Advances in the Development of Positron Emission Tomography Tracers for Improved Detection of Differentiated Thyroid Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prostate-Specific Membrane Antigen-Based Radiotracers for Differentiated Thyroid Cancer
3. Fibroblast Activation Protein Inhibitor-Based Radiotracers for Differentiated Thyroid Cancer
4. Arg-Gly-Asp-Based Radiotracers for Differentiated Thyroid Cancer
5. [18F]Tetrafluoroborate
6. Discussion
Tracer Group | Tracer | Study | Indication | Number of Patients |
---|---|---|---|---|
PSMA | 68Ga-PSMA-11 | Verburg et al. (2015) [9] | RAI-R | 1 |
Taywade et al. (2016) [13] | TENIS | 1 | ||
Lutje et al. (2017) [11] | Iodine-negative and FDG-positive metastasized DTC | 6 | ||
Verma et al. (2018) [12] | DTC metastases + find patients suitable for PSMA-targeted radionuclide therapy | 10 | ||
Lawhn-Heath et al. (2020) [46] | Metastatic DTC | 7 | ||
De Vries et al. (2020) [16] | RAI-R | 5 | ||
Verma et al. (2021) [12] | TENIS, find metastatic lesions | 9 | ||
Pitalua-Cortes et al. (2021) [15] | Metastatic DTC | 10 | ||
Shi et al. (2023) [17] | RAI-R | 40 | ||
18F-DCFPyL | Singh et al. (2018) [18] | NS | 1 | |
Santhanam et al. (2020) [5] | Elevated Tg | 2 | ||
FAPI | 68Ga-FAPI | Fu et al. (2021) [24] | RAI-R metastatic lesions | 1 |
Fu et al. (2021) [24] | TENIS syndrome | 1 | ||
Wu et al. (2021) [25] | TENIS syndrome | 1 | ||
68Ga-DOTA.SA.FAPi | Ballal et al. (2022) [26] | RAI-R metastatic lesions | 117 | |
18F-FAPI-42, | Mu et al. (2023) [27] | DTC with elevated Tg or anti-Tg antibodies | 27 | |
18F-FAPI-46 | Nourbakhsh et al. (2024) [28] | TENIS syndrome | 14 | |
68Ga-DOTA-FAPI-04 | Chen et al. (2022) [29] | RAI-R metastatic lesions | 24 | |
Tatar et al. (2023) [30] | DTC metastases | 1 | ||
68Ga-DOTA-2P(FAPI)2 | Zhao et al. (2022) [47] | PTC with LNM | 1 | |
RGD | 18F-AIF-NOTA-PRGD2 | Cheng et al. (2014) [33] | Lymph node metastases of DTC | 20 |
68Ga-DOTA-RGD2 | Parihar et al. (2020) [34] | RAI-R, patients with negative post-therapy 131I-scan. | 44 | |
TFB | 18F-TFB | O’Doherty et al. (2017) [48] | DTC | 5 |
Samnick et al. (2018) [43] | DTC + LNM | 9 | ||
Dittmann et al. (2020) [45] | Local recurrence + metastases | 25 |
Indication Thyroid Cancer | Tracer | Results | Conclusions |
---|---|---|---|
Recurrent DTC | 18F-TFB | 52% detection rate (131I WBS detection rate = 12%) [45] | 18F-TFB PET detected local recurrence or metastases of DTC in significantly more patients than conventional 131I-dxWBS and SPECT-CT. |
Detection of DTC metastases | 68Ga-PSMA-11 | 53.1% detection rate (FDG = 93.8% detection rate) [46]; 100% detection rate (Pitalua-Cortes, Garcia-Perez et al., 2021); 100% detection rate [10]; 60% detection rate (FDG = 90% detection rate) [17] | 68Ga-PSMA-11 PET/CT can detect thyroid cancer metastases, but its detection rate is lower than that of 18F-FDG PET/CT. |
68Ga-DOTA.SA.FAPi | 95.4% detection rate lymph nodes (FDG = 86.6%) [49] | 68Ga-DOTA.SA.FAPi can detect lymph nodal, liver, bowel, and brain metastases better than 18F-FDG in patients with RAI-R DTC. | |
68Ga-DOTA-FAPI-04 | 87.5% detection rate [29] | 68Ga-DOTA-FAPI-04 PET/CT has a promising detection rate for RAI-R DTC metastasis. | |
68Ga-DOTA-RGD2 | 86.4% diagnostic accuracy (FDG = 75% diagnostic accuracy) [34] | 68Ga-DOTA-RGD2 PET/CT showed similar sensitivity to, but higher specificity and overall accuracy than 18F-FDG PET/CT in detection of lesions in RAI-R DTC. | |
TENIS | 68Ga-FAPI | 100% detection rate [50] | First case of TENIS with FAPI-avid metastatic lesions. |
68Ga-PSMA-11 | 100% detection rate [13]; 64.28% detection rate (FDG = 78.57% detection rate) [12] | 68Ga-PSMA-11 PET/CT demonstrates PSMA expression in TENIS patients with lesions being localized to the bones, lungs, mediastinal, and left supraclavicular lymph nodes, brain, and bilateral lung nodules. | |
Lymph node metastases of DTC | 18F-AIF-NOTA-PRGD2 | FDG > RGD [33] | No correlation was found between the uptake of 18F-AIF-NOTA-PRGD2 and 18F-FDG, which may suggest the two tracers provide complementary information in DTC lesions. |
18F-DCFPyL | 100% detection rate [5] | 18F-DCFPyl may prove useful for the localization of metastases in patients with metastatic RAI-refractory DTC. | |
18F-TFB | 100% detection rate [43] | 18F-TFB PET was not inferior to 124I-PET in detecting thyroid cancer and its metastases and was able to detect 124I-PET-negative viable differentiated thyroid cancer metastases. |
Author Contributions
Funding
Conflicts of Interest
References
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Avram, A.M.; Giovanella, L.; Greenspan, B.; Lawson, S.A.; Luster, M.; Van Nostrand, D.; Peacock, J.G.; Ovčariček, P.P.; Silberstein, E.; Tulchinsky, M. SNMMI Procedure Standard/EANM Practice Guideline for Nuclear Medicine Evaluation and Therapy of Differentiated Thyroid Cancer: Abbreviated Version. Soc. Nucl. Med. 2022, 63, 15N–35N. [Google Scholar]
- Heitkötter, B.; Steinestel, K.; Trautmann, M.; Grünewald, I.; Barth, P.; Gevensleben, H.; Bögemann, M.; Wardelmann, E.; Hartmann, W.; Rahbar, K. Neovascular PSMA expression is a common feature in malignant neoplasms of the thyroid. Oncotarget 2018, 9, 9867. [Google Scholar] [CrossRef]
- Bychkov, A.; Vutrapongwatana, U.; Tepmongkol, S.; Keelawat, S. PSMA expression by microvasculature of thyroid tumors—Potential implications for PSMA theranostics. Sci. Rep. 2017, 7, 5202. [Google Scholar] [CrossRef]
- Santhanam, P.; Russell, J.; Rooper, L.M.; Ladenson, P.W.; Pomper, M.G.; Rowe, S.P. The prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL detects tumor neovasculature in metastatic, advanced, radioiodine-refractory, differentiated thyroid cancer. Med. Oncol. 2020, 37, 98. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; di Tommaso, L.; Kirienko, M.; Piombo, C.; Erreni, M.; Lania, A.G.; Erba, P.A.; Antunovic, L.; Chiti, A. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res. 2019, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Ciappuccini, R.; Saguet-Rysanek, V.; Giffard, F.; Licaj, I.; Dorbeau, M.; Clarisse, B.; Poulain, L.; Bardet, S. PSMA expression in differentiated thyroid cancer: Association with radioiodine, 18FDG uptake, and patient outcome. J. Clin. Endocrinol. Metab. 2021, 106, 3536–3545. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Shi, Y.R.; Xia, Z.; Xu, L.; Li, W.B.; Pang, H.; Wang, Z.J. The clinical signification and application value of [68Ga] Ga-PSMA imaging in thyroid malignancy. Endocrine, 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Verburg, F.A.; Krohn, T.; Heinzel, A.; Mottaghy, F.M.; Behrendt, F.F. First evidence of PSMA expression in differentiated thyroid cancer using [68 Ga] PSMA-HBED-CC PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1622–1623. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Malhotra, G.; Agrawal, R.; Sonavane, S.; Meshram, V.; Asopa, R.V. Evidence of Prostate-Specific Membrane Antigen Expression in Metastatic Differentiated Thyroid Cancer Using 68Ga-PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 2018, 43, e265–e268. [Google Scholar] [CrossRef] [PubMed]
- Lutje, S.; Gomez, B.; Cohnen, J.; Umutlu, L.; Gotthardt, M.; Poeppel, T.D.; Bockisch, A.; Rosenbaum-Krumme, S. Imaging of Prostate-Specific Membrane Antigen Expression in Metastatic Differentiated Thyroid Cancer Using 68Ga-HBED-CC-PSMA PET/CT. Clin. Nucl. Med. 2017, 42, 20–25. [Google Scholar] [CrossRef]
- Verma, P.; Malhotra, G.; Meshram, V.; Chandak, A.; Sonavane, S.; Lila, A.R.; Bandgar, T.R.; Asopa, R.V. Prostate-specific membrane antigen expression in patients with differentiated thyroid cancer with thyroglobulin elevation and negative iodine scintigraphy using 68Ga-PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 2021, 46, e406–e409. [Google Scholar] [CrossRef] [PubMed]
- Taywade, S.K.; Damle, N.A.; Bal, C. PSMA Expression in Papillary Thyroid Carcinoma: Opening a New Horizon in Management of Thyroid Cancer? Clin. Nucl. Med. 2016, 41, e263–e265. [Google Scholar] [CrossRef] [PubMed]
- Lawhn-Heath, C.; Yom, S.S.; Liu, C.; Villanueva-Meyer, J.E.; Aslam, M.; Smith, R.; Narwal, M.; Juarez, R.; Behr, S.C.; Pampaloni, M.H.; et al. Gallium-68 prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) PET for imaging of thyroid cancer: A feasibility study. EJNMMI Res. 2020, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Pitalua-Cortes, Q.; Garcia-Perez, F.O.; Vargas-Ahumada, J.; Gonzalez-Rueda, S.; Gomez-Argumosa, E.; Ignacio-Alvarez, E.; Soldevilla-Gallardo, I.; Torres-Agredo, L. Head-to-Head Comparison of 68Ga-PSMA-11 and 131I in the Follow-Up of Well-Differentiated Metastatic Thyroid Cancer: A New Potential Theragnostic Agent. Front. Endocrinol. 2021, 12, 794759. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.H.; Lodewijk, L.; Braat, A.; Krijger, G.C.; Valk, G.D.; Lam, M.; Borel Rinkes, I.H.M.; Vriens, M.R.; de Keizer, B. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617. EJNMMI Res. 2020, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Feng, Y.; Xu, L.; Li, W.; Guan, L.; Zuo, R.; Liu, S.; Pang, H.; Wang, Z. The value of Gallium-68 prostate-specific membrane antigen ([68Ga] Ga-PSMA-11) PET/CT and 2-[18F] fluoro-2-deoxy-D-glucose (2-[18F] FDG) PET/CT in the detection of thyroid cancer lesions: A prospective head-to-head comparison. Br. J. Radiol. 2023, 20230291. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Horneman, R.; Bsci, N.K.N. More than the prostate: Intrapancreatic accessory spleen 18 and papillary thyroid cancer detected with F-PSMA PET/CT. Hell. J. Nucl. Med. 2018, 21, 145–147. [Google Scholar] [PubMed]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H. 68Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Kirienko, M.; Gelardi, F.; Fiz, F.; Gozzi, N.; Chiti, A. State-of-the-art of FAPI-PET imaging: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4396–4414. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Pu, Y.; Huang, S.; Yang, C.; Yang, F.; Pu, Y.; Li, J.; Chen, L.; Huang, Y. FAPI-PET/CT in Cancer Imaging: A Potential Novel Molecule of the Century. Front. Oncol. 2022, 12, 854658. [Google Scholar] [CrossRef] [PubMed]
- Piscopo, L.; Volpe, F. PET/CT imaging with radiolabeled FAPI: New opportunities for diagnosis and treatment of thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-Y.; Jung, W.-H.; Koo, J.S. Expression of cancer-associated fibroblast-related proteins in thyroid papillary carcinoma. Tumor Biol. 2016, 37, 8197–8207. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Fu, J.; Huang, J.; Pang, Y.; Chen, H. 68Ga-FAPI PET/CT versus 18F-FDG PET/CT for detecting metastatic lesions in a case of radioiodine-refractory differentiated thyroid cancer. Clin. Nucl. Med. 2021, 46, 940–942. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Y.; Liao, T.; Rao, Z.; Gong, W.; Ou, L.; Chen, Y.; Zhang, C. Comparison of the Relative Diagnostic Performance of [68Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT for the Detection of Bone Metastasis in Patients With Different Cancers. Front. Oncol. 2021, 11, 737827. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.; Roesch, F.; Bal, C.; Moon, E. Comparison of diagnostic performance between [68ga]ga-dota.sa.fapi and [18f]f-fdg pet/ct in the diagnosis of various radioiodine resistant thyroid cancers of follicular cell origin. Thyroid 2022, 32, A88–A89. [Google Scholar] [CrossRef]
- Mu, X.; Huang, X.; Jiang, Z.; Li, M.; Jia, L.; Lv, Z.; Fu, W.; Mao, J. [18F] FAPI-42 PET/CT in differentiated thyroid cancer: Diagnostic performance, uptake values, and comparison with 2-[18F] FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, S.; Salehi, Y.; Farzanehfar, S.; Ghaletaki, R.; Kashi, M.B.; Abbasi, M. FAPI PET/CT provides higher uptake and better target to back ground in recurrent and metastatic tumors of patients with Iodine refractory papillary thyroid cancer compared with FDG PET CT. Nukl. Nucl. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, S.; Zhang, J.; Yao, S.; Miao, W. 68Ga-DOTA-FAPI-04 PET/CT imaging in radioiodine-refractory differentiated thyroid cancer (RR-DTC) patients. Ann. Nucl. Med. 2022, 36, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Tatar, G.; Alçın, G.; Fenercioğlu, Ö.E.; Şahin, R.; Çermik, T.F. Findings of I-131 SPECT/CT, 18F-FDG, and 68Ga-FAPI-04 PET/CT Imaging in a Patient Treated with Radioiodine Therapy for Metastatic Papillary Thyroid Carcinoma. Mol. Imaging Radionucl. Ther. 2023, 32, 57. [Google Scholar] [CrossRef] [PubMed]
- Klubo-Gwiezdzinska, J.; Chen, X. Targeting Integrins with Radiolabeled RGD Analogues for Radiotheranostics of Metastatic Radioactive Iodine Nonresponsive Thyroid Cancer: New Avenues in Personalized Medicine. Thyroid 2020, 30, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Feng, F.; Ma, C.; Wang, H. The effect of antagonizing RGD-binding integrin activity in papillary thyroid cancer cell lines. OncoTargets Ther. 2016, 9, 1415–1423. [Google Scholar] [CrossRef]
- Cheng, W.; Wu, Z.; Liang, S.; Fu, H.; Wu, S.; Tang, Y.; Ye, Z.; Wang, H. Comparison of 18F-AIF-NOTA-PRGD2 and 18F-FDG uptake in lymph node metastasis of differentiated thyroid cancer. PLoS ONE 2014, 9, e100521. [Google Scholar] [CrossRef] [PubMed]
- Parihar, A.S.; Mittal, B.R.; Kumar, R.; Shukla, J.; Bhattacharya, A. 68Ga-DOTA-RGD2 Positron Emission Tomography/Computed Tomography in Radioiodine Refractory Thyroid Cancer: Prospective Comparison of Diagnostic Accuracy with 18F-FDG Positron Emission Tomography/Computed Tomography and Evaluation Toward Potential Theranostics. Thyroid 2020, 30, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Jauregui-Osoro, M.; Sunassee, K.; Weeks, A.J.; Berry, D.J.; Paul, R.L.; Cleij, M.; Banga, J.P.; O’Doherty, M.J.; Marsden, P.K.; Clarke, S.E.; et al. Synthesis and biological evaluation of [(18)F]tetrafluoroborate: A PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2108–2116. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisan, A.; Jauregui-Osoro, M.; Shaw, K.; Torres, J.B.; Young, J.D.; Ramakrishnan, N.K.; Jackson, A.; Smith, G.E.; Gee, A.D.; Blower, P.J. [18 F] tetrafluoroborate as a PET tracer for the sodium/iodide symporter: The importance of specific activity. EJNMMI Res. 2016, 6, 34. [Google Scholar] [CrossRef]
- Weeks, A.J.; Jauregui-Osoro, M.; Cleij, M.; Blower, J.E.; Ballinger, J.R.; Blower, P.J. Evaluation of [18F]-tetrafluoroborate as a potential PET imaging agent for the human sodium/iodide symporter in a new colon carcinoma cell line HCT116 expressing hNIS. Nucl. Med. Commun. 2011, 32, 98. [Google Scholar] [CrossRef]
- Diocou, S.; Volpe, A.; Jauregui-Osoro, M.; Boudjemeline, M.; Chuamsaamarkkee, K.; Man, F.; Blower, P.J.; Ng, T.; Mullen, G.E.D.; Fruhwirth, G.O. [18F] tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Sci. Rep. 2017, 7, 946. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Qin, J.; Wang, L.; He, Y.; Tian, C.; Chen, Y.; Huang, P.; Peng, Z. Evaluation of [18F] tetrafluoroborate as a Potential PET Imaging Agent in a Sodium Iodide Symporter-Transfected Cell Line A549 and Endogenous NIS-Expressing Cell Lines MKN45 and K1. Mol. Imaging 2022, 2022, 2676260. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.; Podein, M.; Braun, F.; Weber, W.A.; Choquet, P.; Constantinesco, A.; Mix, M. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of (18)F-Tetrafluoroborate and (18)F-FDG in Mice. J. Nucl. Med. 2017, 58, 1162–1166. [Google Scholar] [CrossRef]
- Jiang, H.; Bansal, A.; Pandey, M.K.; Peng, K.W.; Suksanpaisan, L.; Russell, S.J.; DeGrado, T.R. Synthesis of 18F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6-Glioma Tumor Model. J. Nucl. Med. 2016, 57, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Marti-Climent, J.M.; Collantes, M.; Jauregui-Osoro, M.; Quincoces, G.; Prieto, E.; Bilbao, I.; Ecay, M.; Richter, J.A.; Peñuelas, I. Radiation dosimetry and biodistribution in non-human primates of the sodium/iodide PET ligand [18F]-tetrafluoroborate. EJNMMI Res. 2015, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Samnick, S.; Al-Momani, E.; Schmid, J.S.; Mottok, A.; Buck, A.K.; Lapa, C. Initial Clinical Investigation of [18F]Tetrafluoroborate PET/CT in Comparison to [124I]Iodine PET/CT for Imaging Thyroid Cancer. Clin. Nucl. Med. 2018, 43, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Schmit, N.R.; Koenen, A.R.; Bansal, A.; Pandey, M.K.; Glynn, R.B.; Kemp, B.J.; Delaney, K.L.; Dispenzieri, A.; Bakkum-Gamez, J.N.; et al. Safety, pharmacokinetics, metabolism and radiation dosimetry of (18)F-tetrafluoroborate ((18)F-TFB) in healthy human subjects. EJNMMI Res. 2017, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, M.; Gonzalez Carvalho, J.M.; Rahbar, K.; Schafers, M.; Claesener, M.; Riemann, B.; Seifert, R. Incremental diagnostic value of [(18)F]tetrafluoroborate PET-CT compared to [(131)I]iodine scintigraphy in recurrent differentiated thyroid cancer. Eur J. Nucl. Med. Mol. Imaging 2020, 47, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Lawhn-Heath, C.; Flavell, R.; Chuang, E.; Liu, C. Failure of iodine uptake in microscopic pulmonary metastases after recombinant human thyroid-stimulating hormone stimulation. World J. Nucl. Med. 2020, 19, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Niu, B.; Fang, J.; Pang, Y.; Li, S.; Xie, C.; Sun, L.; Zhang, X.; Guo, Z.; Lin, Q.; et al. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of68Ga-labeled FAPI dimer. J. Nucl. Med. 2022, 63, 263016. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Bal, C.; Roesch, F.; Rajput, S.; Moon, E.S.; Wakade, N.; Tripathi, M.; Agarwal, S.; Sahoo, R.K. [177Lu]Lu-DOTAGA.(SA.FAPi)2 therapy in advanced stage radioiodine-resistant thyroid cancers of follicular and parafollicular cell origins. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, S233–S234. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Roesch, F.; Satapathy, S.; Moon, E.S.; Martin, M.; Wakade, N.; Sheokand, P.; Tripathi, M.; Chandekar, K.R.; et al. Head-to-head comparison of [(68)Ga]Ga-DOTA.SA.FAPi with [(18)F]F-FDG PET/CT in radioiodine-resistant follicular-cell derived thyroid cancers. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Fu, J.; Huang, J.; Su, X.; Chen, H. 68Ga-FAPI PET/CT in thyroid cancer with thyroglobulin elevation and negative iodine scintigraphy. Clin. Nucl. Med. 2021, 46, 427–430. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coerts, H.I.; de Keizer, B.; Verburg, F.A. Advances in the Development of Positron Emission Tomography Tracers for Improved Detection of Differentiated Thyroid Cancer. Cancers 2024, 16, 1401. https://doi.org/10.3390/cancers16071401
Coerts HI, de Keizer B, Verburg FA. Advances in the Development of Positron Emission Tomography Tracers for Improved Detection of Differentiated Thyroid Cancer. Cancers. 2024; 16(7):1401. https://doi.org/10.3390/cancers16071401
Chicago/Turabian StyleCoerts, Hannelore Iris, Bart de Keizer, and Frederik Anton Verburg. 2024. "Advances in the Development of Positron Emission Tomography Tracers for Improved Detection of Differentiated Thyroid Cancer" Cancers 16, no. 7: 1401. https://doi.org/10.3390/cancers16071401