Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network
Abstract
:Simple Summary
Abstract
1. Introduction
2. Related Work
2.1. Auxiliary Network
2.2. Meta Learning
3. Proposed Method
3.1. System Architecture
3.2. STMLAN
3.3. Training
4. Experiments
4.1. Classification Performance
4.2. Ablation Study
Model | ACC (%) | Dice/p-Value |
---|---|---|
CNN [41] | 96.00 | 94.11/0.00 |
BHCNet [12] | 97.36 | 95.31/0.00 |
ResNet [42] | 93.40 | 90.13/0.00 |
NucDeep [43] | 96.21 | 93.21/0.00 |
ResHist [44] | 90.83 | 88.01/0.00 |
myResNet-34 [45] | 91.67 | 89.72/0.00 |
STMLAN | 98.32 | 96.35/0.00 |
Model | ACC (%) | F1 | MCC | Kappa | G-Mean |
---|---|---|---|---|---|
CNN [41] | 80.30 | 0.82 | 0.77 | 0.79 | 0.76 |
BHCNet [12] | 88.81 | 0.91 | 0.86 | 0.86 | 0.84 |
ResNet [42] | 78.84 | 0.80 | 0.76 | 0.77 | 0.75 |
NucDeep [43] | 68.30 | 0.70 | 0.66 | 0.68 | 0.65 |
STMLAN | 90.66 | 0.93 | 0.88 | 0.90 | 0.87 |
M-Net | ResNet | SE-ResNet | DenseNet | ResNeXt | |
---|---|---|---|---|---|
Aux-Net | |||||
x | 87.84 | 87.35 | 88.75 | 89.48 | |
O-SVM [26] | 89.18 | 88.34 | 89.27 | 90.66 | |
LPN [25] | 88.98 | 87.81 | 89.25 | 90.32 | |
GNN [32] | 88.94 | 88.10 | 88.46 | 89.92 |
Model | Silhouette Score |
---|---|
BHCNet [35] | 0.135 |
STMLAN w/o auxiliary network | 0.145 |
STMLAN | 0.178 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F.; et al. Global Cancer Observatory. Cancer Today 2018, 23, 323–326. [Google Scholar]
- Barkana, B.D.; El-Sayed, A.; Khaled, R.H.; Helal, M.; Khaled, H.; Deeb, R.; Pitcher, M.; Pfeiffer, R.; Roubidoux, M.; Schairer, C.; et al. Imaging Modalities in Inflammatory Breast Cancer (IBC) Diagnosis: A Computer-Aided Diagnosis System Using Bilateral Mammography Images. Sensors 2022, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Ilyasova, N.; Demin, N.; Andriyanov, N. Development of a Computer System for Automatically Generating a Laser Photocoagulation Plan to Improve the Retinal Coagulation Quality in the Treatment of Diabetic Retinopathy. Symmetry 2023, 15, 287. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans. Biomed. Eng. 2016, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Kuse, M.; Sharma, T.; Gupta, S. A classification scheme for lymphocyte segmentation in H and E stained histology images. In Recognizing Patterns in Signals, Speech, Images and Videos: ICPR 2010 Contests, Istanbul, Turkey, 23–26 August 2010, Contest Reports; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6388, pp. 235–243. [Google Scholar]
- Dundar, M.M.; Badve, S.; Bilgin, G.; Raykar, V.; Jain, R.; Sertel, O.; Gurcan, M.N. Computerized Classification of Intraductal Breast Lesions Using Histopathological Images. IEEE Trans. Biomed. Eng. 2011, 58, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Tuszynski, J.A. Automatic prediction of tumour malignancy in breast cancer with fractal dimension. Open Sci. 2016, 3, 160558. [Google Scholar] [CrossRef] [PubMed]
- Boucheron, L.E.; Manjunath, B.S.; Harvey, N.R. Use of Imperfectly Segmented Nuclei in the Classification of Histopathology Images of Breast Cancer. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; IEEE: Piscataway, NJ, USA; pp. 666–669. [Google Scholar] [CrossRef]
- Kahya, M.A.; Al-Hayani, W.; Algamal, Z.Y. Classification of breast cancer histopathology images based on adaptive sparse support vector machine. J. Appl. Math. Bioinform. 2017, 7, 49. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ, USA; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Jannesari, M.; Habibzadeh, M.; Aboulkheyr, H.; Khosravi, P.; Elemento, O.; Totonchi, M.; Hajirasouliha, I. Breast Cancer Histopathological Image Classification: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; IEEE: Piscataway, NJ, USA; pp. 2405–2412. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, L.; Zhang, H.; Xiao, X. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLoS ONE 2019, 14, e0214587. [Google Scholar] [CrossRef]
- Byrne, R.M.; Evans, J.S.B.; Newstead, S.E. Human Reasoning: The Psychology of Deduction; Psychology Press: London, UK, 1993. [Google Scholar]
- Pan, X.; Li, L.; Yang, H.; Liu, Z.; Yang, J.; Zhao, L.; Fan, Y. Accurate Segmentation of Nuclei in Pathological Images via Sparse Reconstruction and Deep Convolutional Networks. Neurocomputing 2017, 229, 88–99. [Google Scholar] [CrossRef]
- Pan, X.; Yang, D.; Li, L.; Liu, Z.; Yang, H.; Cao, Z.; He, Y.; Ma, Z.; Chen, Y. Cell Detection in Pathology and Microscopy Images with Multi-Scale Fully Convolutional Neural Networks. World Wide Web J. Biol. 2018, 21, 1721–1743. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA; pp. 5987–5995. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA; pp. 248–255. [Google Scholar] [CrossRef]
- Lee, K.; Maji, S.; Ravichandran, A.; Soatto, S. Meta-Learning with Differentiable Convex Optimization. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10649–10657. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, Y.; Jiang, Z.L.; Wang, X.; Zhang, C.; Zhang, Q. Multi-Task Deep Convolutional Neural Network for Cancer Diagnosis. Neurocomputing 2019, 348, 66–73. [Google Scholar] [CrossRef]
- Stenning, K.; van Lambalgen, M. Human Reasoning and Cognitive Science; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Munoz-Merino, P.J.; Kloos, C.D.; Munoz-Organero, M. Enhancement of Student Learning Through the Use of a Hinting Computer E-Learning System and Comparison with Human Teachers. IEEE Trans. Educ. 2011, 54, 164–167. [Google Scholar] [CrossRef]
- Abu-Mostafa, Y.S. Learning from Hints in Neural Networks. J. Complex. 1990, 6, 192–198. [Google Scholar] [CrossRef]
- Suddarth, S.C.; Kergosien, Y.L. Rule-Injection Hints as a Means of Improving Network Performance and Learning Time. In Proceedings of the EURASIP Workshop 1990 on Neural Networks, Sesimbra, Portugal, 15–17 February 1990; Springer: Berlin/Heidelberg, Germany, 1990; pp. 120–129. [Google Scholar]
- Pan, S.; Yang, Q. A survey on transfer learning. Knowl. Data Eng. IEEE Trans. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Rusu, A.A.; Rabinowitz, N.C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive Neural Networks. arXiv 2016. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep Domain Confusion: Maximizing for Domain Invariance. arXiv 2014. [Google Scholar] [CrossRef]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar] [CrossRef]
- Bazi, Y.; Al Rahhal, M.M.; Alhichri, H.; Alajlan, N. Simple Yet Effective Fine-Tuning of Deep CNNs Using an Auxiliary Classification Loss for Remote Sensing Scene Classification. Remote Sens. 2019, 11, 2908. [Google Scholar] [CrossRef]
- Jin, G.; Taniguchi, R.-I.; Qu, F. Auxiliary Detection Head for One-Stage Object Detection. IEEE Access 2020, 8, 85740–85749. [Google Scholar] [CrossRef]
- Yu, D.; Duan, H.; Fang, J.; Zeng, B. Predominant Instrument Recognition Based on Deep Neural Network with Auxiliary Classification. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 852–861. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. arXiv 2017. [Google Scholar]
- Ravi, S.; Larochelle, H. Optimization as a Model for Few-Shot Learning. In Proceedings of the Internation Conference Learn Represent, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical Networks for Few-Shot Learning. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Piscataway, NJ, USA; pp. 7132–7141. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA; pp. 2261–2269. [Google Scholar] [CrossRef]
- Amos, B.; Kolter, J.Z. Optnet: Differentiable Optimization as a Layer in Neural Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S.J.; Yang, Y. Learning to Propagate Labels: Transductive Propagation Network for Few-Shot Learning. arXiv 2018. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016. [Google Scholar] [CrossRef]
- Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks. IEEE Access 2018, 6, 24680–24693. [Google Scholar] [CrossRef]
- Al-Haija, Q.A.; Adebanjo, A. Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, Canada, 9–12 September 2020; IEEE: Piscataway, NJ, USA; pp. 1–7. [Google Scholar] [CrossRef]
- George, K.; Sankaran, P. Computer Assisted Recognition of Breast Cancer in Biopsy Images via Fusion of Nucleus-Guided Deep Convolutional Features. Comput. Methods Programs Biomed. 2020, 194, 105531. [Google Scholar] [CrossRef] [PubMed]
- Gour, M.; Jain, S.; Sunil Kumar, T. Residual Learning Based CNN for Breast Cancer Histopathological Image Classification. Int. J. Imaging Syst. Technol. 2020, 30, 621–635. [Google Scholar] [CrossRef]
- Wakili, M.A.; Shehu, H.A.; Sharif, M.H.; Sharif, M.H.U.; Umar, A.; Kusetogullari, H.; Ince, I.F.; Uyaver, S. Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning. Comput. Intell. Neurosci. 2022, 2022, 8904768. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-S.; Wu, W.-K. Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network. Cancers 2024, 16, 1362. https://doi.org/10.3390/cancers16071362
Lee J-S, Wu W-K. Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network. Cancers. 2024; 16(7):1362. https://doi.org/10.3390/cancers16071362
Chicago/Turabian StyleLee, Jiann-Shu, and Wen-Kai Wu. 2024. "Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network" Cancers 16, no. 7: 1362. https://doi.org/10.3390/cancers16071362
APA StyleLee, J. -S., & Wu, W. -K. (2024). Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network. Cancers, 16(7), 1362. https://doi.org/10.3390/cancers16071362