Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Disease Evaluations and Treatment Monitoring
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics and Treatments
3.2. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) Classi-fication System: An INRG Task Force Report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Bagatell, R.; Cohn, S.L.; Pearson, A.D.; Villablanca, J.G.; Berthold, F.; Burchill, S.; Boubaker, A.; McHugh, K.; Nuch-tern, J.G.; et al. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the Nation-al Cancer Institute Clinical Trials Planning Meeting. J. Clin. Oncol. 2017, 35, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Janoueix-Lerosey, I.; Schleiermacher, G.; Michels, E.; Mosseri, V.; Ribeiro, A.; Lequin, D.; Vermeulen, J.; Couturier, J.; Peuch-maur, M.; Valent, A.; et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J. Clin. Oncol. 2009, 27, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Cheung, N.K.; Chen, L.; Qin, J.; Gerald, W. Survival analysis of clinical, pathologic, and genetic features in neuroblas-toma presenting as locoregional disease. Cancer 2001, 91, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.S.; Naranjo, A.; Zhang, F.F.; Cohn, S.L.; London, W.B.; Gastier-Foster, J.M.; Ramirez, N.C.; Pfau, R.; Reshmi, S.; Wag-ner, E.; et al. Revised neuroblastoma risk classification system: A report from the Children’s oncology group. J. Clin. Oncol. 2021, 39, 3229–3241. [Google Scholar] [CrossRef] [PubMed]
- O’Donohue, T.; Gulati, N.; Mauguen, A.; Kushner, B.H.; Shukla, N.; Rodriguez-Sanchez, M.I.; Bouvier, N.; Roberts, S.; Basu, E.; Cheung, N.K.; et al. Differential impact of ALK mutations in Neuroblastoma. JCO Precis. Oncol. 2021, 5, 500. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Monleon, A.; Kryh, O.H.; Gaarder, J.; Berbegall, A.P.; Javanmardi, N.; Djos, A.; Ussowicz, M.; Taschner-Mandl, S.; Ambros, I.M.; Øra, I.; et al. Amplification of CDK4 and MDM2: A detailed study of a high-risk neuroblastoma sub-group. Sci. Rep. 2022, 12, 12420. [Google Scholar] [CrossRef] [PubMed]
- Valentijn, L.J.; Koster, J.; Zwijnenburg, D.A.; Hasselt, N.E.; van Sluis, P.; Volckmann, R.; van Noesel, M.M.; George, R.E.; Tytgat, G.A.; Molenaar, J.J.; et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 2015, 47, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Gundem, G.; Levine, M.F.; Roberts, S.S.; Cheung, I.Y.; Medina-Martínez, J.S.; Feng, Y.; Arango-Ossa, J.E.; Chadoutaud, L.; Rita, M.; Asimomitis, G.; et al. Clonal evolution during metastatic spread in high-risk neuroblastoma. Nat. Genet. 2023, 55, 1022–1033. [Google Scholar] [CrossRef]
- DuBois, S.G.; Kalika, Y.; Lukens, J.N.; Brodeur, G.M.; Seeger, R.C.; Atkinson, J.B.; Haase, G.M.; Black, C.T.; Perez, C.; Shimada, H.; et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J. Pediatr. Hematol. Oncol. 1999, 21, 181–189. [Google Scholar] [CrossRef]
- Berthold, F.; Spix, C.; Kaatsch, P.; Lampert, F. Incidence, survival, and treatment of localized and metastatic neuroblastoma in Germany 1979–2015. Paediatr. Drugs 2017, 19, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, D.A.; London, W.B.; Stephens, D.; Volchenboum, S.L.; Hero, B.; Di Cataldo, A.; Nakagawara, A.; Shimada, H.; Ambros, P.F.; Matthay, K.K.; et al. Metastatic neuroblastoma confined to distant lymph nodes (stage 4N) predicts outcome in patients with stage 4 disease: A study from the International Neuroblastoma Risk Group Database. J. Clin. Oncol. 2014, 32, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.; Kushner, B.; Di Giannatale, A.; Gundem, G.; Li, S.; Roberts, S.S.; Basu, E.M.; Price, A.; Cheung, N.V.; Modak, S. Skele-tal muscle metastases in neuroblastoma share common progenitors with primary tumor and biologically resemble stage MS disease. Front. Oncol. 2023, 12, 1106597. [Google Scholar] [CrossRef] [PubMed]
- London, W.B.; Castleberry, R.P.; Matthay, K.K.; Look, A.T.; Seeger, R.C.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.M.; Reynolds, C.P.; et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005, 23, 6459–6465. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics about Neuroblastoma. Available online: https://www.cancer.org/cancer/neuroblastoma/about/key-statistics.html (accessed on 1 April 2021).
- Stiller, C.A.; Parkin, D.M. International variations in the incidence of neuroblastoma. Int. J. Cancer 1992, 52, 538–543. [Google Scholar] [CrossRef]
- Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet 2007, 369, 2106–2120. [Google Scholar] [CrossRef]
- Cotterill, S.J.; Pearson, A.D.; Pritchard, J.; Foot, A.B.; Roald, B.; Kohler, J.A.; Imeson, J. Clinical prognostic factors in 1277 pa-tients with neuroblastoma: Results of The European Neuroblastoma Study Group ‘Survey’ 1982–1992. Eur. J. Cancer 2000, 36, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Cole, K.A.; Maris, J.M. New strategies in refractory and recurrent neuroblastoma: Translational opportunities to impact patient outcome. Clin. Cancer Res. 2012, 18, 2423–2428. [Google Scholar] [CrossRef] [PubMed]
- Ara, T.; DeClerck, Y.A. Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev. 2006, 25, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; Naranjo, A.; Hibbitts, E.; Kreissman, S.G.; Granger, M.M.; Irwin, M.S.; Bagatell, R.; London, W.B.; Greengard, E.G.; Park, J.R.; et al. Predictors of differential response to induction therapy in high-risk neuroblastoma: A report from the Children’s Oncology Group (COG). Eur. J. Cancer 2019, 112, 66–79. [Google Scholar] [CrossRef]
- Rosen, E.M.; Cassady, J.R.; Frantz, C.N.; Kretschmar, C.S.; Levey, R.; Sallen, S.E. Stage IV-N: A favorable subset of children with metastatic neuroblastoma. Med. Pediatr. Oncol. 1985, 13, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, O.; Valteau-Couanet, D.; Vassal, G.; Lapierre, V.; Brugières, L.; Delgado, R.; Couanet, D.; Lumbroso, J.; Benhamou, E. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: A multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transpl. 1999, 23, 789–795. [Google Scholar] [CrossRef]
- Schnaar, R.L.; Kinoshita, T. Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Eds.; Cold Spring Harbor: New York, NY, USA, 2017; Chapter 11. [Google Scholar]
- Lopez, P.H.H.; Schnaar, R.L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 2009, 19, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Krengel, U.; Bousquet, P.A. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front. Immunol. 2014, 5, 325. [Google Scholar] [CrossRef]
- Alistair Lammie, G.; Cheung, N.V.; Gerald, W.; Rosenblum, M.; Cordon-cardo, C. Ganglioside GD 2 Expression in the Human Nervous System and in Neuroblastomas-An Immunohistochemical Study. Int. J. Oncol. 1993, 3, 909–915. [Google Scholar]
- Wu, Z.-L.; Schwartz, E.; Seeger, R.; Ladisch, S. Expression of GD2Ganglioside by Untreated Primary Human Neuroblastomas. Cancer Res. 1986, 46, 440–443. [Google Scholar] [PubMed]
- Roth, M.; Linkowski, M.; Tarim, J.; Piperdi, S.; Sowers, R.; Geller, D.; Gill, J.; Gorlick, R. Ganglioside GD2 as a Therapeutic Target for Antibody-Mediated Therapy in Patients with Osteosarcoma. Cancer 2014, 120, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Poon, V.I.; Roth, M.; Piperdi, S.; Geller, D.; Gill, J.; Rudzinski, E.R.; Hawkins, D.S.; Gorlick, R. Ganglioside GD2 Expression Is Maintained upon Recurrence in Patients with Osteosarcoma. Clin. Sarcoma Res. 2015, 5, 4. [Google Scholar] [CrossRef]
- Heiner, J.P.; Miraldi, F.; Kallick, S.; Makley, J.; Neely, J.; Smith-Mensah, W.H.; Cheung, N.K. Localization of GD2-Specific Monoclonal Antibody 3F8 in Human Osteosarcoma. Cancer Res. 1987, 47, 5377–5381. [Google Scholar]
- Shibuya, H.; Hamamura, K.; Hotta, H.; Matsumoto, Y.; Nishida, Y.; Hattori, H.; Furukawa, K.; Ueda, M.; Furukawa, K. Enhancement of Malignant Properties of Human Osteosarcoma Cells with Disialyl Gangliosides GD2/GD3. Cancer Sci. 2012, 103, 1656–1664. [Google Scholar] [CrossRef]
- Wikstrand, C.J.; Fredman, P.; Svennerholm, L.; Humphrey, P.A.; Bigner, S.H.; Bigner, D.D. Monoclonal Antibodies to Malignant Human Gliomas. Mol. Chem. Neuropathol. 1992, 17, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Mennel, H.D.; Bosslet, K.; Geissel, H.; Bauer, B.L. Immunohistochemically Visualized Localisation of Gangliosides Glac2 (GD3) and Gtri2 (GD2) in Cells of Human Intracranial Tumors. Exp. Toxicol. Pathol. 2000, 52, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Shinoura, N.; Dohi, T.; Kondo, T.; Yoshioka, M.; Takakura, K.; Oshima, M. Ganglioside Composition and Its Relation to Clinical Data in Brain Tumors. Neurosurgery 1992, 31, 541–549. [Google Scholar] [CrossRef]
- Cheung, N.-K.K.V.; Guo, H.; Hu, J.; Tassev, D.V.; Cheung, I.Y. Humanizing Murine IgG3 Anti-GD2 Antibody M3F8 Substantially Improves Antibody-Dependent Cell-Mediated Cytotoxicity While Retaining Targeting In Vivo. Oncoimmunology 2012, 1, 477–486. [Google Scholar] [CrossRef]
- Saito, M.; Yu, R.K.; Cheung, N.-K.V. Ganglioside GD2 Specificity of Monoclonal Antibodies to Human Neuroblastoma Cell. Biochem. Biophys. Res. Commun. 1985, 127, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.K.; Saarinen, U.M.; Neely, J.E.; Landmeier, B.; Donovan, D.; Coccia, P.F. Monoclonal Antibodies to a Glycolipid Antigen on Human Neuroblastoma Cells. Cancer Res. 1985, 45, 2642–2649. [Google Scholar] [PubMed]
- Cheung, N.K.; Lazarus, H.; Miraldi, F.D.; Abramowsky, C.R.; Kallick, S.; Saarinen, U.M.; Spitzer, T.; Strandjord, S.E.; Coccia, P.F.; Berger, N.A. Ganglioside GD2 Specific Monoclonal Antibody 3F8: A Phase I Study in Patients with Neuroblastoma and Malignant Melanoma. J. Clin. Oncol. 1987, 5, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Kushner, B.H.; Cheung, I.Y.; Modak, S.; Basu, E.M.; Roberts, S.S.; Cheung, N.-K. Humanized 3F8 Anti-GD2 Monoclonal Antibody Dosing with Granulocyte-Macrophage Colony-Stimulating Factor in Patients with Resistant Neuroblastoma: A phase 1 clinical trial. JAMA Oncol. 2018, 4, 1729–1735. [Google Scholar] [CrossRef]
- Markham, A. Naxitamab: First Approval. Drugs 2021, 81, 291–296. [Google Scholar] [CrossRef]
- Cheung, N.K.; Cheung, I.Y.; Kramer, K.; Modak, S.; Kuk, D.; Pandit-Taskar, N.; Chamberlain, E.; Ostrovnaya, I.; Kushner, B.H. Key role for myeloid cells: Phase II results of anti-G(D2) antibody 3F8 plus granulocyte macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int. J. Cancer 2014, 135, 2199–2205. [Google Scholar] [CrossRef]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [Google Scholar] [CrossRef]
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Chan, G.C.; Morgenstern, D.A.; Amoroso, L.; Nysom, K.; Faber, J.; Bear, M.K.; Tornoe, K.; Sorensen, P.S.; Kushner, B.H. 891P –naxitamab treatment for relapsed or refractory high-risk neuroblastoma: Outcomes from the first prespecified anal-yses of the pivotal 201 trial. Ann. Oncol. 2022, 33 (Suppl. S7), S956. [Google Scholar] [CrossRef]
- Mody, R.; Naranjo, A.; Zhang, F.F.; London, W.B.; Shulkin, B.L.; Parisi, M.T.; Servaes, S.E.; Diccianni, M.B.; Hank, J.A.; Felder, M.; et al. Irinotecan, Te-mozolomide, and Dinutuximab with GM-CSF in Children with Refractory or Relapsed Neuroblastoma: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2020, 38, 2160–2169. [Google Scholar] [CrossRef]
- Furman, W.L.; Mccarville, B.; Shulkin, B.L.; Davidoff, A.; Krasin, M.; Hsu, C.W.; Pan, H.; Wu, J.; Brennan, R.; Bishop, M.W.; et al. Improved Outcome in Children with Newly Diagnosed High-Risk Neuroblastoma Treated with Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. J. Clin. Oncol. 2022, 40, 335–344. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Larrosa, C.; Chamorro, S.; Perez-Jaume, S.; Simao, M.; Sanchez-Sierra, N.; Varo, A.; Gorostegui, M.; Castañeda, A.; Garraus, M.; et al. Early Salvage Chemo-Immunotherapy with Irinotecan, Temozolomide and Naxitamab Plus GM-CSF (HITS) for Patients with Primary Refractory High-Risk Neuroblastoma Provide the Best Chance for Long-Term Outcomes. Cancers 2023, 15, 4837. [Google Scholar] [CrossRef]
- Mora, J.; Castañeda, A.; Gorostegui, M.; Varo, A.; Perez-Jaume, S.; Simao, M.; Muñoz, J.P.; Garraus, M.; Larrosa, C.; Salvador, N.; et al. Naxitamab Combined with Granulocyte-Macrophage Colony-Stimulating Factor as Con-solidation for High-Risk Neuroblastoma Patients in First Complete Remission under Compassionate Use-Updated Outcome Report. Cancers 2023, 15, 2535. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Cruz, O.; Lavarino, C.; Rios, J.; Vancells, M.; Parareda, A.; Salvador, H.; Suñol, M.; Carrasco, R.; Guillen, A.; et al. Results of induction chemotherapy in children older than 18 months with stage-4 neuroblastoma treated with an adaptive-to-response modified N7 protocol (mN7). Clin. Transl. Oncol. 2015, 17, 521–529. [Google Scholar] [CrossRef]
- Kaplan, E.; Meier, P. Non parametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data; John Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 2, 187–220. [Google Scholar] [CrossRef]
- Matthay, K.K.; Edeline, V.; Lumbroso, J.; Tanguy, M.L.; Asselain, B.; Zucker, J.M.; Valteau-Couanet, D.; Hartmann, O.; Michon, J. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J. Clin. Oncol. 2003, 21, 2486–2491. [Google Scholar] [CrossRef] [PubMed]
- Katzenstein, H.M.; Cohn, S.L.; Shore, R.M.; Bardo, D.M.; Haut, P.R.; Olszewski, M.; Schmoldt, J.; Liu, D.; Rademaker, A.W.; Kletzel, M. Scintigraphic response by 123Imetaiodobenzylguanidine scan correlates with event-free survival in high-risk neuro-blastoma. J. Clin. Oncol. 2004, 22, 3909–3915. [Google Scholar] [CrossRef]
- Schmidt, M.; Simon, T.; Hero, B.; Schicha, H.; Berthold, F. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: Results of the German Neuroblastoma Trial NB97. Eur. J. Cancer 2008, 44, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gerique, L.; García, M.; Garrido-Garcia, A.; Gómez-González, S.; Torrebadell, M.; Prada, E.; Pascual-Pasto, G.; Muñoz, O.; Perez-Jaume, S.; Lemos, I.; et al. MIF/CXCR4 signaling axis contributes to survival, invasion, and drug resistance of metastatic neuroblastoma cells in the bone marrow microenvironment. BMC Cancer 2022, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Fetahu, I.S.; Esser-Skala, W.; Dnyansagar, R.; Sindelar, S.; Rifatbegovic, F.; Bileck, A.; Skos, L.; Bozsaky, E.; Lazic, D.; Shaw, L.; et al. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat. Commun. 2023, 14, 3620. [Google Scholar] [CrossRef] [PubMed]
- Schleiermacher, G.; Janoueix-Lerosey, I.; Ribeiro, A.; Klijanienko, J.; Couturier, J.; Pierron, G.; Mosseri, V.; Valent, A.; Auger, N.; Plantaz, D.; et al. Accumulation of segmental alterations determines progression in neuroblastoma. J. Clin. Oncol. 2010, 28, 3122–3130. [Google Scholar] [CrossRef]
- Zimmerman, M.W.; Liu, Y.; He, S.; Durbin, A.D.; Abraham, B.J.; Easton, J.; Shao, Y.; Xu, B.; Zhu, S.; Zhang, X.; et al. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018, 8, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Rosswog, C.; Fassunke, J.; Ernst, A.; Schömig-Markiefka, B.; Merkelbach-Bruse, S.; Bartenhagen, C.; Cartolano, M.; Ackermann, S.; Theissen, J.; Blattner-Johnson, M.; et al. Genomic ALK alterations in primary and relapsed neuroblastoma. Br. J. Cancer 2023, 128, 1559–1571. [Google Scholar] [CrossRef]
- Yu, A.; Gilman, A.L.; Ozkaynak, M.F.; Naranjo, A.; Diccianni, M.B.; Gan, J.; Hank, J.A.; Batova, A.; London, W.B.; Tenney, S.C.; et al. Long-term fol-low-up of a phase iii study of ch14.18 (dinutuximab)+ cytokine immunotherapy in children with high-risk neuroblastoma: COG study ANBL0032. Clin. Cancer Res. 2021, 27, 2179–2189. [Google Scholar] [CrossRef]
- Desai, A.V.; Gilman, A.L.; Ozkaynak, M.F.; Naranjo, A.; London, W.B.; Tenney, S.C.; Diccianni, M.; Hank, J.A.; Parisi, M.T.; Shulkin, B.L.; et al. Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Ran-dom Assignment on ANBL0032: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2022, 40, 4107–4118. [Google Scholar] [CrossRef]
- Kushner, B.H.; Modak, S.; Kramer, K.; LaQuaglia, M.P.; Yataghene, K.; Basu, E.M.; Roberts, S.S.; Cheung, N.K. Striking di-chotomy in outcome of MYCN-amplified neuroblastoma in the contemporary era. Cancer 2014, 120, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Laprie, A.; Michon, J.; Hartmann, O.; Munzer, C.; Leclair, M.D.; Coze, C.; Valteau-Couanet, D.; Plantaz, D.; Carrie, C.; Ha-brand, J.L.; et al. Neuroblastoma Study Group of the French Society of Pediatric Oncology. High-dose chemotherapy followed by locoregional irradiation improves the outcome of patients with international neuroblastoma staging system Stage II and III neuroblastoma with MYCN amplification. Cancer 2004, 101, 1081–1089. [Google Scholar] [PubMed]
- Mora, J.; Castañeda, A.; Flores, M.A.; Santa-María, V.; Garraus, M.; Gorostegui, M.; Simao, M.; Perez-Jaume, S.; Mañe, S. The role of autologous stem-cell transplantation in high-risk neuroblastoma consolidated by anti-GD2 immunotherapy. Results of two consecutive studies. Front. Pharmacol. 2020, 11, 575009. [Google Scholar] [CrossRef]
- Kushner, B.H.; LaQuaglia, M.P.; Modak, S.; Wolden, S.L.; Basu, E.; Roberts, S.S.; Kramer, K.; Yataghene, K.; Cheung, I.Y.; Cheung, N.V. MYCN-amplified stage 2/3 neuroblastoma: Excellent survival in the era of anti-GD2 immunotherapy. Oncotarget 2017, 8, 95293–95302. [Google Scholar] [CrossRef] [PubMed]
ID | Stage | Age at DX (Years) | Molecular Features | First-Line Treatment | First Line Treatment with Anti-GD2 IT | First Line Outcome | # RELAPSES | Treatment at Relapse | Stage 4 | Treatment at Stage 4 | Rescue TX Outcome | Status |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4N | 8.0 | Diploid. ATRX. NF1 p.K1457E | Chemo, SX, RDT | No | CR | 3 | Chemo, SX, RDT, ASCT, Naxi, HITS | No | SD | AWD | |
2 | 4N | 27.6 | Diploid. ATRX | Chemo, SX, RDT | No | Residual mass | 3 | Chemo, HITS | No | SD | AWD | |
3 | LR | 4.2 | Diploid. MYCN A | Chemo, SX, RDT | No | CR | 3 | Chemo, SX, RDT, DINU, HITS | No | CR | NED | |
4 | LR | 5.5 | Diploid. ATRX | Chemo | No | CR | 4 | Chemo, SX, RDT, HITS, C/T + Naxi, Dinu + I/T | No | SD | AWD | |
5 | 4N | 6.3 | Diploid. CNV Seg | Chemo, SX, RDT | No | CR | 1 | Yes | Chemo, Naxi, vaccine | CR | DOD | |
6 | 4N | 5.2 | Diploid. ATRX | Chemo, SX | No | CR | 1 | SX, RDT, DINU+I/T | Yes | Chemo, HITS, NICE, Lutathera, RIST | Osteomedullary CR | AWD |
7 | LR | 10.2 | Diploid. CNV Seg | Chemo, SX, RDT | No | CR | 5 | Chemo, SX, RDT, ASCT, MIBG, RDT, HITS | Yes | Chemo, HITS | Osteomedullary CR | DOL |
8 | LR | 4.7 | Diploid. ALK F1245V | Chemo, SX, RDT | No | CR | 1 | Yes | Chemo, Naxi, HITS | CR | AWD | |
9 | LR | 0.9 | Diploid. CNV Seg | Chemo | No | CR | 1 | rCOJEC + SX + RDT | Yes | Chemo, RDT, HITS | PD | DOD |
10 | LR | 4.2 | Diploid. CNV Seg | Chemo, SX, RDT | No | CR | 1 | Yes | Chemo, Naxi, NICE, RDT | Osteomedullary CR | AWD | |
11 | LR | 3.4 | Diploid. ALK F1174L | Chemo, SX | No | Residual mass | 3 | GPOH Chemo + BEACON | Yes | HITS | PD | DOD |
12 | LR | 5.8 | Diploid. CNV Seg | Chemo, SX, ASCT, RDT | No | CR | 2 | Chemo, ASCT, RDT, SX, Raco | Yes | Chemo, Thalidomide, SX, HITS, NICE | CR | AWD |
13 | LR | 10.1 | Diploid. MAP2K1 K57N. ATRX | Chemo, SX | No | CR | 1 | Yes | Chemo, HITS, SX, RDT | Osteomedullary CR | AWD | |
14 | LR | 0.6 | Diploid. ALK F1174L | Chemo, SX | No | Residual mass | 1 | Yes | Chemo, HITS, SX, RDT | CR | NED | |
15 | 4N | 4.7 | Diploid. CNV Seg | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
16 | 4N | 4.4 | Diploid. CNV Seg | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
17 | LR | 4.7 | Diploid. CNV Seg | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
18 | LR | 4.3 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
19 | LR | 2.3 | Diploid. MYCN A | Chemo, SX, ASCT, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
20 | LR | 1.7 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
21 | LR | 2.2 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
22 | LR | 2.0 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
23 | LR | 2.2 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
24 | LR | 3.5 | Diploid. c-MYC A | Chemo, SX, RDT, Naxi | Yes | PD | 0 | No | PD | DOD | ||
25 | LR | 2.5 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
26 | LR | 1.6 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
27 | LR | 4.0 | Diploid. CNV Seg | Chemo, SX, RDT, Dinu | Yes | Primary refractory | 1 | Chemo, RDT, HITS | No | PD | DOD | |
28 | LR | 1.4 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
29 | LR | 0.2 | Diploid. MYCN A | Chemo, SX, RDT, Naxi | Yes | CR | 0 | No | CR | NED | ||
30 | 4N | 3.4 | Diploid. CNV Seg | Chemo, SX, RDT, Naxi | Yes | CR | 1 | SX, HITS | Yes | Chemo, RDT, HITS | CR | NED |
31 | LR | 6.1 | Diploid. ATRX | Chemo, SX, RDT, Naxi | Yes | Residual mass | 1 | Chemo, HITS, RDT | Yes | Chemo, RDT, ICI | Osteomedullary CR | AWD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorostegui, M.; Muñoz, J.P.; Perez-Jaume, S.; Simao-Rafael, M.; Larrosa, C.; Garraus, M.; Salvador, N.; Lavarino, C.; Krauel, L.; Mañe, S.; et al. Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy. Cancers 2024, 16, 1735. https://doi.org/10.3390/cancers16091735
Gorostegui M, Muñoz JP, Perez-Jaume S, Simao-Rafael M, Larrosa C, Garraus M, Salvador N, Lavarino C, Krauel L, Mañe S, et al. Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy. Cancers. 2024; 16(9):1735. https://doi.org/10.3390/cancers16091735
Chicago/Turabian StyleGorostegui, Maite, Juan Pablo Muñoz, Sara Perez-Jaume, Margarida Simao-Rafael, Cristina Larrosa, Moira Garraus, Noelia Salvador, Cinzia Lavarino, Lucas Krauel, Salvador Mañe, and et al. 2024. "Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy" Cancers 16, no. 9: 1735. https://doi.org/10.3390/cancers16091735
APA StyleGorostegui, M., Muñoz, J. P., Perez-Jaume, S., Simao-Rafael, M., Larrosa, C., Garraus, M., Salvador, N., Lavarino, C., Krauel, L., Mañe, S., Castañeda, A., & Mora, J. (2024). Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy. Cancers, 16(9), 1735. https://doi.org/10.3390/cancers16091735