Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Process
2.2. Applicability
2.3. Risk of Bias
2.4. Data Extraction
2.5. Quality of Evidence
3. Results
3.1. Study Selection
3.2. Applicability
3.3. Risk of Bias
3.4. Findings
3.4.1. Genomic Profile
3.4.2. Single Molecular Aberrations
3.5. Quality of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. PICOTS Framework
- Patient population: pediatric patients (<18 years old) withLR/IR NBL.
- Intervention: the presence of molecular aberrations.
- Comparator: independent of molecular aberrations that are already included in the risk stratification: MYCN amplification and 11q aberration.
- Outcome: OS and EFS.
- Timing: molecular marker is measured at diagnosis.
- Setting: secondary and tertiary healthcare centers.
- Research question: which molecular aberrations (not incorporated in the current risk stratification) are associated with OS and EFS in children (<18 years) initially diagnosed with a non-high-risk neuroblastoma?
Appendix B. Database Search
Appendix B.1. PubMed
#1 Pediatrics |
“child” [Mesh] OR “pediatrics” [Mesh] OR “adolescent” [Mesh] OR “infant” [Mesh] OR “child*” [Title/Abstract] OR “pediat*” [Title/Abstract] OR “paediat*” [Title/Abstract] OR “neonat*” [Title/Abstract] OR “kids” [Title/Abstract] OR “kid” [Title/Abstract] OR “teen*” [Title/Abstract] OR “adolesc*” [Title/Abstract] OR “newborn*” [Title/Abstract] OR “infan*” [Title/Abstract] |
#2 Neuroblastoma |
“neuroblastoma” [Mesh] OR “neuroblast*” [Title/Abstract] OR “ganglioneuroma*” [Title/Abstract] OR “ganglioneuroblastoma*” [Title/Abstract] |
#3 Low/intermediate risk |
“low-risk” [Title/Abstract] OR “intermediate-risk” [Title/Abstract] OR “low risk” [Title/Abstract] OR “intermediate risk” [Title/Abstract] |
#4 Neuroblastoma |
“mutation” [Mesh] OR “mutat*” [Title/Abstract] OR “aberrat*” [Title/Abstract] OR “prognostic marker*” [Title/Abstract] OR “prognostic factor*” [Title/Abstract] OR “tumor marker*” [Title/Abstract] OR “tumour marker*” [Title/Abstract] OR “molecular marker*” [Title/Abstract] OR “amplificat*” [Title/Abstract] OR “delet*” [Title/Abstract] OR “gain*” [Title/Abstract] OR “alterat*” [Title/Abstract] OR “NCA*” [Title/Abstract] OR “SCA*” [Title/Abstract] |
#5 Event |
“Death” [Mesh] OR “recurrence” [Mesh] OR “disease progression” [Mesh] OR “hospitalization” [Mesh] OR “mortality” [Mesh] OR “survival” [Mesh] OR “Death*” [Title/Abstract] OR “recur*” [Title/Abstract] OR “progress*” [Title/Abstract] OR “hospitali*” [Title/Abstract] OR “mortalit*” [Title/Abstract] OR “surviv*” [Title/Abstract] OR “event*” [Title/Abstract] OR “deceas*” [Title/Abstract] OR “relaps*” [Title/Abstract] |
#1 AND #2 AND #3 AND #4 AND #5 |
Appendix B.2. Embase
Appendix B.3. Cochrane
#1 Pediatrics |
(child* OR pediat* OR paediat* OR neonat* OR kids OR kid OR teen* OR adolesc* OR newborn* OR infan*):ti,ab,kw |
#2 Neuroblastoma |
(neuroblast* OR ganglioneuroma* OR ganglioneuroblastoma*):ti,ab,kw |
#3 Low/intermediate risk |
(“low-risk” OR “intermediate-risk” OR “low risk” OR “intermediate risk”):ti,ab,kw |
#4 Neuroblastoma |
(mutat* OR aberrat* OR “prognostic” NEXT marker* OR “prognostic” NEXT factor* OR “tumor” NEXT marker* OR “tumour” NEXT marker* OR “molecular” NEXT marker* OR amplificat* OR delet* OR gain* OR NCA* OR SCA* OR alterat*):ti,ab,kw |
#5 Event |
(death* OR recur* OR progress* OR hospitali* OR mortalit* OR surviv* OR event* OR deceas* OR relaps*):ti,ab,kw |
#1 AND #2 AND #3 AND #4 AND #5 |
Appendix B.4. Cochrane
children|pediatric|infant neuroblastoma|ganglioneuroma|ganglioneuroblastoma low-risk|intermediate-risk |
mutation|aberration|alteration|amplification|deletion|gain|NCA|SCA|prognostic death|recurrence|progression|mortality|survival|event|relapse\ |
Appendix C. Applicability
Appendix C.1. Scoring Applicability
- High applicability:
- All three criteria were rated ‘high applicability’.
- One criterion was rated ‘moderate applicable’.
- Moderate applicability:
- Two or more criteria were rated ‘moderate applicability’.
- One criterion was rated ‘low applicability’.
- Low applicability:
- Two or more criteria were rated ‘low applicability’.
Appendix C.2. Applicability Tool
- Representativeness of domain:
- High applicability = pediatric patients (<18 years old) diagnosed with a LR/IR neuroblastoma using the current risk stratification or when the tumor would have been classified as non-high-risk neuroblastoma when using the current risk stratification.
- Moderate applicability = (pediatric) patients diagnosed with a MYCN-non-amplified neuroblastoma:
- ○
- MYCN-non-amplified neuroblastomas frequently classify as non-high-risk. However, metastasized non-MYCN-amplified neuroblastomas in patients older than 18 months do classify as high risk. The same applied to metastasized non-MYCN-amplified neuroblastomas in patients younger than 18 months with an 11q aberration [3].
- Low applicability = none of the above.
- Representativeness of determinant:
- High applicability = single molecular alteration(s) or mutation(s) were investigated.
- Moderate applicability = genomic profile types and/or number of chromosomal breakpoints were investigated, but single molecular alteration or mutation(s) were not investigated.
- Low applicability = none of the above.
- Representativeness of outcome:
- High applicability = OS and/or EFS (PFS was also accepted) were reported.
- Low applicability = none of the above.
Appendix D. Risk of Bias
Appendix D.1. Scoring RoB
- Low RoB:
- All domains were rated ‘low RoB’.
- Only ‘outcome measurement’ was rated ‘moderate RoB’.
- Moderate RoB:
- No domain was rated ‘high RoB’ + two or more domains were rated ‘moderate RoB’.
- One domain was rated ‘high RoB’ + one or two domains were rated ‘moderate RoB’.
- High RoB:
- Two or more domains were rated ‘high RoB’.
- ‘Study confounding’ was rated ‘high RoB’ and two or more domains were rated ‘moderate RoB’.
- One domain was rated ‘high RoB’ and three or more domains were rated ‘moderate RoB’.
Appendix D.2. Specifications QUIPS Tool for RoB
Domain in QUIPS | More (+) or Less (−) Determinative for Overall RoB | Specifications/Removal of Subdomains | |
---|---|---|---|
Study participation | + | Source of target population and in- and exclusion criteria might relate to OS and/or EFS. |
|
Study attrition | − | Domain removed * |
|
Prognostic factor measurement | + | Correct and uniform measurement of the prognostic factor is crucial in determining whether a prognostic factor is valid. |
|
Outcome measurement | − | Detailed method description is less relevant as our outcome measures were easily objectifiable and are therefore less prone to bias. |
|
Study confounding | ++ | We sought to investigate the independent prognostic value of molecular aberrations, thus potential confounders might severely alter our results. |
|
Statistical analysis and reporting | + | Appropriate statistical analysis and reporting were used to calculate outcomes measures. |
|
Appendix E. GRADE Criteria
- Grading down:
- 1.
- RoB: no downgrade
- Ten studies had an overall low RoB, and six had an overall moderate RoB, which was predominantly because they did not perform a multivariable analysis to adjust for known confounders.
- 2.
- Imprecision: downgrade
- Multiple studies reported wide confidence intervals and high standard deviations.
- 3.
- Inconsistency: no downgrade
- Most results regarding single molecular aberrations and the findings regarding genomic profile were consistent. Only the studies investigating 1p deletion and 3p deletion showed conflicting results regarding both OS and EFS/PFS.
- 4.
- Indirectness: no downgrade
- Fifteen studies were highly applicable to our research question. One study solely investigated prognostic value of genomic profile in MYCN-non-amplified tumors (instead of non-high-risk neuroblastomas).
- 5.
- Publication bias: downgrade
- We found no indication of publication bias since there were studies showing conflicting results and non-significant results were published as well (also in smaller studies). However, the risk of publication bias is larger in observational studies than for randomized controlled trials. Furthermore, since preregistration is not required for observational studies, we were not able to address publication bias properly.
- Grading up:
- 1.
- Moderate/large effect: upgrade
- It is difficult to determine the effect size based on OS and EFS/PFS. Therefore, we looked at studies that reported a RR or HR (n = 11). Eight of them reported an effect size larger than three and four of these reported ratios larger than 4.5.
- 2.
- Dose-response gradient: no upgrade
- Not applicable to this study.
- 3.
- All plausible confounders decrease an apparent treatment effect: no upgrade
- Not applicable in prognostic studies.
References
- Gomez, R.L.; Ibragimova, S.; Ramachandran, R.; Philpott, A.; Ali, F.R. Tumoral heterogeneity in neuroblastoma. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2022, 1877, 188805. [Google Scholar] [CrossRef] [PubMed]
- Sokol, E.; Desai, A.V. The Evolution of Risk Classification for Neuroblastoma. Children 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Cohn, S.L.; Pearson, A.D.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) classification system: An INRG Task Force report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef]
- Alvarado, C.S.; London, W.B.; Look, A.T.; Brodeur, G.M.; Altmiller, D.H.; Thorner, P.S.; Joshi, V.V.; Rowe, S.T.; Nash, M.B.; Smith, E.I.; et al. Natural history and biology of stage A neuroblastoma: A Pediatric Oncology Group Study. J. Pediatr. Hematol. Oncol. 2000, 22, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.L.; Schmidt, M.L.; Cohn, S.L.; Maris, J.M.; London, W.B.; Buxton, A.; Stram, D.; Castleberry, R.P.; Shimada, H.; Sandler, A.; et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med. 2010, 363, 1313–1323. [Google Scholar] [CrossRef]
- Meany, H.J. Non-High-Risk Neuroblastoma: Classification and Achievements in Therapy. Children 2019, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.A.; Matthay, K.K.; Atkinson, J.B.; Seeger, R.C.; Shimada, H.; Haase, G.M.; Stram, D.O.; Gerbing, R.B.; Lukens, J.N. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: A children’s cancer group study. J. Clin. Oncol. 2000, 18, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Strother, D.R.; London, W.B.; Schmidt, M.L.; Brodeur, G.M.; Shimada, H.; Thorner, P.; Collins, M.H.; Tagge, E.; Adkins, S.; Reynolds, C.P.; et al. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: Results of Children’s Oncology Group study P9641. J. Clin. Oncol. 2012, 30, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Twist, C.J.; Naranjo, A.; Schmidt, M.L.; Tenney, S.C.; Cohn, S.L.; Meany, H.J.; Mattei, P.; Adkins, E.S.; Shimada, H.; London, W.B.; et al. Defining Risk Factors for Chemotherapeutic Intervention in Infants with Stage 4S Neuroblastoma: A Report From Children’s Oncology Group Study ANBL0531. J. Clin. Oncol. 2019, 37, 115–124. [Google Scholar] [CrossRef]
- Yiallouros, M.; Berthold, F.; Simon, T.; Eggert, A. Neuroblastoma–Brief Information. Available online: https://www.gpoh.de/kinderkrebsinfo/content/diseases/solid_tumours/pohneuroblpatinfo120120611/pohneuroblpatinfokurz120120611/index_eng.html (accessed on 15 December 2024).
- Irwin, M.S.; Naranjo, A.; Zhang, F.F.; Cohn, S.L.; London, W.B.; Gastier-Foster, J.M.; Ramirez, N.C.; Pfau, R.; Reshmi, S.; Wagner, E.; et al. Revised Neuroblastoma Risk Classification System: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2021, 39, 3229–3241. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M. Neuroblastoma--clinical applications of molecular parameters. Brain Pathol. 1990, 1, 47–54. [Google Scholar] [CrossRef]
- Maris, J.M.; Matthay, K.K. Molecular biology of neuroblastoma. J. Clin. Oncol. 1999, 17, 2264–2279. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Spitz, R.; Oberthür, A.; Westermann, F.; Berthold, F. Risk estimation of neuroblastoma patients using molecular markers. Klin. Padiatr. 2008, 220, 137–146. [Google Scholar] [CrossRef]
- Nakagawara, A.; Li, Y.; Izumi, H.; Muramori, K.; Inada, H.; Nishi, M. Neuroblastoma. Jpn. J. Clin. Oncol. 2018, 48, 214–241. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Tiwari, A.; Fu, R.; Moe, E.; Buckley, D.I. AHRQ Methods for Effective Health Care. In A Framework to Facilitate the Use of Systematic Reviews and Meta-Analyses in the Design of Primary Research Studies; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2012. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hayden, J.A.; Côté, P.; Bombardier, C. Evaluation of the quality of prognosis studies in systematic reviews. Ann. Intern. Med. 2006, 144, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Iorio, A.; Spencer, F.A.; Falavigna, M.; Alba, C.; Lang, E.; Burnand, B.; McGinn, T.; Hayden, J.; Williams, K.; Shea, B.; et al. Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients. BMJ 2015, 350, h870. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Hayden, J.A.; Stinson, J.; McGrath, P.J.; Chambers, C.T.; Tougas, M.E.; Wozney, L. Judging the quality of evidence in reviews of prognostic factor research: Adapting the GRADE framework. Syst. Rev. 2013, 2, 71. [Google Scholar] [CrossRef]
- Attiyeh, E.F.; London, W.B.; Mossé, Y.P.; Wang, Q.; Winter, C.; Khazi, D.; McGrady, P.W.; Seeger, R.C.; Look, A.T.; Shimada, H.; et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med. 2005, 353, 2243–2253. [Google Scholar] [CrossRef]
- Bown, N.; Cotterill, S.; Lastowska, M.; O’Neill, S.; Pearson, A.D.; Plantaz, D.; Meddeb, M.; Danglot, G.; Brinkschmidt, C.; Christiansen, H.; et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med. 1999, 340, 1954–1961. [Google Scholar] [CrossRef]
- Defferrari, R.; Mazzocco, K.; Ambros, I.M.; Ambros, P.F.; Bedwell, C.; Beiske, K.; Bénard, J.; Berbegall, A.P.; Bown, N.; Combaret, V.; et al. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br. J. Cancer 2015, 112, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Janoueix-Lerosey, I.; Schleiermacher, G.; Michels, E.; Mosseri, V.; Ribeiro, A.; Lequin, D.; Vermeulen, J.; Couturier, J.; Peuchmaur, M.; Valent, A.; et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J. Clin. Oncol. 2009, 27, 1026–1033. [Google Scholar] [CrossRef]
- Parodi, S.; Pistorio, A.; Erminio, G.; Ognibene, M.; Morini, M.; Garaventa, A.; Gigliotti, A.R.; Haupt, R.; Frassoni, F.; Pezzolo, A. Loss of whole chromosome X predicts prognosis of neuroblastoma patients with numerical genomic profile. Pediatr. Blood Cancer 2019, 66, e27635. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; Mayfield, J.R.; Raca, G.; Applebaum, M.A.; Chlenski, A.; Sukhanova, M.; Bagatell, R.; Irwin, M.S.; Little, A.; Rawwas, J.; et al. Segmental Chromosomal Aberrations in Localized Neuroblastoma Can be Detected in Formalin-Fixed Paraffin-Embedded Tissue Samples and Are Associated With Recurrence. Pediatr. Blood Cancer 2016, 63, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Rosswog, C.; Fassunke, J.; Ernst, A.; Schömig-Markiefka, B.; Merkelbach-Bruse, S.; Bartenhagen, C.; Cartolano, M.; Ackermann, S.; Theissen, J.; Blattner-Johnson, M.; et al. Genomic ALK alterations in primary and relapsed neuroblastoma. Br. J. Cancer 2023, 128, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Schleiermacher, G.; Janoueix-Lerosey, I.; Ribeiro, A.; Klijanienko, J.; Couturier, J.; Pierron, G.; Mosseri, V.; Valent, A.; Auger, N.; Plantaz, D.; et al. Accumulation of segmental alterations determines progression in neuroblastoma. J. Clin. Oncol. 2010, 28, 3122–3130. [Google Scholar] [CrossRef]
- Schleiermacher, G.; Michon, J.; Huon, I.; d’Enghien, C.D.; Klijanienko, J.; Brisse, H.; Ribeiro, A.; Mosseri, V.; Rubie, H.; Munzer, C.; et al. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br. J. Cancer 2007, 97, 238–246. [Google Scholar] [CrossRef]
- Schleiermacher, G.; Michon, J.; Ribeiro, A.; Pierron, G.; Mosseri, V.; Rubie, H.; Munzer, C.; Bénard, J.; Auger, N.; Combaret, V.; et al. Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br. J. Cancer 2011, 105, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Schleiermacher, G.; Mosseri, V.; London, W.B.; Maris, J.M.; Brodeur, G.M.; Attiyeh, E.; Haber, M.; Khan, J.; Nakagawara, A.; Speleman, F.; et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: A report from the INRG project. Br. J. Cancer 2012, 107, 1418–1422. [Google Scholar] [CrossRef]
- Simon, T.; Spitz, R.; Faldum, A.; Hero, B.; Berthold, F. New definition of low-risk neuroblastoma using stage, age, and 1p and MYCN status. J. Pediatr. Hematol. Oncol. 2004, 26, 791–796. [Google Scholar]
- Spitz, R.; Hero, B.; Ernestus, K.; Berthold, F. FISH analyses for alterations in chromosomes 1, 2, 3, and 11 define high-risk groups in neuroblastoma. Med. Pediatr. Oncol. 2003, 41, 30–35. [Google Scholar] [CrossRef]
- Tomioka, N.; Oba, S.; Ohira, M.; Misra, A.; Fridlyand, J.; Ishii, S.; Nakamura, Y.; Isogai, E.; Hirata, T.; Yoshida, Y.; et al. Novel risk stratification of patients with neuroblastoma by genomic signature, which is independent of molecular signature. Oncogene 2008, 27, 441–449. [Google Scholar] [CrossRef]
- Uryu, K.; Nishimura, R.; Kataoka, K.; Sato, Y.; Nakazawa, A.; Suzuki, H.; Yoshida, K.; Seki, M.; Hiwatari, M.; Isobe, T.; et al. Identification of the genetic and clinical characteristics of neuroblastomas using genome-wide analysis. Oncotarget 2017, 8, 107513–107529. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence--publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.V.; van den Heuvel-Eibrink, M.M.; Graf, N.; Dome, J.S. New approaches to risk stratification for Wilms tumor. Curr. Opin. Pediatr. 2021, 33, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, S.; Cartolano, M.; Hero, B.; Welte, A.; Kahlert, Y.; Roderwieser, A.; Bartenhagen, C.; Walter, E.; Gecht, J.; Kerschke, L.; et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018, 362, 1165–1170. [Google Scholar] [CrossRef]
- Hartlieb, S.A.; Sieverling, L.; Nadler-Holly, M.; Ziehm, M.; Toprak, U.H.; Herrmann, C.; Ishaque, N.; Okonechnikov, K.; Gartlgruber, M.; Park, Y.G.; et al. Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome. Nat. Commun. 2021, 12, 1269. [Google Scholar] [CrossRef]
- Peifer, M.; Hertwig, F.; Roels, F.; Dreidax, D.; Gartlgruber, M.; Menon, R.; Krämer, A.; Roncaioli, J.L.; Sand, F.; Heuckmann, J.M.; et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 2015, 526, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Roderwieser, A.; Sand, F.; Walter, E.; Fischer, J.; Gecht, J.; Bartenhagen, C.; Ackermann, S.; Otte, F.; Welte, A.; Kahlert, Y.; et al. Telomerase Is a Prognostic Marker of Poor Outcome and a Therapeutic Target in Neuroblastoma. JCO Precis. Oncol. 2019, 3, 1–20. [Google Scholar] [CrossRef]
- Werr, L.; Rosswog, C.; Bartenhagen, C.; George, S.L.; Fischer, M. Telomere maintenance mechanisms in neuroblastoma: New insights and translational implications. EJC Paediatr. Oncol. 2024, 3, 100156. [Google Scholar] [CrossRef]
- Stainczyk, S.A.; Westermann, F. Neuroblastoma-Telomere maintenance, deregulated signaling transduction and beyond. Int. J. Cancer 2022, 150, 903–915. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Year | Centre/Country | Participants | Prognostic Factor | Outcome | Median Follow-Up in Months (Range) |
---|---|---|---|---|---|---|
Rosswog et al. [28] | 2023 | Germany | 365 LR/IR NBL patients | ALK mutations | EFS, OS | Cohort 1: 84 * Cohort 2: NR Cohort 3: NR |
Parodi et al. [26] | 2019 | 23 centers in Italy | 174 NCA profile, non-MYCN amplified NBL patients | Whole chr. X deletion | EFS | (0–164) |
Uryu et al. [36] | 2017 | Tokyo University hospital and many other Japanese hospitals | 97 IR NBL patients | 1p LOH, 4p LOH | OS | NR |
Pinto et al. [27] | 2016 | Five children’s hospitals in USA: Chicago (2), Toronto, Philadelphia, Minnesota | 105 LR/IR NBL patients | All possible CNV | EFS, OS | NR |
Defferrari et al. [24] | 2015 | Austria, Belgium, Czech Republic, France, Italy, Norway, Portugal, Spain, Sweden, United Kingdom | 98 NBL patients aged >12 months without MYCN amplification | CNVs chr.1, 2, 3, 4, 7, 9, 11, 12, 14 and 17 | EFS, OS | NR |
Schleiermacher et al. [32] | 2012 | Australia, Germany, Italy, Japan, North America, Spain | 505 non-MYCN amplified NBL patients | CNVs 1p, 11q, 17q | EFS, OS | 63 (0–167) |
Schleiermacher et al. [31] | 2011 | Austria, Belgium, France, Italy, Norway, Portugal, Spain, Sweden United Kingdom | 218 non-MYCN amplified NBL patients aged <12 months | All possible CNV | PFS | 60* |
Schleiermacher et al. [29] | 2010 | Institut Curie (Paris, France) | 145 non-MYCN amplified NBL patients | Chromosomal breakpoints | PFS, OS | 49 (0–229) * |
Cohn et al. [3] | 2009 | Australia, Germany, Italy, Japan, North America, Spain | 495 LR NBL | 1p deletion | EFS, OS | 62 * |
Janoueix et al. [25] | 2009 | France and other (not specified) European countries | 286 LR/IR NBL patients | All possible CNVs | PFS | Institut Curie: 46 (3–183) * Additional patients: 58 (0–229) * |
Tomioka et al. [35] | 2008 | Various institutions in Japan | 76 non-MYCN amplified NBL patients | All possible CNVs | OS | NR |
Schleiermacher et al. [30] | 2007 | Centres of the Société Française des Cancers de l’Enfant | 139 non-MYCN amplified NBL patients | CNVs chromosome 1, 2, 3, 11 and 17 | EFS, OS | 57.3 (17–194) |
Attiyeh et al. [22] | 2005 | NR | 744 non-MYCN amplified and 524 LR/IR NBL patients | 1p36 LOH | EFS, OS | 36 * |
Simon et al. [33] | 2004 | Germany | 908 LR/IR NBL patients | 1p deletion, 3p deletion | EFS, OS | 50 (0–160) |
Spitz et al. [34] | 2003 | 50 children’s hospitals (German multicenter trial) | 145 non-MYCN amplified NBL patients | 1p deletion, 3p deletion | EFS | NR |
Bown et al. [23] | 1999 | 6 European centers | 210 non-MYCN amplified NBL patients | 17q gain | OS | 30 * |
Author (Year) | OS (%) | RR/HR | 95% CI/S.E. | p-Value | EFS/PFS (%) | RR/HR | 95% CI/S.E. | p-Value |
---|---|---|---|---|---|---|---|---|
Pinto et al. (2016) [27] Univariate analysis | NCA: 100 SCA: 88.1 | 13.7 | NA 95% CI 0.78–240 | 0.07 | NCA: 91 SCA: 68 | S.E. 3.6 S.E. 8.3 | 0.0083 | |
Defferrari et al. (2015) [24] Univariate analysis | 12-18 months No SCA: 100 SCA: 100 >18 months No SCA: 100 SCA: 66.8 | NA NA 95% CI 47.4–80.5 | NA 0.003 | 12-18 months No SCA: 100 SCA: 95.5 >18 months No SCA: 75.0 SCA: 46.1 | NA 95% CI 49.1–89.0 95% CI 29.6–61.0 | 0.45 0.023 | ||
Schleiermacher et al. (2012) [32] Univariate analysis | NCA: 88 SCA: 71 | S.E. 3.2 S.E. 2.5 | <0.001 | NCA: 79 SCA: 53 | S.E. 3.9 S.E. 2.7 | <0.001 | ||
Schleiermacher et al. (2012) [32] Multivariable analysis | 1.8 | NR | 0.05 | 1.7 | NR | 0.01 | ||
Schleiermacher et al. (2011) [31] Univariate analysis | NCA: 92.0 SCA: 70.7 Silent: 62.5 | S.E. 2.1 S.E. 6.6 S.E. 17.1 | <0.001 | |||||
Schleiermacher et al. (2011) [31] Multivariable analysis | 5.24 | 95% CI 2.4–11.4 | <0.001 | |||||
Janoueix et al. (2009) [25] Univariate analysis | LR NCA: 93.0 LR SCA: 80.0 IR NCA: 93.7 IR SCA: 73.0 | S.E. 2.8 S.E. 7.3 S.E. 2.3 S.E. 6.5 | 0.006 <0.001 | |||||
Janoueix et al. (2009) [25] Multivariable analysis | 4.5 | 95% CI 2.4-8.4 | <0.001 | |||||
Tomioka et al. (2008) [35] Univariate analysis | 3.41 | 95% CI 1.32-8.82 | 0.010 | |||||
Schleiermacher et al. (2007) [30] Univariate analysis | NCA: 98.6 SCA: 75.8 | S.E. 1.4 S.E. 5.5 | <0.001 | NCA: 88.6 SCA: 43.5 | S.E. 3.8 S.E. 6.3 | <0.001 | ||
Schleiermacher et al. (2007) [30] Multivariable analysis | 4.62 | 95% CI 2.03–10.5 | <0.001 |
Genetic Alteration | Author (Year) | OS (%) | HR/RR | 95% CI/S.E. | p-Value | EFS/PFS (%) | HR/RR | 95% CI/S.E. | p-Value |
---|---|---|---|---|---|---|---|---|---|
1p LOH | Uryu et al. (2017) [36] Univariate analysis Uryu et al. (2017) [36] Multivariable analysis | No: 91 * Yes: 31 * | 3.87 | NR 95% CI 1.0–14.3 | 0.0014 0.051 | ||||
Attiyeh et al. (2005) [22] Univariate analysis | No: 87 Yes: 83 | S.E. 2 S.E. 5 | 0.05 | No: 79 Yes: 62 | S.E. 2 S.E. 6 | <0.001 | |||
Attiyeh et al. (2005) [22] Multivariable analysis | 2.92 | 0.002 | |||||||
1p deletion | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 92.7 Yes: 70.0 >18 months No: 88.3 Yes: 47.4 | 95% CI 83.2–96.9 95% CI 41.5–86.5 95% CI 74.1–95.0 95% CI 14.1–75.7 | 0.014 0.004 | 12–18 months No: 73.6 Yes: 72.2 >18 months No: 59.2 Yes: 54.6 | 95% CI 61.7–82.4 95% CI 45.6–87.4 95% CI 43.1–72.2 95% CI 22.9–78.0 | 0.904 0.487 | ||
Schleiermacher et al. (2012) [32] Univariate analysis | No: 79 Yes: 72 | S.E. 2.6 S.E. 3.3 | 0.11 | No: 63 Yes: 55 | S.E. 2.9 S.E. 3.7 | 0.06 | |||
Schleiermacher et al. (2011) [31] Univariate analysis | No: 88.5 Yes: 74.3 | S.E. 2.3 S.E. 9.9 | 0.09 | ||||||
Cohn et al. (2009) [3] Univariate analysis | No: 99 Yes: 100 | S.E. 1.0 NA | NR | No: 94 Yes: 78 | S.E. 2.0 S.E. 10.0 | NR | |||
Schleiermacher et al. (2007) [30] Univariate analysis | No: 87.9 Yes: 80.0 | S.E. 3.2 S.E. 10.3 | NS | No: 67.0 Yes: 59.3 | S.E. 4.4 S.E. 12.9 | NS | |||
Schleiermacher et al. (2007) [30] Multivariable analysis | NS | ||||||||
Simon et al. (2004) [33] Univariate analysis | No: 97.3 Yes: 85.7 | S.E. 1.2 S.E. 9.4 | 0.027 | No: 84.2 Yes: 49.6 | S.E. 2.6 S.E. 14.2 | <0.001 | |||
Simon et al. (2004) [33] Multivariable analysis | 3.0 | 95% CI 1.3–7.0 | 0.009 | 3.6 | 95% CI 1.5–8.7 | 0.005 | |||
Spitz et al. (2003) [34] Univariate analysis | No: 71 Yes: 44 | S.E. 6 S.E. 23 | 0.02 | ||||||
1q gain | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 90.7 Yes: 70.0 >18 months No: 84.3 Yes: 40.0 | 95% CI 81.1–95.5 95% CI 11.1–80.4 95% CI 69.3–92.4 95% CI 5.2–75.3 | 0.001 0.005 | 12–18 months No: 75.0 Yes: 50.0 >18 months No: 59.9 Yes: 40.0 | 95% CI 64.1–83.0 95% CI 11.1–80.4 95% CI 44.6–72.1 95% CI 5.2–75.3 | 0.192 0.389 | ||
2p gain | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 90.8 Yes: 70.6 >18 months No: 84.5 Yes: 6.5 | 95% CI 80.3–95.8 95% CI 43.2–86.6 95% CI 68.1–92.9 95% CI 30.8–81.8 | 0.014 0.027 | 12–18 months No: 76.6 Yes: 52.9 >18 months No: 62.2 Yes: 38.5 | 95% CI 65.2–84.6 95% CI 27.6–73.0 95% CI 46.1–74.7 95% CI 14.1–62.8 | 0.064 0.089 | ||
Schleiermacher et al. (2011) [31] Univariate analysis | No: 89.4 Yes: 66.3 | S.E. 2.2 S.E. 10.4 | 0.002 | ||||||
Schleiermacher (2007) [30] Univariate analysis | No: 90.3 Yes: 68.6 | S.E. 2.9 S.E. 10.7 | <0.001 | No: 72.1 Yes: 33.1 | S.E. 4.3 S.E. 10.9 | <0.001 | |||
Schleiermacher et al. (2007) [30] Multivariable analysis | NS | ||||||||
3p deletion | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 87.9 Yes: 83.3 >18 months No: 79.4 Yes: 83.3 | 95% CI 78.5–93.3 95% CI 27.3–97.5 95% CI 64.9–88.4 95% CI 27.3–97.5 | 0.301 0.811 | 12–18 months No: 75.6 Yes: 42.9 >18 months No: 59.9 Yes: 42.9 | 95% CI 64.9–93.3 95% CI 9.8–73.4 95% CI 44.6–72.1 95% CI 9.8–73.4 | 0.083 0.427 | ||
Schleiermacher et al. (2011) [31] Univariate analysis | No: 86.6 Yes: 100 | S.E. 2.4 S.E. 4.3 | NS | ||||||
Schleiermacher et al. (2007) [30] Univariate analysis | No: 92.1 Yes: 64.0 | S.E. 2.7 S.E. 10.4 | <0.001 | No: 72.5 Yes: 36.5 | S.E. 4.4 S.E. 10.0 | <0.001 | |||
Schleiermacher et al. (2007) [30] Multivariable analysis | NS | ||||||||
Simon et al. (2004) [33] Univariate analysis | No: 96.1 Yes: 83.3 | S.E. 1.7 S.E. 15.2 | 0.268 | No: 83.7 Yes: 0 | S.E. 3.3 NA | <0.001 | |||
Simon et al. (2004) [33] Multivariable analysis | NR | NR | 0.491 | NR | NR | 0.814 | |||
Spitz et al. (2003) [34] Univariate analysis | No: 82 Yes: 0 | S.E. 6 NA | 0.001 | ||||||
4p LOH | Uryu et al. (2017) [36] Univariate analysis Uryu et al. (2017) [36] Multivariable analysis | No: 87 * Yes: 66 * | 2.49 | NR 95% CI 0.5–10.1 | 0.04 0.25 | ||||
4p deletion | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 89.1 Yes: 50.0 >18 months No: 81.6 Yes: 50.0 | 95% CI 79.8–94.2 95% CI 5.8–84.5 95% CI 67.1–90.2 95% CI 5.8–84.5 | <0.001 0.016 | 12–18 months No: 75.5 Yes: 25.0 >18 months No: 60.3 Yes: 25.0 | 95% CI 65.1–83.2 95% CI 0.9–66.5 95% CI 45.6–72.2 95% CI 0.9–66.5 | 0.042 0.260 | ||
Schleiermacher et al. (2011) [31] Univariate analysis | No: 87.7 Yes: 78.6 | S.E. 2.3 S.E. 11.0 | NS | ||||||
17q gain | Defferrari et al. (2015) [24] Univariate analysis | 12–18 months No: 94.0 Yes: 74.5 >18 months No: 89.2 Yes: 65.4 | 95% CI 81.6–98.1 95% CI 55.2–86.5 95% CI 68.9–96.5 95% CI 41.8–81.3 | 0.002 0.009 | 12–18 months No: 78.3 Yes: 60.9 >18 months No: 62.8 Yes: 48.5 | 95% CI 65.1–86.9 95% CI 42.4–75.1 95% CI 43.2–77.3 95% CI 28.2–66.1 | 0.050 0.211 | ||
Schleiermacher et al. (2012) [32] Univariate analyis | No: 86 Yes:72 | S.E. 2.9 S.E. 4.3 | <0.001 | No: 75 Yes: 49 | S.E. 3.6 S.E. 4.7 | <0.001 | |||
Schleiermacher et al. (2011) [31] Univariate analyis | No: 91.2 Yes: 69.0 | S.E. 2.4 S.E. 7.4 | <0.001 | ||||||
Schleiermacher et al. (2007) [30] Univariate analysis | No: 97.2 No: 75.9 | S.E. 2.0 S.E. 5.7 | <0.001 | No: 85.0 Yes: 44.7 | S.E. 4.2 S.E. 6.5 | <0.001 | |||
Schleiermacher et al. (2007) [30] Multivariable analysis | NS | ||||||||
Bown et al. (1999) [23] Univariate analysis | No: 90 Yes: 38 | 95% CI 81–95 95% CI 21–54 | <0.001 | ||||||
X-deletion | Parodi et al. (2019) [26] Univariate analysis | No: 83.1 Yes: 100 | 95% CI 73.0–89.7 NA | 0.002 | |||||
Chromosomal breakpoints | Schleiermacher et al. (2010) [29] Univariate analyis | 1–3: 92 * 4–6: 53 * >7: 28 * | NR | <0.001 | 1–3: 65 * 4–6: 30 * >7: 28 * | NR | <0.001 | ||
ALK mutation | Rosswog et al. (2023) [28] Univariate analysis | No: 96 Yes: 92 | NR | 0.480 | No: 78 Yes: 70 | NR | 0.330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruinsma, R.S.; Lekkerkerker, C.W.M.; Fiocco, M.; Dierselhuis, M.P.; Langenberg, K.P.S.; Tytgat, G.A.M.; van Noesel, M.M.; Wijnen, M.H.W.A.; van der Steeg, A.F.W.; de Krijger, R.R. Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review. Cancers 2025, 17, 13. https://doi.org/10.3390/cancers17010013
Bruinsma RS, Lekkerkerker CWM, Fiocco M, Dierselhuis MP, Langenberg KPS, Tytgat GAM, van Noesel MM, Wijnen MHWA, van der Steeg AFW, de Krijger RR. Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review. Cancers. 2025; 17(1):13. https://doi.org/10.3390/cancers17010013
Chicago/Turabian StyleBruinsma, Rixt S., Caroline W. M. Lekkerkerker, Marta Fiocco, Miranda P. Dierselhuis, Karin P. S. Langenberg, Godelieve A. M. Tytgat, Max M. van Noesel, Marc H. W. A. Wijnen, Alida F. W. van der Steeg, and Ronald R. de Krijger. 2025. "Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review" Cancers 17, no. 1: 13. https://doi.org/10.3390/cancers17010013
APA StyleBruinsma, R. S., Lekkerkerker, C. W. M., Fiocco, M., Dierselhuis, M. P., Langenberg, K. P. S., Tytgat, G. A. M., van Noesel, M. M., Wijnen, M. H. W. A., van der Steeg, A. F. W., & de Krijger, R. R. (2025). Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review. Cancers, 17(1), 13. https://doi.org/10.3390/cancers17010013