The Genetic and Epigenetic Alterations of Plasmablastic Lymphoma: A Narrative Review
Simple Summary
Abstract
1. Background of Plasmablastic Lymphoma (PBL)
2. Demographic Distribution
3. Impact of HIV Status
4. Global Trends and Disparity in Data Availability
5. Incidence
6. Historical Progression and Advancements in Understanding the Genetic and Epigenetic Mechanisms of PBL
7. Multi-Omic Profiling in PBL
7.1. Genomic Modifications (DNA Sequencing and Copy Number Variations)
7.2. Transcriptomic and miRNA Profiling
7.3. Precision Oncology via Multi-Omic Integration
7.4. Single-Cell and Spatial Omics
7.5. ATAC-Seq and Chromatin Accessibility in PBL
7.6. Exosomes and microRNAs in PBL Pathogenesis
8. The Role of Genetic Modifications in the Differential Diagnosis of PBL, MM and DLBCL
8.1. PBL
8.2. Multiple Myeloma
8.3. DLBCL
9. The Role of Epigenetic Modifications in the Differential Diagnosis of PBL, MM and DLBCL
9.1. PBL
9.2. Multiple Myeloma
9.3. DLBCL
10. Prognostic Implications of Specific Genetic and Epigenetic Alterations in PBL
10.1. MYC: The Central Driver of Aggressiveness and Prognosis
10.2. TP53 Mutations: A Contributor to Resistance
10.3. IRF4 (MUM1): A Marker of Differentiation and Immune Modulation
10.4. JAK-STAT Pathway: A Probable Therapeutic Target in Tumor Immunomodulation
10.5. NOTCH Pathway: A Driver of Survival and Therapy Resistance
11. Differences Between EBV-Positive and EBV-Negative PBL
Feature | EBV-Positive PBL | EBV-Negative PBL |
---|---|---|
Prevalence in PBL | Approximately 75% of cases | Less common |
Common in HIV+ individuals | Yes | Less common, more in HIV-negative |
Demographic Trends | Younger males, often HIV-positive | Older, immunocompetent individuals |
Site of Involvement | Oral cavity predominant | More extraoral involvement |
Oncogenic EBV Proteins | EBNA1, LMP1, LMP2A | Not applicable |
Common Genetic Alterations | STAT3, NOTCH1 | Frequent in TP53, KRAS, NRAS |
MYC Rearrangement Frequency | High | Lower |
Mutations in Epigenetic Regulators | Fewer (e.g., TET2, KMT2D) | More frequent (e.g., TET2, KMT2D) |
Mutations in Other Genes | Less frequent TP53/RAS pathway mutations. | Common TP53, RAS pathway mut. |
Immune Microenvironment | More immune infiltrates, sparse TME | “Immune-cold”, fewer infiltrates |
PD-L1 Expression | Primarily on microenvironment cells; tumor cell expression in some | Primarily on tumor-associated macrophages |
CD8+ T-cell Infiltration | Abundant, exhaustion markers (PD-1+, TIM-3+) | Fewer CD8+ T-cells |
Immune Evasion Mechanisms | PD-1/PD-L1, TIM-3 checkpoints exploited | Less prominent checkpoint activation |
Prognosis | More favorable | Poorer |
Response to Therapy | Better response to chemotherapy, extended survival | Generally poorer outcomes |
Clinical Recommendations | Stratify studies by EBV; consider spatial immune profiling | Requires distinct immunogenomic characterization |
12. Therapeutic Strategies Guided by Genetic and Molecular Insights
13. Future Directions
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bibas, M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr. J. Hematol. Infect. Dis. 2024, 16, e2024007. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castillo, J.J.; Bibas, M.; Miranda, R.N. The biology and treatment of plasmablastic lymphoma. Blood 2015, 125, 2323–3230. [Google Scholar] [CrossRef] [PubMed]
- Delecluse, H.J.; Anagnostopoulos, I.; Dallenbach, F.; Hummel, M.; Marafioti, T.; Schneider, U.; Huhn, D.; Schmidt-Westhausen, A.; Reichart, P.A.; Gross, U.; et al. Plasmablastic lymphomas of the oral cavity: A new entity associated with the human immunodeficiency virus infection. Blood 1997, 89, 1413–1420. [Google Scholar] [CrossRef]
- Colomo, L.; Loong, F.; Rives, S.; Pittaluga, S.; Martinez, A.; Lopez-Guillermo, A.; Ojanguren, J.; Romagosa, V.; Jaffe, E.; Campo, E.; et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am. J. Surg. Pathol. 2004, 28, 736–747. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; de Barreto, I.; Araujo, O.; Berti, E.; Bhaget, G.; Bordes, A.M.; Boyer, D.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Morscio, J.; Dierickx, D.; Nijs, J.; Verhoef, G.; Bittoun, E.; Vanoeteren, X.; Wlodarska, I.; Sagaert, X.; Tousseyn, T. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: Single-center series of 25 cases and meta-analysis of 277 reported cases. Am. J. Surg. Pathol. 2014, 38, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, J.; Samanez-Figari, C.; Lopez, L.; Quintana, S.; Aliaga, R.; Custodio, Y.; Alcarraz, C.; Enriquez, D.; Duenas, D.; Carrasco, A.; et al. Clinicopathologic Comparison of Plasmablastic Lymphoma Patients According HIV-Status: Peruvian Experience. Blood 2020, 136 (Suppl. S1), 19. [Google Scholar] [CrossRef]
- Vaughan, J.; Perner, Y.; Mayne, E.; Wiggill, T. Plasmablastic lymphoma in Johannesburg, South Africa, in the era of widescale antiretroviral therapy use. HIV Med. 2021, 22, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Wiggill, T.; Mayne, E.; Perner, Y.; Vaughan, J. Changing Patterns of Lymphoma in the Antiretroviral Therapy Era in Johannesburg, South Africa. J. Acquir. Immune. Defic. Syndr. 2021, 88, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-H.; Wang, H.-T.; Wan, Z.; Gao, S.; Sun, W.-R.; Gao, G.-H.; Liu, L.; Feng, J. Clinicopathologic Characteristics, Therapeutic Modalities and Survival Outcomes of Plasmablastic Lymphoma: A Real-World Study, 15 November 2021. Arch. Med. Sci. 2024, 20, 1874–1886. [Google Scholar] [PubMed]
- Gor, D.; Gwalani, P.; Gor, R. Epidemiological characteristics and cause-specific survival analysis of plasmablastic lymphoma (PBL) using the SEER database. J. Clin. Oncol. 2022, 40, e19546. [Google Scholar] [CrossRef]
- Hansen, A.R.; Vardell, V.A.; Fitzgerald, L.A. Epidemiologic Characteristics, Treatment Patterns, and Survival Analysis of Plasmablastic Lymphoma in the United States: A SEER and NCDB Analysis. Clin. Lymphoma Myeloma Leuk. 2024, 24, e152–e160.e3. [Google Scholar] [CrossRef] [PubMed]
- Latiolais, H.; Liu, Q.; Michalek, J. A National Cancer Database Analysis of Demographics, Treatment Patterns and Survival Trends of Patients with Plasmablastic Lymphoma in US: Does Ethnicity Predict Enhanced Outcomes? Blood 2023, 142 (Suppl. S1), 1774. [Google Scholar] [CrossRef]
- Tellez, I.K.; Rubalcava, L.F.; Vargas, O.; Castro, G.; Mares, M.; Salcedo, A.; Cesarman-Maus, G.; Maldonado, B. Barriers to First-Line Therapy in Plasmablastic Lymphoma: A Retrospective Study in a Middle-Income Country. Blood 2024, 144 (Suppl. S1), 6472. [Google Scholar] [CrossRef]
- Kolawa, A.; McLain, J.H.; Ye, S.; Siddigi, I.; Mohrbacher, A. Characteristics and outcomes of plasmablastic lymphoma in a predominantly Hispanic population. J. Clin. Oncol. 2024, 42, e19079. [Google Scholar] [CrossRef]
- Montes-Moreno, S.; Martinez-Magunacelaya, N.; Zecchini-Barrese, T.; Villambrosía, S.G.; Linares, E.; Ranchal, T.; Rodriguez-Pinilla, M.; Batlle, A.; Cereceda-Company, L.; Revert-Arce, J.B.; et al. Plasmablastic lymphoma phenotype is determined by genetic alterations in MYC and PRDM1. Mod. Pathol. 2017, 30, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ramis-Zaldivar, J.E.; Gonzalez-Farre, B.; Nicolae, A.; Pack, S.; Clot, G.; Nadeu, F.; Mottok, A.; Horn, H.; Song, J.Y.; Fu, K.; et al. MAPK and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 2021, 106, 2682–2693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Reyero, J.; Martinez Magunacelaya, N.; Gonzalez de Villambrosia, S.; Loghavi, S.; Gomez Mediavilla, A.; Tonda, R.; Beltran, S.; Gut, M.; Pereña Gonzalez, A.; d’Ámore, E.; et al. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 2021, 106, 1120–1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mottok, A.; Renné, C.; Seifert, M.; Oppermann, E.; Bechstein, W.; Hansmann, M.L.; Küppers, R.; Bräuninger, A. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 2009, 114, 4503–4506. [Google Scholar] [CrossRef] [PubMed]
- Valera, A.; Balagué, O.; Colomo, L.; Martínez, A.; Delabie, J.; Taddesse-Heath, L.; Jaffe, E.S.; Campo, E. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am. J. Surg. Pathol. 2010, 34, 1686–1694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Witte, H.M.; Künstner, A.; Hertel, N.; Bernd, H.W.; Bernard, V.; Stölting, S.; Merz, H.; von Bubnoff, N.; Busch, H.; Feller, A.C.; et al. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv. 2022, 6, 637–651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cinar, M.; Rong, H.R.; Chineke, I.; Louissaint, A., Jr.; Chapman-Fredricks, J.R.; Vega, F.; Gunthel, C.J.; Love, C.; Mosunjac, M.; Flowers, C.R.; et al. Genetic Analysis of Plasmablastic Lymphomas in HIV (+) Patients Reveals Novel Driver Regulators of the Noncanonical NF-κB Pathway. Blood 2018, 132 (Suppl. S1), 1565. [Google Scholar] [CrossRef]
- Leeman-Neill, R.J.; Soderquist, C.R.; Montanari, F.; Raciti, P.; Park, D.; Radeski, D.; Mansukhani, M.M.; Murty, V.V.; Hsiao, S.; Alobeid, B.; et al. Phenogenomic heterogeneity of post-transplant plasmablastic lymphomas. Haematologica 2022, 107, 201–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gravelle, P.; Péricart, S.; Tosolini, M.; Fabiani, B.; Coppo, P.; Amara, N.; Traverse-Gléhen, A.; Van Acker, N.; Brousset, P.; Fournie, J.J.; et al. EBV infection determines the immune hallmarks of plasmablastic lymphoma. Oncoimmunology 2018, 7, e1486950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ambrosio, M.R.; Mundo, L.; Gazaneo, S.; Picciolini, M.; Vara, P.S.; Sayed, S.; Ginori, A.; Lo Bello, G.; Del Porro, L.; Navari, M.; et al. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget 2017, 8, 107356–107373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verdu-Bou, M.; Baptista, M.J.; Ribeiro, M.L.; López., A.M.; Profitos-Peleja, N.; Frontzek, F.; Roue, G.; Mate, J.L.; Pellicer, M.; Abrisqueta, P.; et al. The role of miR-150-5p/E2F3/survivin axis in the pathogenesis of plasmablastic lymphoma and its therapeutic potential. Blood Adv. 2025. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Frontzek, F.; Staiger, A.M.; Zapukhlyak, M.; Xu, W.; Bonzheim, I.; Borgmann, V.; Sander, P.; Baptista, M.J.; Heming, J.-N.; Berning, P.; et al. Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma. Nat. Commun. 2021, 12, 5183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frontzek, F.; Hailfinger, S.; Lenz, G. Plasmablastic lymphoma: From genetics to treatment. Leuk. Lymphoma 2023, 64, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Khedr, M.; Yusuf, Y.; Aftab, L. Plasmablastic Myeloma Versus Plasmablastic Lymphoma; Is MYC Rearrangement Helpful Towards a Precise Diagnosis? Am. J. Clin. Pathol. 2020, 154 (Suppl. S1), S105. [Google Scholar] [CrossRef]
- Chang, C.C.; Zhou, X.; Taylor, J.J.; Huang, W.-T.; Ren, X.; Monzon, F.; Feng, Y.; Rao, P.H.; Lu, X.-Y.; Fabio, F.; et al. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH): Revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma. J. Hematol. Oncol. 2009, 2, 47. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, A.; Kamran, H.; Akhter, A.; Seno, R.; Torlakovic, E.E.; Roshan, T.M.; Shabani-Rad, M.T.; Elyamany, G.; Minoo, P.; Stewart, D. Identification of Potential Therapeutic Targets for Plasmablastic Lymphoma Through Gene Expression Analysis: Insights into RAS and Wnt Signaling Pathways. Mod. Pathol. 2023, 36, 100198. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, C.B.; Boscolo Bielo, L.; Aftimos, P.; Beltran, H.; Benary, M.; Chakravarty, D.; Collienne, M.; Dienstmann, R.; El Helali, A.; Gainor, J.; et al. ESMO Precision Oncology Working Group recommendations on the structure and quality indicators for molecular tumour boards in clinical practice. Ann. Oncol. 2025, 36, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Witte, H.M.; Fähnrich, A.; Künstner, A.; Riedl, J.; Fliedner, S.M.J.; Reimer, N.; Hertel, N.; von Bubnoff, N.; Bernard, V.; Merz, H.; et al. Primary refractory plasmablastic lymphoma: A precision oncology approach. Front. Oncol. 2023, 13, 1129405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, C.; Pasqualucci, L.; Dalla-Favera, R. Molecular pathogenesis of diffuse large B-cell lymphoma. Semin. Diagn. Pathol. 2011, 28, 167–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, F.Q.; Zeng, L.; Tang, N.; Tang, Y.P.; Zhou, B.P.; Li, F.F.; Wu, W.G.; Zeng, X.B.; Peng, S.S. MicroRNA-155 Downregulation Promotes Cell Cycle Arrest and Apoptosis in Diffuse Large B-Cell Lymphoma. Oncol. Res. 2016, 24, 415–427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iizasa, H.; Kim, H.; Kartika, A.V.; Kanehiro, Y.; Yoshiyama, H. Role of Viral and Host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases. Front. Immunol. 2020, 11, 367, Erratum in Front. Immunol. 2020, 11, 498. [Google Scholar] [CrossRef]
- Wong, J.; Frontzek, F.; Lytle, A.; Collinge, B.; Hilton, L.; Ben-Neriah, S.; Slack, G.W.; Farinha, P.; Gerrie, A.S.; Li, Y.; et al. Biological and Prognostic Subgroups of Plasmablastic Lymphoma Defined by EBV Status and MYC Rearrangement—An L.L.M.P.P. Study. Blood 2024, 144, 231. [Google Scholar] [CrossRef]
- Kobayashi, H.; Chijimatsu, R.; Naoi, Y.; Otani, Y.; Mizuta, R.; Fujii, K.; Ishida, J.; Murakami, H.; Ujiie, H.; Ikeuchi, K.; et al. Single-cell and spatial characterization of plasmablast-like lymphoma cells in primary central nervous system lymphoma. Blood Neoplasia 2025, 2, 100058. [Google Scholar] [CrossRef]
- Nguyen, L.; Papenhausen, P.; Shao, H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes 2017, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Pileri, S.A.; Mazzara, S.; Derenzini, E. Plasmablastic lymphoma: One or more tumors? Haematologica 2021, 106, 2542–2543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Küppers, R. The Genomic Landscape of HIV-Associated Plasmablastic Lymphoma. Blood Cancer Discov. 2020, 1, 23–25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bendig, S.; Walter, W.; Meggendorfer, M.; Bär, C.; Fuhrmann, I.; Kern, W.; Haferlach, T.; Haferlach, C.; Stengel, A. Whole genome sequencing demonstrates substantial pathophysiological differences of MYC rearrangements in patients with plasma cell myeloma and B-cell lymphoma. Leuk. Lymphoma 2021, 62, 3420–3429. [Google Scholar] [CrossRef] [PubMed]
- Ramburan, A.; Kriel, R.; Govender, D. Plasmablastic lymphomas show restricted EBV latency profile and MYC gene aberrations. Leuk. Lymphoma 2022, 63, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Nassiri, M. Lymphoproliferative Neoplasms with Plasmablastic Morphology. Arch. Pathol. Lab. Med. 2022, 146, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Reagan, J.L. Plasmablastic lymphoma: A systematic review. Sci. World J. 2011, 11, 687–696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elyamany, G.; Alzahrani, A.M.; Aljuboury, M.; Mogadem, N.; Rehan, N.; Alsuhaibani, O.; Alabdulaaly, A.; Al-Mussaed, E.; Elhag, I.; AlFiaar, A. Clinicopathologic features of plasmablastic lymphoma: Single-center series of 8 cases from Saudi Arabia. Diagn. Pathol. 2015, 10, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hopp, L.; Löffler-Wirth, H.; Binder, H. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States. Genes 2015, 6, 812–840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loghavi, S.; Alayed, K.; Aladily, T.N.; Zuo, Z.; Ng, S.B.; Tang, G.; Hu, S.; Yin, C.C.; Miranda, R.N.; Medeiros, L.J.; et al. Stage, age, and EBV status impact outcomes of plasmablastic lymphoma patients: A clinicopathologic analysis of 61 patients. J. Hematol. Oncol. 2015, 8, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, S.; Fonseca, R.; Ketterling, R.P.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Hayman, S.R.; Buadi, F.K.; Dingli, D.; Knudson, R.A.; et al. Trisomies in multiple myeloma: Impact on survival in patients with high-risk cytogenetics. Blood 2012, 119, 2100–2105. [Google Scholar] [CrossRef]
- Chen, B.J.; Chuang, S.S. Lymphoid Neoplasms with Plasmablastic Differentiation: A Comprehensive Review and Diagnostic Approaches. Adv. Anat. Pathol. 2020, 27, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.E.; Fuller, K.A.; Erber, W.N. Chromosomal defects in multiple myeloma. Blood Rev. 2024, 64, 101168. [Google Scholar] [CrossRef] [PubMed]
- Pasqualucci, L.; Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood 2018, 131, 2307–2319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frauenfeld, L.; Campo, E. Advances in the Classification of Aggressive B-cell Lymphomas. Adv. Anat. Pathol. 2025, 32, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Gentles, A.J.; Sujoy, V.; Vega, F.; Dumur, C.I.; Blevins, T.L.; Bernal-Mizrachi, L.; Mosunjac, M.; Pimentel, A.; Zhu, D.; et al. Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia 2015, 29, 2270–2273. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Furman, M.; Beltrán, B.E.; Bibas, M.; Bower, M.; Chen, W.; Díez-Martín, J.L.; Liu, J.J.; Miranda, R.N.; Montoto, S.; et al. Human immunodeficiency virus-associated plasmablastic lymphoma: Poor prognosis in the era of highly active antiretroviral therapy. Cancer 2012, 118, 5270–5277. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Alzrigat, M.; Párraga, A.A.; Enroth, S.; Singh, U.; Ungerstedt, J.; Österborg, A.; Brown, P.J.; Ma, A.; Jin, J.; et al. Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target. Oncotarget 2016, 7, 6809–6823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berardi, A.; Kaestner, C.L.; Ghitti, M.; Quilici, G.; Cocomazzi, P.; Li, J.; Ballabio, F.; Zucchelli, C.; Knapp, S.; Licht, J.D.; et al. The C-terminal PHDVC5HCH tandem domain of NSD2 is a combinatorial reader of unmodified H3K4 and tri-methylated H3K27 that regulates transcription of cell adhesion genes in multiple myeloma. Nucleic Acids Res. 2025, 53, 13. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, X.; Dang, L.; Jiang, H.; Xie, Y.; Li, X.; Guo, J.; Wang, Y.; Peng, Z.; Wang, M.; et al. Epigenomic reprogramming via HRP2-MINA dictates response to proteasome inhibitors in multiple myeloma with t(4;14) translocation. J. Clin. Investig. 2022, 132, e149526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy Choudhury, S.; Byrum, S.D.; Alkam, D.; Ashby, C.; Zhan, F.; Tackett, A.J.; Van Rhee, F. Expression of integrin β-7 is epigenetically enhanced in multiple myeloma subgroups with high-risk cytogenetics. Clin. Epigenet. 2023, 15, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asmar, F.; Punj, V.; Christensen, J.; Pedersen, M.T.; Pedersen, A.; Nielsen, A.B.; Hother, C.; Ralfkiaer, U.; Brown, P.; Ralfkiaer, E.; et al. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica 2013, 98, 1912–1920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosikiewicz, W.; Chen, X.; Dominguez, P.M.; Ghamlouch, H.; Aoufouchi, S.; Bernard, O.A.; Melnick, A.; Li, S. TET2 deficiency reprograms the germinal center B cell epigenome and silences genes linked to lymphomagenesis. Sci. Adv. 2020, 6, eaay5872. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De, S.; Shaknovich, R.; Riester, M.; Elemento, O.; Geng, H.; Kormaksson, M.; Jiang, Y.; Woolcock, B.; Johnson, N.; Polo, J.M.; et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet. 2013, 9, e1003137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.H.; Cai, K.; Xu, P.P.; Wang, L.; Huang, C.X.; Fang, Y.; Cheng, S.; Sun, X.J.; Liu, F.; Huang, J.Y.; et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct. Target. Ther. 2021, 6, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldana, J.; Gardner, M.L.; Freitas, M.A. Integrative Multi-Omics Analysis of Oncogenic EZH2 Mutants: From Epigenetic Reprogramming to Molecular Signatures. Int. J. Mol. Sci. 2023, 24, 11378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, J.; Zhang, J.; Scott, D.; Slack, G.W.; Farinha, P.; Rosenwald, A.; Ott, G.; Ondrejka, S.L.; Cook, J.R.; Campo, E.; et al. HIV-Associated Diffuse Large B-Cell Lymphoma Shows Different Genomic Patterns between EBV-Positive and EBV-Negative Tumors. Blood 2024, 144, 2976. [Google Scholar] [CrossRef]
- Laurent, C.; Fabiani, B.; Do, C.; Tchernonog, E.; Cartron, G.; Gravelle, P.; Amara, N.; Malot, S.; Palisoc, M.M.; Copie-Bergman, C.; et al. Immune-checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lymphoma: A clinical and pathological study in 82 patients. Haematologica 2016, 101, 976–984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bogusz, A.M.; Seegmiller, A.C.; Garcia, R.; Shang, P.; Ashfaq, R.; Chen, W. Plasmablastic lymphomas with MYC/IgH rearrangement: Report of three cases and review of the literature. Am. J. Clin. Pathol. 2009, 132, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018, 24, 679–690. [Google Scholar] [CrossRef]
- Witte, H.M.; Hertel, N.; Merz, H.; Bernd, H.W.; Bernard, V.; Stölting, S.; von Bubnoff, N.; Feller, A.C.; Gebauer, N. Clinicopathological characteristics and MYC status determine treatment outcome in plasmablastic lymphoma: A multi-center study of 76 consecutive patients. Blood Cancer J. 2020, 10, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Z.; Filip, I.; Gomez, K.; Engelbrecht, D.; Meer, S.; Lalloo, P.N.; Patel, P.; Perner, Y.; Zhao, J.; Wang, J.; et al. Genomic characterization of HIV-associated plasmablastic lymphoma identifies pervasive mutations in the JAK-STAT pathway. Blood Cancer Discov. 2020, 1, 112–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bibas, M. The plasmablastic lymphoma. A state-of-the-art review: Part 2-focus on therapy. Mediterr. J. Hematol. Infect. Dis. 2024, 16, e2024015. [Google Scholar] [CrossRef]
- Li, J.W.; Peng, H.L.; Zhou, X.Y.; Wang, J.J. Plasmablastic lymphoma: Current knowledge and future directions. Front. Immunol. 2024, 15, 1354604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, N.; Zhang, H.; Song, J.; Mammadova, J.; Shah, B.D.; Saeed, H.; Grajales-Cruz, A.F.; Isenalumhe, L.L.; Gaballa, S.; Bello, C.M.; et al. B-Cell Maturation Antigen (BCMA) Expression and Clinical Features of Plasmablastic Lymphoma (PBL). Blood 2023, 142 (Suppl. S1), 3138. [Google Scholar] [CrossRef]
- Raghunandan, S.; Pauly, M.; Blum, W.G.; Qayed, M.; Dhodapkar, M.V.; Elkhalifa, M.; Watkins, B.; Schoettler, M.; Horwitz, E.; Parikh, S.; et al. BCMA CAR-T induces complete and durable remission in refractory plasmablastic lymphoma. J. Immunother. Cancer 2023, 11, e006684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cannova, J.; Duvall, A.S.; Venkataraman, G.; Wool, G.D.; Gurbuxani, S.; Riedell, P.A. Targeting BCMA in Plasmablastic Lymphoma: Two Cases of Therapeutic Response to Teclistamab. Blood 2023, 142 (Suppl. S1), 6282. [Google Scholar] [CrossRef]
- Cheng, L.; Song, Q.; Liu, M.; Wang, Y.; Yi, H.; Qian, Y.; Xu, P.; Cheng, S.; Wang, C.; Wang, L.; et al. Case Report: Successful Management of a Refractory Plasmablastic Lymphoma Patient with Tislelizumab and Lenalidomide. Front. Immunol. 2021, 12, 702593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castillo, J.J.; Guerrero-Garcia, T.; Baldini, F.; Tchernonog, E.; Cartron, G.; Ninkovic, S.; Cwynarski, K.; Dierickx, D.; Tousseyn, T.; Lansigan, F.; et al. Bortezomib plus EPOCH is effective as frontline treatment in patients with plasmablastic lymphoma. Br. J. Haematol. 2019, 184, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Qiu, L.; Ma, L.; Zhang, N.; Fan, F.Y. Case Report: Bortezomib Plus CDOP Followed by Sequential Autologous Hematopoietic Stem Cell Transplantation and Lenalidomide-Based Maintenance Therapy in Plasmablastic Lymphoma. Front. Med. 2021, 8, 749863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dittus, C.; Grover, N.; Ellsworth, S.; Tan, X.; Park, S.I. Bortezomib in combination with dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) induces long-term survival in patients with plasmablastic lymphoma: A retrospective analysis. Leuk. Lymphoma 2018, 59, 2121–2127. [Google Scholar] [CrossRef]
- Guerrero-Garcia, T.A.; Mogollon, R.J.; Castillo, J.J. Bortezomib in plasmablastic lymphoma: A glimpse of hope for a hard-to-treat disease. Leuk. Res. 2017, 62, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Lamacchia, J.; Silver, J.; Flynn, C.A.; Sarosiek, S. Complete response to pembrolizumab and radiation in a patient with HIV-negative, EBV-positive plasmablastic lymphoma. Am. J. Hematol. 2021, 96, E390–E392. [Google Scholar]
- Ryu, Y.K.; Ricker, E.C.; Soderquist, C.R.; Francescone, M.A.; Lipsky, A.H.; Amengual, J.E. Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma. J. Clin. Med. 2022, 11, 4928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bibas, M.; Grisetti, S.; Alba, L.; Picchi, G.; Del Nonno, F.; Antinori, A. Patient with HIV-associated plasmablastic lymphoma responding to bortezomib alone and in combination with dexamethasone, gemcitabine, oxaliplatin, cytarabine, and pegfilgrastim chemotherapy and lenalidomide alone. J. Clin. Oncol. 2010, 28, e704–e708. [Google Scholar] [CrossRef] [PubMed]
- Schmit, J.M.; Delaune, J.; Norkin, M.; Grosbach, A. A case of plasmablastic lymphoma achieving complete response and durable remission after lenalidomide-based therapy. Oncol. Res. Treat. 2017, 40, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Marrero, W.D.; Cruz-Chacón, A.; Castillo, C.; Cabanillas, F. Successful Use of Bortezomib-Lenalidomide Combination as Treatment for a Patient with Plasmablastic Lymphoma. Clin. Lymphoma Myeloma Leuk. 2018, 18, e275–e277. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | Plasmablastic Lymphoma | Multiple Myeloma | Large B-Cell Lymphoma |
---|---|---|---|
Typical Age Group | Middle-aged to older adults; common in HIV+ patients | Older adults (median ~65–70 years) | Wide age range; more common in older adults |
Immune Status | Often immunocompromised (HIV/AIDS, post-transplant) | Generally immunocompetent | Usually immunocompetent |
Site of Involvement | Extranodal (oral cavity, GI tract, lymph nodes, skin) | Bone marrow; bone lesions | Lymph nodes; extranodal in 30–40% |
Symptoms | Rapidly growing mass, B symptoms, cytopenias | CRAB: hyperCalcemia, Renal dysfunction, Anemia, Bone lesions | B symptoms, lymphadenopathy |
Course | Aggressive, rapidly progressive | Chronic but progressive | Variable; indolent or aggressive |
Response to Therapy | Poor response to conventional CHOP or EPHOC; high relapse | Responds to new Drugs and Therapies | R-CHOP often effective; |
Prognosis | Poor (<1 year in advanced cases) | Variable; improved with modern therapy | Depends on subtype; poor for double/triple-hit |
HIV Association | Strongly associated | Not associated | Not typically associated |
Diagnostic Challenges | Mimics myeloma; lacks marrow CRAB features | Mimics PBL morphologically; systemic/marrow involvement | Overlaps with PBL in high-grade forms |
Cell of Origin | Key Genetic Alterations | MYC Dysregulation | EBV Association | Common Mutations | Copy Number Variations | Key Signaling Pathways | Prognostic Markers | Microenvironment | |
---|---|---|---|---|---|---|---|---|---|
PBL | Post-germinal center B-cell transitioning to plasmablast | MYC rearrangements (50–60%) TP53 mutations (30–50%) PRDM1/BLIMP1 loss | High frequency of MYC translocations (partner: IgL/IgH) MYC overexpression | Strong (60–75% of cases) Linked to HIV/immunosuppression | STAT3 (30%) KRAS/NRAS SOCS1 TET2 | Gains: 1q, 8q (MYC locus) Losses: 17p (TP53), 13q | MYC-driven proliferation JAK/STAT activation NF-κB (subset) | MYC rearrangement TP53 loss EBV negativity (worse prognosis) | immunosuppression-driven (HIV, transplant) EBV-mediated immune evasion |
MM | Terminally differentiated bone marrow plasma cell | Hyperdiploidy (50%) IgH translocations (t(11;14), t(4;14), t(14;16)) Del(17p) (high-risk) | Rare MYC rearrangements MYC upregulation via secondary mechanisms (e.g., mutations) | Rare | KRAS/NRAS (50%) BRAF (10–15%) TP53 (10%) FAM46C | Gains: 1q21 (CKS1B), 11q Losses: 13q, 17p, 1p | NF-κB (via TRAF3, CYLD mutations) MAPK/ERK (RAS mutations) PI3K | Del(17p) t(4;14), t(14;16) 1q21 amplification | Bone marrow niche (IL-6, VEGF, RANKL) Osteoclast activation |
LBCL | Germinal center (GCB subtype) or activated B-cell (ABC subtype) | BCL2 rearrangements (GCB) MYC rearrangements (Double-Hit) BCL6 rearrangements | MYC rearrangements (10–15%) Overexpression in Double-/Triple-Hit lymphomas | Rare (except EBV+ DLBCL in elderly or immune-compromised) | MYD88 L265P (ABC subtype, 30%) CD79B (ABC) EZH2 (GCB) TP53 (20%) | Gains: 3q27 (BCL6), 18q21 (BCL2) Losses: 6q, 9p21 (CDKN2A) | NF-κB (ABC subtype) BCR signaling (MYD88/CD79B mutations) PI3K/AKT | Double-Hit/Triple-Hit (MYC+ BCL2/BCL6) ABC subtype (poor prognosis) TP53 mutations | Dense tumor microenvironment (T-cells, macrophages) PD-L1 expression (subset) |
Epigenetic Feature | Plasmablastic Lymphoma | Multiple Myeloma | Large B-Cell Lymphoma |
---|---|---|---|
Promoter Methylation | Hypermethylation of PRDM1 and CDKN2A; EBV-driven methylation changes | Global hypomethylation; focal hypermethylation disrupts gene regulation and differentiation | Distinct subtype-specific methylation; TET2 mutations induce hypermethylation |
Histone Modifications | Altered by LMP1; changes in H3 methylation; impact on BCR signaling genes | NSD2/EZH2/SMARCA2 interactions alter H3K27me3; EZH2 inhibition induces apoptosis | EZH2 gain-of-function ↑H3K27me3; KMT2D loss ↓H3K4me3 at enhancers |
miRNA Dysregulation | miR-150-5p downregulated; associated with E2F3/BIRC5 activation and apoptosis suppression | miR-342-3p, miR10b-5p Hypermethylaion not well highlighted | miR-155, miR150; probably not a central feature in DLBCL epigenetics |
Chromatin-Modifying Genes | Mutations in TET2, EP300; affect gene expression linked to JAK-STAT/MAPK pathways | NSD2, EZH2 overactivity maintains oncogenic expression and resistance | Frequent mutations: TET2, EZH2, KMT2D, CREBBP/EP300; impact gene silencing |
EBV-Associated Epigenetic Changes | EBV LMP1 affects host chromatin remodeling and promoter silencing | Not a prominent feature | Not EBV-driven in most cases; epigenetic effects may be independent of EBV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibas, M.; Antinori, A.; Mazzotta, V.; Marafioti, T.; Castillo, J.J. The Genetic and Epigenetic Alterations of Plasmablastic Lymphoma: A Narrative Review. Cancers 2025, 17, 1914. https://doi.org/10.3390/cancers17121914
Bibas M, Antinori A, Mazzotta V, Marafioti T, Castillo JJ. The Genetic and Epigenetic Alterations of Plasmablastic Lymphoma: A Narrative Review. Cancers. 2025; 17(12):1914. https://doi.org/10.3390/cancers17121914
Chicago/Turabian StyleBibas, Michele, Andrea Antinori, Valentina Mazzotta, Teresa Marafioti, and Jorge J. Castillo. 2025. "The Genetic and Epigenetic Alterations of Plasmablastic Lymphoma: A Narrative Review" Cancers 17, no. 12: 1914. https://doi.org/10.3390/cancers17121914
APA StyleBibas, M., Antinori, A., Mazzotta, V., Marafioti, T., & Castillo, J. J. (2025). The Genetic and Epigenetic Alterations of Plasmablastic Lymphoma: A Narrative Review. Cancers, 17(12), 1914. https://doi.org/10.3390/cancers17121914