; Al-Batran, S.-E.; Andus, T.; Arends, J.; Arnold, D.; Baretton, G.; Bornschein, J.; Budach, W.; Daum, S.; Dietrich, C.; et al. S3-Leitlinie Magenkarzinom—Diagnostik und Therapie der Adenokarzinome des Magens und des ösophagogastralen Übergangs—Langversion 2.0. Z. Gastroenterol. 2019, 57, 1517–1632. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Gastric Cancer Version 2; NCCN: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Warneke, V.S.; Behrens, H.-M.; Böger, C.; Becker, T.; Lordick, F.; Ebert, M.P.A.; Röcken, C. Her2/Neu Testing in Gastric Cancer: Evaluating the Risk of Sampling Errors. Ann. Oncol. 2013, 24, 725–733. [Google Scholar] [CrossRef]
- Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Hechtman, J.F.; Castel, P.; Ku, G.Y.; Tuvy, Y.; Won, H.; Fong, C.J.; Bouvier, N.; Nanjangud, G.J.; Soong, J.; et al. EGFR and MET Amplifications Determine Response to HER2 Inhibition in ERBB2-Amplified Esophagogastric Cancer. Cancer Discov. 2019, 9, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Maron, S.B.; Chase, L.M.; Lomnicki, S.; Kochanny, S.; Moore, K.L.; Joshi, S.S.; Landron, S.; Johnson, J.; Kiedrowski, L.A.; Nagy, R.J.; et al. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 7098–7112. [Google Scholar] [CrossRef] [PubMed]
- Lumish, M.A.; Maron, S.B.; Paroder, V.; Chou, J.F.; Capanu, M.; Philemond, S.; O’Donoghue, J.A.; Schöder, H.; Lewis, J.S.; Lyashchenko, S.K.; et al. Noninvasive Assessment of Human Epidermal Growth Factor Receptor 2 (HER2) in Esophagogastric Cancer Using 89 Zr-Trastuzumab PET: A Pilot Study. J. Nucl. Med. 2023, 64, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Maron, S.B.; Chatila, W.; Walch, H.; Chou, J.F.; Ceglia, N.; Ptashkin, R.; Do, R.K.G.; Paroder, V.; Pandit-Taskar, N.; Lewis, J.S.; et al. Determinants of Survival with Combined HER2 and PD-1 Blockade in Metastatic Esophagogastric Cancer. Clin. Cancer Res. 2023, 29, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus Trastuzumab and Chemotherapy for HER2-Positive Metastatic Gastric or Gastro-Oesophageal Junction Cancer (JACOB): Final Analysis of a Double-Blind, Randomised, Placebo-Controlled Phase 3 Study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Kang, Y.-K.; Yoon, H.H.; Shim, B.Y.; Kim, S.T.; Oh, D.-Y.; Spira, A.I.; Ulahannan, S.V.; Avery, E.J.; Boland, P.M.; et al. Margetuximab with Retifanlimab as First-Line Therapy in HER2+/PD-L1+ Unresectable or Metastatic Gastroesophageal Adenocarcinoma: MAHOGANY Cohort A. ESMO Open 2022, 7, 100563. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, Y.; Wang, Q.; Yang, G.; Zhou, L.; Wang, Q. HLX22, an Anti-HER-2 Monoclonal Antibody, in Patients with Advanced Solid Tumors Overexpressing Human Epidermal Growth Factor Receptor 2: An Open-Label, Dose-Escalation, Phase 1 Trial. Investig. New Drugs 2023, 41, 473–482. [Google Scholar] [CrossRef]
- Xu, J.; Ying, J.; Liu, R.; Wu, J.; Ye, F.; Xu, N.; Zhang, Y.; Zhao, R.; Xiang, X.; Wang, J.; et al. KN026 (Anti-HER2 Bispecific Antibody) in Patients with Previously Treated, Advanced HER2-Expressing Gastric or Gastroesophageal Junction Cancer. Eur. J. Cancer 2023, 178, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Weisser, N.E.; Sanches, M.; Escobar-Cabrera, E.; O’Toole, J.; Whalen, E.; Chan, P.W.Y.; Wickman, G.; Abraham, L.; Choi, K.; Harbourne, B.; et al. An Anti-HER2 Biparatopic Antibody That Induces Unique HER2 Clustering and Complement-Dependent Cytotoxicity. Nat. Commun. 2023, 14, 1394. [Google Scholar] [CrossRef]
- Ku, G.; Elimova, E.; Denlinger, C.S.; Mehta, R.; Lee, K.-W.; Iqbal, S.; Kang, Y.-K.; Oh, D.-Y.; Rha, S.Y.; Kim, Y.H.; et al. 1380P Phase (Ph) II Study of Zanidatamab + Chemotherapy (Chemo) in First-Line (1L) HER2 Expressing Gastroesophageal Adenocarcinoma (GEA). Ann. Oncol. 2021, 32, S1044–S1045. [Google Scholar] [CrossRef]
- Tabernero, J.; Shen, L.; Elimova, E.; Ku, G.; Liu, T.; Shitara, K.; Lin, X.; Boyken, L.; Li, H.; Grim, J.; et al. HERIZON-GEA-01: Zanidatamab + Chemo ± Tislelizumab for 1L Treatment of HER2-Positive Gastroesophageal Adenocarcinoma. Future Oncol. Lond. Engl. 2022, 18, 3255–3266. [Google Scholar] [CrossRef]
- Ku, G.; Piha-Paul, S.; Gupta, M.; Oh, D.; Kim, Y.; Lee, J.; Rha, S.; Kang, Y.; Díez García, M.; Fleitas Kanonnikoff, T.; et al. P-53 A Phase 2, Multi-Center, Open-Label Study of Cinrebafusp Alfa (PRS-343) in Patients with HER2-High and HER2-Low Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma. Ann. Oncol. 2022, 33, S265. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab Emtansine versus Taxane Use for Previously Treated HER2-Positive Locally Advanced or Metastatic Gastric or Gastro-Oesophageal Junction Adenocarcinoma (GATSBY): An International Randomised, Open-Label, Adaptive, Phase 2/3 Study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.; Diéras, V.; Lorenzen, S.; Montemurro, F.; Riera-Knorrenschild, J.; Thuss-Patience, P.; Allegrini, G.; De Laurentiis, M.; Lohrisch, C.; Oravcová, E.; et al. Efficacy and Safety of Trastuzumab Emtansine Plus Capecitabine vs Trastuzumab Emtansine Alone in Patients with Previously Treated ERBB2 (HER2)-Positive Metastatic Breast Cancer: A Phase 1 and Randomized Phase 2 Trial. JAMA Oncol. 2020, 6, 1203–1209. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, T.; Wei, J.; Wang, A.; He, Y.; Yang, L.; Zhang, X.; Fan, N.; Luo, S.; Li, Z.; et al. Efficacy and Safety of a Novel Anti-HER2 Therapeutic Antibody RC48 in Patients with HER2-Overexpressing, Locally Advanced or Metastatic Gastric or Gastroesophageal Junction Cancer: A Single-Arm Phase II Study. Cancer Commun. Lond. Engl. 2021, 41, 1173–1182. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Gong, J.; Zhang, X.; Peng, Z.; Sheng, X.; Mao, C.; Fan, Q.; Bai, Y.; Ba, Y.; et al. Phase I Study of the Recombinant Humanized Anti-HER2 Monoclonal Antibody-MMAE Conjugate RC48-ADC in Patients with HER2-Positive Advanced Solid Tumors. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2021, 24, 913–925. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Baselga, J.; Bradbury, I.; Eidtmann, H.; Di Cosimo, S.; de Azambuja, E.; Aura, C.; Gómez, H.; Dinh, P.; Fauria, K.; Van Dooren, V.; et al. Lapatinib with Trastuzumab for HER2-Positive Early Breast Cancer (NeoALTTO): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Lond. Engl. 2012, 379, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, K.L.; Burstein, H.J.; Storniolo, A.M.; Rugo, H.S.; Sledge, G.; Aktan, G.; Ellis, C.; Florance, A.; Vukelja, S.; Bischoff, J.; et al. Overall Survival Benefit with Lapatinib in Combination with Trastuzumab for Patients with Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer: Final Results from the EGF104900 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, H.-P.; Im, S.-A.; Kang, S.; Hur, H.S.; Yoon, Y.-K.; Oh, D.-Y.; Kim, J.H.; Lee, D.S.; Kim, T.-Y.; et al. The Growth Inhibitory Effect of Lapatinib, a Dual Inhibitor of EGFR and HER2 Tyrosine Kinase, in Gastric Cancer Cell Lines. Cancer Lett. 2008, 272, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Spector, N.L.; Xia, W.; Burris, H.; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; et al. Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients with Advanced Malignancies. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 2502–2512. [Google Scholar] [CrossRef] [PubMed]
- Nahta, R.; Yuan, L.X.H.; Du, Y.; Esteva, F.J. Lapatinib Induces Apoptosis in Trastuzumab-Resistant Breast Cancer Cells: Effects on Insulin-like Growth Factor I Signaling. Mol. Cancer Ther. 2007, 6, 667–674. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.-J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination with Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2–Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC—A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef]
- Satoh, T.; Xu, R.-H.; Chung, H.C.; Sun, G.-P.; Doi, T.; Xu, J.-M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.-W.; et al. Lapatinib Plus Paclitaxel Versus Paclitaxel Alone in the Second-Line Treatment of HER2 -Amplified Advanced Gastric Cancer in Asian Populations: TyTAN—A Randomized, Phase III Study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Lorenzen, S.; Riera Knorrenschild, J.; Haag, G.-M.; Pohl, M.; Thuss-Patience, P.; Bassermann, F.; Helbig, U.; Weißinger, F.; Schnoy, E.; Becker, K.; et al. Lapatinib versus Lapatinib plus Capecitabine as Second-Line Treatment in Human Epidermal Growth Factor Receptor 2-Amplified Metastatic Gastro-Oesophageal Cancer: A Randomised Phase II Trial of the Arbeitsgemeinschaft Internistische Onkologie. Eur. J. Cancer 2015, 51, 569–576. [Google Scholar] [CrossRef]
- Kim, S.T.; Banks, K.C.; Pectasides, E.; Kim, S.Y.; Kim, K.; Lanman, R.B.; Talasaz, A.; An, J.; Choi, M.G.; Lee, J.H.; et al. Impact of Genomic Alterations on Lapatinib Treatment Outcome and Cell-Free Genomic Landscape during HER2 Therapy in HER2+ Gastric Cancer Patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1037–1048. [Google Scholar] [CrossRef]
- Leto, S.M.; Sassi, F.; Catalano, I.; Torri, V.; Migliardi, G.; Zanella, E.R.; Throsby, M.; Bertotti, A.; Trusolino, L. Sustained Inhibition of HER3 and EGFR Is Necessary to Induce Regression of HER2-Amplified Gastrointestinal Carcinomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 5519–5531. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Anghel, A.; Desai, A.J.; Ayala, R.; Luo, T.; Safran, B.; Fejzo, M.S.; Hecht, J.R.; Slamon, D.J.; Finn, R.S. Lapatinib, a Dual EGFR and HER2 Kinase Inhibitor, Selectively Inhibits HER2-Amplified Human Gastric Cancer Cells and Is Synergistic with Trastuzumab in Vitro and in Vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Zarkavelis, G.; Samantas, E.; Koliou, G.-A.; Papadopoulou, K.; Mauri, D.; Aravantinos, G.; Batistatou, A.; Pazarli, E.; Tryfonopoulos, D.; Tsipoura, A.; et al. AGAPP: Efficacy of First-Line Cisplatin, 5-Fluorouracil with Afatinib in Inoperable Gastric and Gastroesophageal Junction Carcinomas. A Hellenic Cooperative Oncology Group Study. Acta Oncol. Stockh. Swed. 2021, 60, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. Mol. Cancer Ther. 2020, 19, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Cercek, A.; Siena, S.; André, T.; Ng, K.; Van Cutsem, E.; Wu, C.; Paulson, A.S.; Hubbard, J.M.; Coveler, A.L.; et al. Tucatinib plus Trastuzumab for Chemotherapy-Refractory, HER2-Positive, RAS Wild-Type Unresectable or Metastatic Colorectal Cancer (MOUNTAINEER): A Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2023, 24, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Strickler, J.H.; Nakamura, Y.; Shitara, K.; Janjigian, Y.Y.; Barzi, A.; Bekaii-Saab, T.S.; Lenz, H.-J.; Chung, H.C.C.; Tabernero, J.; et al. MOUNTAINEER-02: Phase 2/3 Study of Tucatinib, Trastuzumab, Ramucirumab, and Paclitaxel in Previously Treated HER2+ Gastric or Gastroesophageal Junction Adenocarcinoma—Trial in Progress. J. Clin. Oncol. 2022, 40, TPS371. [Google Scholar] [CrossRef]
- Marofi, F.; Motavalli, R.; Safonov, V.A.; Thangavelu, L.; Yumashev, A.V.; Alexander, M.; Shomali, N.; Chartrand, M.S.; Pathak, Y.; Jarahian, M.; et al. CAR T Cells in Solid Tumors: Challenges and Opportunities. Stem Cell Res. Ther. 2021, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Tong, C.; Wang, Y.; Gao, Y.; Dai, H.; Guo, Y.; Zhao, X.; Wang, Y.; Wang, Z.; Han, W.; et al. Effective and Persistent Antitumor Activity of HER2-Directed CAR-T Cells against Gastric Cancer Cells in Vitro and Xenotransplanted Tumors in Vivo. Protein Cell 2018, 9, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Helsen, C.W.; Hammill, J.A.; Lau, V.W.C.; Mwawasi, K.A.; Afsahi, A.; Bezverbnaya, K.; Newhook, L.; Hayes, D.L.; Aarts, C.; Bojovic, B.; et al. The Chimeric TAC Receptor Co-Opts the T Cell Receptor Yielding Robust Anti-Tumor Activity without Toxicity. Nat. Commun. 2018, 9, 3049. [Google Scholar] [CrossRef]
- Schlechter, B.L.; Olson, D.; George, M.A.; Saibil, S.; Giordano, A.; Bouvier, R.; Gavriliuc, M.; Pieke, B.; Gruber, K.; Lichtenstein, E.; et al. A Phase I/II Trial Investigating Safety and Efficacy of Autologous TAC01-HER2 in Relapsed or Refractory Solid Tumors. J. Clin. Oncol. 2023, 41, 2519. [Google Scholar] [CrossRef]
- Eralp, Y.; Ates, U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines 2023, 11, 1545. [Google Scholar] [CrossRef]
- Wiedermann, U.; Garner-Spitzer, E.; Chao, Y.; Maglakelidze, M.; Bulat, I.; Dechaphunkul, A.; Arpornwirat, W.; Charoentum, C.; Yen, C.-J.; Yau, T.C.; et al. Clinical and Immunologic Responses to a B-Cell Epitope Vaccine in Patients with HER2/Neu-Overexpressing Advanced Gastric Cancer—Results from Phase Ib Trial IMU.ACS.001. Clin. Cancer Res. 2021, 27, 3649–3660. [Google Scholar] [CrossRef]
- Maglakelidze, M.; Ryspayeva, D.E.; Andric, Z.; Petrovic, Z.; Bulat, I.; Nikolic, I.; Nagarkar, R.; Wiedermann, U.; Blumenstein, B.A.; Chong, L.M.O.; et al. HERIZON: A Phase 2 Study of HER-Vaxx (IMU-131), a HER2-Targeting Peptide Vaccine, plus Standard of Care Chemotherapy in Patients with HER2-Overexpressing Metastatic or Advanced Gastric/GEJ Adenocarcinoma—Overall Survival Analysis. J. Clin. Oncol. 2023, 41, 289. [Google Scholar] [CrossRef]
- Jung, M.; Lee, J.B.; Kim, H.S.; Kwon, W.S.; Kim, H.O.; Kim, S.; Park, M.; Kim, W.; Choi, K.-Y.; Oh, T.; et al. First-in-Human Phase 1 Study of a B Cell– and Monocyte-Based Immunotherapeutic Vaccine against HER2-Positive Advanced Gastric Cancer. Cancer Res. Treat. 2024, 56, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Kauder, S.E.; Kuo, T.C.; Harrabi, O.; Chen, A.; Sangalang, E.; Doyle, L.; Rocha, S.S.; Bollini, S.; Han, B.; Sim, J.; et al. ALX148 Blocks CD47 and Enhances Innate and Adaptive Antitumor Immunity with a Favorable Safety Profile. PLoS ONE 2018, 13, e0201832. [Google Scholar] [CrossRef]
- Lakhani, N.J.; Chow, L.Q.M.; Gainor, J.F.; LoRusso, P.; Lee, K.-W.; Chung, H.C.; Lee, J.; Bang, Y.-J.; Hodi, F.S.; Kim, W.S.; et al. Evorpacept Alone and in Combination with Pembrolizumab or Trastuzumab in Patients with Advanced Solid Tumours (ASPEN-01): A First-in-Human, Open-Label, Multicentre, Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol. 2021, 22, 1740–1751. [Google Scholar] [CrossRef]
- D’Huyvetter, M.; Vos, J.D.; Caveliers, V.; Vaneycken, I.; Heemskerk, J.; Duhoux, F.P.; Fontaine, C.; Vanhoeij, M.; Windhorst, A.D.; van der Aa, F.; et al. Phase I Trial of 131I-GMIB-Anti-HER2-VHH1, a New Promising Candidate for HER2-Targeted Radionuclide Therapy in Breast Cancer Patients. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2021, 62, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kang, S.K.; Kwon, W.S.; Jeong, I.; Kim, T.S.; Yu, S.Y.; Cho, S.W.; Chung, H.C.; Rha, S.Y. Novel HER2-Targeted Therapy to Overcome Trastuzumab Resistance in HER2-Amplified Gastric Cancer. Sci. Rep. 2023, 13, 22648. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Hofheinz, R.D.; Pauligk, C.; Kopp, H.-G.; Haag, G.M.; Luley, K.B.; Meiler, J.; Homann, N.; Lorenzen, S.; Schmalenberg, H.; et al. Histopathological Regression after Neoadjuvant Docetaxel, Oxaliplatin, Fluorouracil, and Leucovorin versus Epirubicin, Cisplatin, and Fluorouracil or Capecitabine in Patients with Resectable Gastric or Gastro-Oesophageal Junction Adenocarcinoma (FLOT4-AIO): Results from the Phase 2 Part of a Multicentre, Open-Label, Randomised Phase 2/3 Trial. Lancet Oncol. 2016, 17, 1697–1708. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative Chemotherapy with Fluorouracil plus Leucovorin, Oxaliplatin, and Docetaxel versus Fluorouracil or Capecitabine plus Cisplatin and Epirubicin for Locally Advanced, Resectable Gastric or Gastro-Oesophageal Junction Adenocarcinoma (FLOT4): A Randomised, Phase 2/3 Trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Hofheinz, R.; Hegewisch-Becker, S.; Kunzmann, V.; Thuss-Patience, P.; Fuchs, M.; Homann, N.; Graeven, U.; Schulte, N.; Merx, K.; Pohl, M.; et al. Trastuzumab in Combination with 5-fluorouracil, Leucovorin, Oxaliplatin and Docetaxel as Perioperative Treatment for Patients with Human Epidermal Growth Factor Receptor 2-positive Locally Advanced Esophagogastric Adenocarcinoma: A Phase II Trial of the Arbeitsgemeinschaft Internistische Onkologie Gastric Cancer Study Group. Int. J. Cancer 2021, 149, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, S.; Thuss-Patience, P.; Al-Batran, S.E.; Lordick, F.; Haller, B.; Schuster, T.; Pauligk, C.; Luley, K.; Bichev, D.; Schumacher, G.; et al. Impact of Pathologic Complete Response on Disease-Free Survival in Patients with Esophagogastric Adenocarcinoma Receiving Preoperative Docetaxel-Based Chemotherapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2068–2073. [Google Scholar] [CrossRef] [PubMed]
- Blum Murphy, M.; Xiao, L.; Patel, V.R.; Maru, D.M.; Correa, A.M.; G Amlashi, F.; Liao, Z.; Komaki, R.; Lin, S.H.; Skinner, H.D.; et al. Pathological Complete Response in Patients with Esophageal Cancer after the Trimodality Approach: The Association with Baseline Variables and Survival-The University of Texas MD Anderson Cancer Center Experience. Cancer 2017, 123, 4106–4113. [Google Scholar] [CrossRef] [PubMed]
- Soror, T.; Kho, G.; Zhao, K.-L.; Ismail, M.; Badakhshi, H. Impact of Pathological Complete Response Following Neoadjuvant Chemoradiotherapy in Esophageal Cancer. J. Thorac. Dis. 2018, 10, 4069–4076. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Haag, G.M.; Ettrich, T.J.; Borchert, K.; Kretzschmar, A.; Teschendorf, C.; Siegler, G.M.; Ebert, M.; Goekkurt, E.; Welslau, M.K.; et al. 1421MO Final Results and Subgroup Analysis of the PETRARCA Randomized Phase II AIO Trial: Perioperative Trastuzumab and Pertuzumab in Combination with FLOT versus FLOT Alone for HER2 Positive Resectable Esophagogastric Adenocarcinoma. Ann. Oncol. 2020, 31, S899. [Google Scholar] [CrossRef]
- Wagner, A.D.; Grabsch, H.I.; Mauer, M.; Fumagalli Romario, U.; Kang, Y.-K.; Bouche, O.; Lorenzen, S.; Moehler, M.H.; Thuss-Patience, P.C.; Elme, A.; et al. Integration of Trastuzumab (T), with or without Pertuzumab (P), into Perioperative Chemotherapy (CT) of HER-2 Positive Gastric (GC) and Esophagogastric Junction Cancer (EGJC): First Results of the EORTC 1203 INNOVATION Study, in Collaboration with the Korean Cancer Study Group, and the Dutch Upper GI Cancer Group. J. Clin. Oncol. 2023, 41, 4057. [Google Scholar] [CrossRef]
- Wang, F.-H.; Zhang, X.-T.; Li, Y.-F.; Tang, L.; Qu, X.-J.; Ying, J.-E.; Zhang, J.; Sun, L.-Y.; Lin, R.-B.; Qiu, H.; et al. The Chinese Society of Clinical Oncology (CSCO): Clinical Guidelines for the Diagnosis and Treatment of Gastric Cancer, 2021. Cancer Commun. Lond. Engl. 2021, 41, 747–795. [Google Scholar] [CrossRef] [PubMed]
- Japanese Gastric Cancer Association Japanese Gastric Cancer Treatment Guidelines 2021 (6th Edition). Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2023, 26, 1–25. [CrossRef]
- Tokunaga, M.; Machida, N.; Mizusawa, J.; Yabusaki, H.; Yasui, H.; Hirao, M.; Watanabe, M.; Yasuda, T.; Kinoshita, T.; Imamura, H.; et al. A Randomized Phase II Trial of Preoperative Chemotherapy of S-1/CDDP with or without Trastuzumab Followed by Surgery in HER2 Positive Advanced Gastric or Esophagogastric Junction Adenocarcinoma with Extensive Lymph Node Metastasis: Japan Clinical Oncology Group Study JCOG1301C (Trigger Study). J. Clin. Oncol. 2022, 40, 285. [Google Scholar] [CrossRef]
- Shitara, K.; Lordick, F.; Bang, Y.-J.; Enzinger, P.C.; Ilson, D.H.; Shah, M.A.; Van Cutsem, E.; Xu, R.; Aprile, G.; Xu, J.; et al. Zolbetuximab + mFOLFOX6 as First-Line (1L) Treatment for Patients (Pts) Withclaudin-18.2+ (CLDN18.2+)/HER2− Locally Advanced (LA) Unresectable or Metastatic Gastric or Gastroesophageal Junction (mG/GEJ) Adenocarcinoma: Primary Results from Phase 3 SPOTLIGHT Study. J. Clin. Oncol. 2023, 41, LBA292. [Google Scholar] [CrossRef]
- Lordick, F.; Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.-J.; Enzinger, P.C.; Ilson, D.H.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. 134MO Updated Efficacy and Safety Results from Phase III GLOW Study Evaluating Zolbetuximab + CAPOX as First-Line (1L) Treatment for Patients with Claudin-18 Isoform 2-Positive (CLDN18.2+), HER2−, Locally Advanced (LA) Unresectable or Metastatic Gastric or Gastroesophageal Junction (mG/GEJ) Adenocarcinoma. Ann. Oncol. 2023, 34, S1524. [Google Scholar] [CrossRef]
Study | n | Phase | Therapy | Primary Endpoint | Remark |
---|---|---|---|---|---|
DESTINY-Gastric01 | 187 | II | T-DXd vs. chemotherapy | ORR 51% vs. 14% (p < 0.001) | SOC |
T-ACT | 91 | II | trastuzumab + pacli vs. pacli | PFS 3.7 vs. 3.2 mo (ns) | unsuccessful |
TyTan | 261 | III | lapatinib + pacli vs. pacli | OS 11 vs. 8.9 mo (ns) | unsuccessful (see below) |
GATSBY | 345 | III | T-DM1 vs. taxane | OS 7.9 vs. 8.6 mo | unsuccessful (see below) |
Substance | Target | Remark |
---|---|---|
Monoclonal antibodies | ||
Trastuzumab Pertuzumab Margetuximab | extracellular domain IV of HER2 extracellular domain II of HER2 extracellular domain IV of HER2 | |
HER2/HER3 dimerization modified FcR | ||
Bispecific antibodies | ||
Zanidatamab KN026 | Extracellular domain II and IV Extracellular domain II and IV | |
Antibody–drug conjugate (ADC) | ||
Trastuzumab-Deruxtecan | HER2 | exatecan-conjugated |
Trastuzumab-Emtansin | HER2 | emtansine-conjugated |
Disitamab-vedotin | HER2 | MMAE-conjugated |
Tyrosine kinase inhibitors (TKIs) | ||
Lapatinib | HER2/EGFR | Small molecule |
Tucatinib | Highly selective for HER2 | Small molecule |
Afatinib | Irreversible Pan-HER (HER1, 2 and 4) | Small molecule |
Neratinib | Irreversible Pan-HER (HER1, 2 and 4) | Small molecule |
Others | ||
Evorpacept/ ALX148 | CD47 | Fusion protein |
Study | Phase | Drug | Therapy Line | Remark | Status | Primary Endpoint |
---|---|---|---|---|---|---|
Monoclonal Antibodies | ||||||
NCT05555251 CONTRAST | Ib/II | BI-1607 | >2 L | Fc-Engineered mAB against CD32b + T | recruiting | safety, dose escalation |
NCT04908813 | II | HLX22 | 1 L | + T + CAPOX vs. placebo | recruiting | PFS, ORR |
Bispecific Antibodies | ||||||
NCT03929666 | II | Zanidatamab | 1 L | + CTx | recruiting | safety, ORR |
NCT05152147 HERIZON-GEA-01 | III | Zanidatamab | 1 L | + CAPOX/ FP ± Tislelizumab vs. T + CAPOX/ FP | recruiting | PFS, OS |
NCT05427383 | II/III | KN026 | ≥2 L | + Pacli/ Docetaxel/ Irinotecan vs. placebo | recruiting | PFS, OS |
NCT05190445 | II | Cinrebafusp alfa | ≥2 L | ± Ram + Pacli ± Tucatinib | active | ORR |
Tyrosine kinase inhibitors (TKIs) | ||||||
NCT04499924 MOUNTAINEER02 | II/III | Tucatinib | ≥2 L | ± T + Ram + Pacli vs. placebo + Ram + Pacli | active | OS |
NCT04430738 | Ib/II | Tucatinib | 1 L | + T ± FOLFOX/CAPOX, ± Pem | recruiting | dose escalation |
NCT06109467 | II | Neratinib | 1 L | + T + Pem + FOLFOX | recruiting | ORR |
Antibody–drug conjugate (ADC) | ||||||
NCT04379596 Destiny-Gastric03 | Ib/II | Trastuzumab Deruxtecan | 1 L | ± CTx ± ICI | recruiting | dose escalation (I), ORR (II) |
NCT04704934 Destiny-Gastric04 | III | Trastuzumab Deruxtecan | 2 L | vs. Ram + Pacli | recruiting | OS |
NCT06078982 | I | Disitamab Vedotin (RC48) | ≥2 L | + Toripalimab HER2-low | recruiting | ORR |
NCT05980481 | II/III | Disitamab Vedotin (RC48) | 1 L | + Toripalimab ± T ± CAPOX | recruiting | safety |
NCT05141747 | II | MRG002 | ≥2 L | HER2-positive and low | recruiting | ORR |
NCT04492488 | I/II | MRG002 | last line | recruiting | dose escalation, ORR | |
NCT05671822 | Ib/II | SHR-A1811 (Trastuzumab Rezetecan) | ≥2 L | ± ICI ± X ± CAPOX | recruiting | dose escalation, ORR |
NCT03821233 | I | Zanidatamab Zovodotin (ZW49) | last line | HER2-positive advanced solid tumors | active | safety, tolerability |
NCT03255070 | I | ARX788 | last line | HER2-positive advanced solid tumors | active | safety, ORR |
Immune modulation | ||||||
NCT03740256 VISTA | I | HER2 CAR plus CAdVEC (oncolytic adenovirus) | last line | basket trial HER2-positive solid tumors | recruiting | safety |
NCT04511871 | I | HER2 CAR | last line | HER2-positive solid tumors | recruiting | dose escalation |
NCT04660929 | I | HER2 CAR macrophage | last line | HER2-positive solid tumors ± Pem | recruiting | safety |
NCT04727151 TACTIC-2 | I/II | TAC T cells (TAC01-HER2) | ≥2 L | HER2-positive solid tumors ± Pem | recruiting | safety (I) ORR, PFS, OS (II) |
NCT05315830 | I | HER2 tumor vaccine | further lines | ± P/ F/ X | recruiting | safety |
NCT05311176 nextHERIZON | II | IMU-131 (HER-Vaxx) | ≥2 L | ± Ram + Pacli ± Pem | recruiting | safety, ORR |
NCT05207722 | I/II | CYNK-101 | 1 L | + Pem + T + CTx | active | dose escalation |
NCT05002127 ASPEN-06 | II/III | Evorpacept (ALX148) | ≥2 L | + T + Ram + Pacli vs. Ram + Pacli ± T | recruiting | ORR (II) OS (III) |
Divers | ||||||
NCT04467515 | I/II | CAM-H2 | ≥2 L | HER2-directed radioligand | recruiting | ORR |
Study | Phase | Intervention | Endpoint |
---|---|---|---|
NCT05504720 PHERFLOT | II | trastuzumab plus pembrolizumab plus FLOT | DFS, pCR |
NCT05715931 | II | trastuzumab plus toripalimab plus FLOT | pCR |
NCT04819971 | II | trastuzumab plus tislelizumab plus S-1/oxaliplatin/docetaxel | pCR |
NCT05771584 CONERSTONE3 | II | AST-301 vaccine after standard adjuvant treatment (Taiwan) in HER2 overexpression/low | Safety, immunologic efficacy |
NCT05034887 | II | T-DXd neoadjuvant in HER2 overexpression/low | MPR |
NCT06155383 | II | Disitamab vedotin plus toripalimab ± XELOX vs. XELOX | pCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheck, M.K.; Hofheinz, R.D.; Lorenzen, S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers 2024, 16, 1336. https://doi.org/10.3390/cancers16071336
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers. 2024; 16(7):1336. https://doi.org/10.3390/cancers16071336
Chicago/Turabian StyleScheck, Magdalena K., Ralf D. Hofheinz, and Sylvie Lorenzen. 2024. "HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments" Cancers 16, no. 7: 1336. https://doi.org/10.3390/cancers16071336
APA StyleScheck, M. K., Hofheinz, R. D., & Lorenzen, S. (2024). HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers, 16(7), 1336. https://doi.org/10.3390/cancers16071336