Spatially Encoded Oncogenesis and Transcriptional Plasticity in Meningioma: Drivers of Therapeutic Resistance and Opportunities for Targeted Intervention
Simple Summary
Abstract
1. Introduction
2. Foundations of Clinical and Molecular Pathogenesis in Meningioma
3. The Role of the Meninges in Meningioma Tumorigenesis
3.1. Genotypic Features and Spatial Phenotypes of the Meninges
3.2. Embryogenesis of Brain Meninges
3.3. The Cellular Origin of the Meninges
3.4. The Meninges Orchestrates Calvarial Development
3.5. Genes and Signaling Factors of the Meninges Regulate Cerebral and Calvarial Development
3.5.1. Meningeal Derived Molecular Signals Governing Cortical Neurogenesis and Neuronal Migration
3.5.2. Convergence of Osteogenic and Neurogenic Pathways in Calvarian Development
4. Biological Drivers and Therapeutic Vulnerabilities
5. Advanced Thematic Considerations in Meningioma Spatial Oncogenesis and Targeting
5.1. Spatial and Lineage-Specific Origins of Anaplasia in Convexity Meningioma
5.2. Targeting TRAF7: Challenges and Emerging Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Preprint Disclosure
References
- Lamszus, K. Meningioma pathology, genetics, and biology. J. Neuropathol. Exp. Neurol. 2004, 63, 275–286. [Google Scholar] [CrossRef]
- Whittle, I.R.; Smith, C.; Navoo, P.; Collie, D. Meningiomas. Lancet Lond. Engl. 2004, 363, 1535–1543. [Google Scholar] [CrossRef]
- Wiemels, J.; Wrensch, M.; Claus, E.B. Epidemiology and etiology of meningioma. J. Neurooncol. 2010, 99, 307–314. [Google Scholar] [CrossRef]
- Hasseleid, B.F.; Meling, T.R.; Rønning, P.; Scheie, D.; Helseth, E. Surgery for convexity meningioma: Simpson Grade I resection as the goal: Clinical article. J. Neurosurg. 2012, 117, 999–1006. [Google Scholar] [CrossRef]
- Riemenschneider, M.J.; Perry, A.; Reifenberger, G. Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006, 5, 1045–1054. [Google Scholar] [CrossRef]
- Nowosielski, M.; Galldiks, N.; Iglseder, S.; Kickingereder, P.; von Deimling, A.; Bendszus, M.; Wick, W.; Sahm, F. Diagnostic challenges in meningioma. Neuro-Oncology 2017, 19, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Mirimanoff, R.O.; Dosoretz, D.E.; Linggood, R.M.; Ojemann, R.G.; Martuza, R.L. Meningioma: Analysis of recurrence and progression following neurosurgical resection. J. Neurosurg. 1985, 62, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Alruwaili, A.A.; De Jesus, O. Meningioma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025; Available online: http://www.ncbi.nlm.nih.gov/books/NBK560538/ (accessed on 21 April 2025).
- Hanft, S.; Canoll, P.; Bruce, J.N. A review of malignant meningiomas: Diagnosis, characteristics, and treatment. J. Neurooncol 2010, 99, 433–443. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Bencze, J.; Varkoly, G.; Kouhsari, M.C.; Klekner, Á. Meningioma recurrence. Open Med. Wars. Pol. 2016, 11, 168–173. [Google Scholar] [CrossRef]
- Nassiri, F.; Liu, J.; Patil, V.; Mamatjan, Y.; Wang, J.Z.; Hugh-White, R.; Macklin, A.M.; Khan, S.; Singh, O.; Karimi, S.; et al. A clinically applicable integrative molecular classification of meningiomas. Nature 2021, 597, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Barnholtz-Sloan, J.S. Medical treatment of recurrent meningiomas. Expert Rev. Neurother. 2011, 11, 1425–1432. [Google Scholar] [CrossRef]
- Dasgupta, K.; Jeong, J. Developmental biology of the meninges. Genesis 2019, 57, e23288. [Google Scholar] [CrossRef]
- Nanda, A.; Vannemreddy, P. Recurrence and Outcome in Skull Base Meningiomas: Do They Differ from Other Intracranial Meningiomas? Skull Base 2008, 18, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Siegenthaler, J.A.; Pleasure, S.J. There’s no place like home for a neural stem cell. Cell Stem Cell 2010, 7, 141–143. [Google Scholar] [CrossRef]
- Paredes, M.F.; Li, G.; Berger, O.; Baraban, S.C.; Pleasure, S.J. Stromal-Derived Factor-1 (CXCL12) Regulates Laminar Position of Cajal-Retzius Cells in Normal and Dysplastic Brains. J. Neurosci. 2006, 26, 9404–9412. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Zuba-Surma, E.; Kucia, M.; Reca, R.; Wojakowski, W.; Ratajczak, J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006, 20, 1915–1924. [Google Scholar] [CrossRef]
- Pryor, S.E.; Massa, V.; Savery, D.; Greene, N.D.; Copp, A.J. Convergent extension analysis in mouse whole embryo culture. Methods Mol. Biol. 2012, 839, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, S.; Nassiri, F.; Bi, W.L.; Dunn, I.F.; Hanemann, C.O.; Horbinski, C.M.; Hashizume, R.; James, C.D.; Mawrin, C.; Noushmehr, H.; et al. Molecular and translational advances in meningiomas. Neuro-Oncology 2019, 21, i4–i17. [Google Scholar] [CrossRef]
- Pinton, L.; Solito, S.; Masetto, E.; Vettore, M.; Canè, S.; Della Puppa, A.; Mandruzzato, S. Immunosuppressive activity of tumor-infiltrating myeloid cells in patients with meningioma. OncoImmunology 2018, 7, e1440931. [Google Scholar] [CrossRef] [PubMed]
- Lotsch, C.; Warta, R.; Herold-Mende, C. The Molecular and Immunological Landscape of Meningiomas. Int. J. Mol. Sci. 2024, 25, 9631. [Google Scholar] [CrossRef] [PubMed]
- Medikonda, R.; Abikenari, M.; Schonfeld, E.; Lim, M. The Metabolic Orchestration of Immune Evasion in Glioblastoma: From Molecular Perspectives to Therapeutic Vulnerabilities. Cancers 2025, 17, 1881. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, J.; Hu, L.; Wu, Y.; Wang, T.; Li, Z.; Wang, Z.; Ding, Q.; Sun, Y.; Li, Z. Knowledge structures and research hotspots of immunotherapy for brain metastasis, glioma, meningioma, and pituitary adenoma: A bibliometric and visualization review. Chin. Chem. Lett. 2025, 110995. [Google Scholar] [CrossRef]
- Abikenari, M.; Schonfeld, E.; Choi, J.; Kim, L.H.; Lim, M. Revisiting glioblastoma classification through an immunological lens: A narrative review. Glioma 2024, 7, 3–9. [Google Scholar] [CrossRef]
- Ramapriyan, R.; Barker, F.G., 2nd; Richardson, L.G.; Sun, J.; Vandecandelaere, G.; Shim, J.M.; De Vlaminck, G.; Gaffey, M.; Grewal, E.P.; Tazhibi, M.; et al. Mesothelin is a surface antigen present on human meningioma and can be effectively targeted by CAR T-cells. Neuro-Oncology 2025, noaf155. [Google Scholar] [CrossRef]
- Medikonda, R.; Abikenari, M.A.; Schonfeld, E.; Lim, M. Top advances of the year: The status of chimeric antigen receptor T cells in Neuro-Oncology. Cancer 2025, 131, e35935. [Google Scholar] [CrossRef]
- Rath, S.; Shafeea, M.S.; Abdul Hussein, A.F.; Shamil Hashim, A.; Hassanaien, S.; Pastrana-Brandes, S.; Chaurasia, B. CAR-T-cell therapy in meningioma: Current investigations, advancements and insight into future directions. Ann. Med. Surg. 2024, 86, 5957. [Google Scholar] [CrossRef]
- Abikenari, M.; Liu, J.; Ha, J.H.; Annagiri, S.; Himic, V.; Medikonda, R.; Kim, L.; Choi, J.; Lim, M. Emerging trends in cell-based therapies: Contemporary advances and ethical considerations in translational neurosurgical oncology. J. Neurooncol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Goldbrunner, R.; Minniti, G.; Preusser, M.; Jenkinson, M.D.; Sallabanda, K.; Houdart, E.; von Deimling, A.; Stavrinou, P.; Lefranc, F.; Lund-Johansen, M.; et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016, 17, e383–e391. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23, iii1–iii105. [Google Scholar] [CrossRef]
- Parada, C.A.; Osbun, J.W.; Busald, T.; Karasozen, Y.; Kaur, S.; Shi, M.; Barber, J.; Adidharma, W.; Cimino, P.J.; Pan, C.; et al. Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clin. Cancer Res. 2020, 26, 193–205. [Google Scholar] [CrossRef]
- Patel, B.; Desai, R.; Pugazenthi, S.; Butt, O.H.; Huang, J.; Kim, A.H. Identification and Management of Aggressive Meningiomas. Front. Oncol. 2022, 12, 851758. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T.; et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer Inst. 2016, 108, djv377. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Aldape, K.D.; Brastianos, P.K.; Brat, D.J.; Dahiya, S.; von Deimling, A.; Giannini, C.; Gilbert, M.R.; Louis, D.N.; Raleigh, D.R.; et al. cIMPACT-NOW update 8, Clarifications on molecular risk parameters and recommendations for WHO grading of meningiomas. Neuro-Oncology 2025, 27, 319–330. [Google Scholar] [CrossRef]
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System tumours: A practical update on what neurosurgeons need to know-a minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Ketter, R.; Urbschat, S.; Henn, W.; Feiden, W.; Beerenwinkel, N.; Lengauer, T.; Steudel, W.-I.; Zang, K.D.; Rahnenführer, J. Application of oncogenetic trees mixtures as a biostatistical model of the clonal cytogenetic evolution of meningiomas. Int. J. Cancer 2007, 121, 1473–1480. [Google Scholar] [CrossRef]
- Marta, G.N.; Correa, S.F.M.; Teixeira, M.J. Meningioma: Review of the literature with emphasis on the approach to radiotherapy. Expert Rev. Anticancer Ther. 2011, 11, 1749–1758. [Google Scholar] [CrossRef]
- Fathi, A.-R.; Roelcke, U. Meningioma. Curr. Neurol. Neurosci. Rep. 2013, 13, 337. [Google Scholar] [CrossRef]
- Yano, S.; Kuratsu, J.; Kumamoto Brain Tumor Research Group. Indications for surgery in patients with asymptomatic meningiomas based on an extensive experience. J. Neurosurg. 2006, 105, 538–543. [Google Scholar] [CrossRef]
- Sanai, N.; Sughrue, M.E.; Shangari, G.; Chung, K.; Berger, M.S.; McDermott, M.W. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J Neurosurg. 2010, 112, 913–919. [Google Scholar] [CrossRef]
- Flannery, T.J.; Kano, H.; Lunsford, L.D.; Sirin, S.; Tormenti, M.; Niranjan, A.; Flickinger, J.C.; Kondziolka, D. Long-term control of petroclival meningiomas through radiosurgery. J. Neurosurg. 2010, 112, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Costell, M.; Gustafsson, E.; Aszódi, A.; Mörgelin, M.; Bloch, W.; Hunziker, E.; Addicks, K.; Timpl, R.; Fässler, R. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 1999, 147, 1109–1122. [Google Scholar] [CrossRef]
- Fountain, D.M.; Smith, M.J.; O’Leary, C.; Pathmanaban, O.N.; Roncaroli, F.; Bobola, N.; King, A.T.; Evans, D.G. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021, 40, 875–884. [Google Scholar] [CrossRef]
- Choy, W.; Kim, W.; Nagasawa, D.; Stramotas, S.; Yew, A.; Gopen, Q.; Parsa, A.T.; Yang, I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg. Focus 2011, 30, E6. [Google Scholar] [CrossRef]
- Delgado-López, P.D.; Cubo-Delgado, E.; González-Bernal, J.J.; Martín-Alonso, J. A Practical Overview on the Molecular Biology of Meningioma. Curr. Neurol. Neurosci. Rep. 2020, 20, 62. [Google Scholar] [CrossRef]
- Gutmann, D.H.; Donahoe, J.; Perry, A.; Lemke, N.; Gorse, K.; Kittiniyom, K.; Rempel, S.A.; Gutierrez, J.A.; Newsham, I.F. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum. Mol. Genet. 2000, 9, 1495–1500. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, Q.; Xu, Z.; Bai, R.; Li, Y.; Luo, C.; Dong, Y.; Gao, G.; Lu, Y. Holistic and network analysis of meningioma pathogenesis and malignancy. BioFactors Oxf. Engl. 2006, 28, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gejman, R.; Mahta, A.; Zhong, Y.; Rice, K.A.; Zhou, Y.; Cheunsuchon, P.; Louis, D.N.; Klibanski, A. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010, 70, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Alliance for Clinical Trials in Oncology. Phase II Trial of SMO/AKT/NF2/CDK Inhibitors in Progressive Meningiomas With SMO/AKT/NF2/CDK Pathway Mutations. Clinical Trial Registration, NCT02523014, clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT02523014 (accessed on 3 May 2025).
- Wang, X.; Gong, Y.; Wang, D.; Xie, Q.; Zheng, M.; Zhou, Y.; Li, Q.; Yang, Z.; Tang, H.; Li, Y.; et al. Analysis of gene expression profiling in meningioma: Deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum. PLoS ONE 2012, 7, e52707. [Google Scholar] [CrossRef]
- Cuevas, I.C.; Slocum, A.L.; Jun, P.; Costello, J.F.; Bollen, A.W.; Riggins, G.J.; McDermott, M.W.; Lal, A. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res. 2005, 65, 5070–5075. [Google Scholar] [CrossRef]
- Miller, R.; DeCandio, M.L.; Dixon-Mah, Y.; Giglio, P.; Vandergrift, W.A.; Banik, N.L.; Patel, S.J.; Varma, A.K.; Das, A. Molecular Targets and Treatment of Meningioma. J. Neurol. Neurosurg. 2014, 1, 1000101. [Google Scholar] [CrossRef] [PubMed]
- Abikenari, M.A. A Critical Appraisal of the Genotypic Features, Phenotypic Drivers and Therapeutic vulnerabilities in Recurrent Meningiomas. OSF Prepr. 2024. [Google Scholar] [CrossRef]
- Abikenari, M.A.; Enayati, I.; Fountain, D.M.; Leite, M.I. Navigating glioblastoma therapy: A narrative review of emerging immunotherapeutics and small-molecule inhibitors. Microbes Immun. 2024, 5075. [Google Scholar] [CrossRef]
- Yuzawa, S.; Nishihara, H.; Yamaguchi, S.; Mohri, H.; Wang, L.; Kimura, T.; Tsuda, M.; Tanino, M.; Kobayashi, H.; Terasaka, S.; et al. Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system. Mod. Pathol. 2016, 29, 708–716. [Google Scholar] [CrossRef]
- Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers 2020, 13, 47. [Google Scholar] [CrossRef]
- Peyre, M.; Gaillard, S.; de Marcellus, C.; Giry, M.; Bielle, F.; Villa, C.; Boch, A.L.; Loiseau, H.; Baussart, B.; Cazabat, L.; et al. Progestin-associated shift of meningioma mutational landscape. Ann. Oncol. 2018, 29, 681–686. [Google Scholar] [CrossRef]
- Boetto, J.; Peyre, M.; Kalamarides, M. Meningiomas from a developmental perspective: Exploring the crossroads between meningeal embryology and tumorigenesis. Acta Neurochir. 2021, 163, 57–66. [Google Scholar] [CrossRef]
- de Caro, R.; Giordano, R.; Parenti, A.; Zuccarello, M. Osteomatous meningioma report of two cases. Acta Neurochir. 1982, 60, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Lusis, E.A.; Watson, M.A.; Chicoine, M.R.; Lyman, M.; Roerig, P.; Reifenberger, G.; Gutmann, D.H.; Perry, A. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005, 65, 7121–7126. [Google Scholar] [CrossRef]
- Okano, A.; Miyawaki, S.; Hongo, H.; Dofuku, S.; Teranishi, Y.; Mitsui, J.; Tanaka, M.; Shin, M.; Nakatomi, H.; Saito, N. Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges. Sci. Rep. 2021, 11, 6987. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, J.F.; Slotty, P.J.; Steiger, H.J.; Hänggi, D.; Polivka, M.; George, B. Malignant potential of skull base versus non-skull base meningiomas: Clinical series of 1,663 cases. Acta Neurochir. 2013, 155, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Meling, T.R.; Da Broi, M.; Scheie, D.; Helseth, E. Skull base versus non-skull base meningioma surgery in the elderly. Neurosurg. Rev. 2019, 42, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Nutting, C.; Brada, M.; Brazil, L.; Sibtain, A.; Saran, F.; Westbury, C.; Moore, A.; Thomas, D.G.; Traish, D.; Ashley, S. Radiotherapy in the treatment of benign meningioma of the skull base. J. Neurosurg. 1999, 90, 823–827. [Google Scholar] [CrossRef] [PubMed]
- McGovern, S.L.; Aldape, K.D.; Munsell, M.F.; Mahajan, A.; DeMonte, F.; Woo, S.Y. A comparison of World Health Organization tumor grades at recurrence in patients with non-skull base and skull base meningiomas. J. Neurosurg. 2010, 112, 925–933. [Google Scholar] [CrossRef]
- Morokoff, A.P.; Zauberman, J.; Black, P.M. Surgery for convexity meningiomas. Neurosurgery 2008, 63, 427–433; discussion 433–434. [Google Scholar] [CrossRef]
- Abikenari, M.; Regev, A.; Himic, V.; Choi, J.; Jeyaretna, S.; Fountain, D.M.; Lim, M. The hormonal nexus in PIK3CA-mutated meningiomas: Implications for targeted therapy and clinical trial design. J. Neurooncol 2025, 174, 329–340. [Google Scholar] [CrossRef]
- Baroja, I.; Kyriakidis, N.C.; Halder, G.; Moya, I.M. Expected and unexpected effects after systemic inhibition of Hippo transcriptional output in cancer. Nat. Commun. 2024, 15, 2700. [Google Scholar] [CrossRef]
- Singh, G.; Rohit Kumar, P.; Aran, K.R. Targeting EGFR and PI3K/mTOR pathways in glioblastoma: Innovative therapeutic approaches. Med. Oncol. 2025, 42, 97. [Google Scholar] [CrossRef]
- Zadeh, G.; Karimi, S.; Aldape, K.D. PIK3CA mutations in meningioma. Neuro-Oncology 2016, 18, 603–604. [Google Scholar] [CrossRef]
- Linsler, S.; Kraemer, D.; Driess, C.; Oertel, J.; Kammers, K.; Rahnenführer, J.; Ketter, R.; Urbschat, S. Molecular Biological Determinations of Meningioma Progression and Recurrence. PLoS ONE 2014, 9, e94987. [Google Scholar] [CrossRef]
- Choudhury, A.; Magill, S.T.; Eaton, C.D.; Prager, B.C.; Chen, W.C.; Cady, M.A.; Seo, K.; Lucas, C.-H.G.; Casey-Clyde, T.J.; Vasudevan, H.N.; et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat. Genet. 2022, 54, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lin, D.; Cheng, L.; Tu, S.; Wu, H.; Xu, W.; Pan, Y.; Wang, X.; Zhang, J.; Shao, A. Is DNA Methylation a Ray of Sunshine in Predicting Meningioma Prognosis? Front. Oncol. 2020, 10, 1323. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA methylation-based classification and grading system for meningioma: A multicentre, retrospective analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef]
- Angelov, D.N.; Vasilev, V.A. Morphogenesis of rat cranial meninges. Cell Tissue Res. 1989, 257, 207–216. [Google Scholar] [CrossRef]
- Vivatbutsiri, P.; Ichinose, S.; Hytönen, M.; Sainio, K.; Eto, K.; Iseki, S. Impaired meningeal development in association with apical expansion of calvarial bone osteogenesis in the Foxc1 mutant. J. Anat. 2008, 212, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Vivatbutsiri, P.; Morriss-Kay, G.; Saga, Y.; Iseki, S. Cell lineage in mammalian craniofacial mesenchyme. Mech. Dev. 2008, 125, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Le Douarin, N. A biological cell labeling technique and its use in expermental embryology. Dev. Biol. 1973, 30, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.M.; Vetsa, S.; Nadar, A.; Vasandani, S.; Youngblood, M.W.; Gorelick, E.; Jin, L.; Marianayagam, N.; Erson-Omay, E.Z.; Günel, M.; et al. The integrated multiomic diagnosis of sporadic meningiomas: A review of its clinical implications. J. Neurooncol. 2022, 156, 205–214. [Google Scholar] [CrossRef]
- Couly, G.F.; Le Douarin, N.M. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: Implications for the genesis of cephalic human congenital abnormalities. Dev. Biol. 1987, 120, 198–214. [Google Scholar] [CrossRef]
- Couly, G.F.; Coltey, P.M.; Le Douarin, N.M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992, 114, 1–15. [Google Scholar] [CrossRef]
- Wilkinson, D.G.; Bailes, J.A.; McMahon, A.P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 1987, 50, 79–88. [Google Scholar] [CrossRef]
- Yamashima, T.; Sakuda, K.; Tohma, Y.; Yamashita, J.; Oda, H.; Irikura, D.; Eguchi, N.; Beuckmann, C.T.; Kanaoka, Y.; Urade, Y.; et al. Prostaglandin D synthase (beta-trace) in human arachnoid and meningioma cells: Roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J. Neurosci. 1997, 17, 2376–2382. [Google Scholar] [CrossRef]
- Youngblood, M.W.; Günel, M. Molecular genetics of meningiomas. Handb. Clin. Neurol. 2020, 169, 101–119. [Google Scholar]
- Howard, A.G.; Baker, P.A.; Ibarra-García-Padilla, R.; Moore, J.A.; Rivas, L.J.; Tallman, J.J.; Singleton, E.W.; Westheimer, J.L.; Corteguera, J.A.; Uribe, R.A. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021, 10, e60005. [Google Scholar] [CrossRef] [PubMed]
- DeSisto, J.; O’Rourke, R.; Jones, H.E.; Pawlikowski, B.; Malek, A.D.; Bonney, S.; Guimiot, F.; Jones, K.L.; Siegenthaler, J.A. Single-Cell Transcriptomic Analyses of the Developing Meninges Reveal Meningeal Fibroblast Diversity and Function. Dev. Cell 2020, 54, 43–59.e4. [Google Scholar] [CrossRef]
- Batarfi, M.; Valasek, P.; Krejci, E.; Huang, R.; Patel, K. The development and origins of vertebrate meninges. Biol. Commun. 2017, 62, 73–81. [Google Scholar] [CrossRef]
- Lyndon, D.; Lansley, J.A.; Evanson, J.; Krishnan, A.S. Dural masses: Meningiomas and their mimics. Insights Imaging 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Decimo, I.; Dolci, S.; Panuccio, G.; Riva, M.; Fumagalli, G.; Bifari, F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2021, 27, 506–528. [Google Scholar] [CrossRef]
- Ang, P.S.; Matrongolo, M.J.; Tischfield, M.A. The growth and expansion of meningeal lymphatic networks are affected in craniosynostosis. Development 2022, 149, dev200065. [Google Scholar] [CrossRef]
- Mabbutt, L.W.; Kokich, V.G. Calvarial and sutural re-development following craniectomy in the neonatal rabbit. J. Anat. 1979, 129, 413–422. [Google Scholar]
- Grova, M.; Lo, D.D.; Montoro, D.; Hyun, J.S.; Chung, M.T.; Wan, D.C.; Longaker, M.T. Models of cranial suture biology. J. Craniofacial Surg. 2012, 23, 1954–1958. [Google Scholar] [CrossRef]
- Twigg, S.R.F.; Wilkie, A.O.M. A Genetic-Pathophysiological Framework for Craniosynostosis. Am. J. Hum. Genet. 2015, 97, 359–377. [Google Scholar] [CrossRef]
- Deckelbaum, R.A.; Holmes, G.; Zhao, Z.; Tong, C.; Basilico, C.; Loomis, C.A. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 2012, 139, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Etchevers, H.C.; Amiel, J.; Lyonnet, S. Molecular bases of human neurocristopathies. Adv. Exp. Med. Biol. 2006, 589, 213–234. [Google Scholar] [PubMed]
- Rousso, D.L.; Gaber, Z.B.; Wellik, D.; Morrisey, E.E.; Novitch, B.G. Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 2008, 59, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Choe, Y.; Pleasure, S.J.; Siegenthaler, J.A. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF—A pathways downstream of retinoic acid from the meninges. Dev. Biol. 2016, 420, 148–165. [Google Scholar] [CrossRef]
- Zarbalis, K.; Choe, Y.; Siegenthaler, J.A.; Orosco, L.A.; Pleasure, S.J. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice. Neural Dev. 2012, 7, 2. [Google Scholar] [CrossRef]
- Rice, R.; Rice, D.P.C.; Olsen, B.R.; Thesleff, I. Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev. Biol. 2003, 262, 75–87. [Google Scholar] [CrossRef]
- Inoue, T.; Ota, M.; Ogawa, M.; Mikoshiba, K.; Aruga, J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J. Neurosci. 2007, 27, 5461–5473. [Google Scholar] [CrossRef]
- Haushalter, C.; Schuhbaur, B.; Dollé, P.; Rhinn, M. Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biol. Open 2017, 6, 148–160. [Google Scholar] [CrossRef]
- Choe, Y.; Huynh, T.; Pleasure, S.J. Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J. Neurosci. 2014, 34, 14973–14983. [Google Scholar] [CrossRef]
- Halfter, W.; Dong, S.; Yip, Y.P.; Willem, M.; Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 2002, 22, 6029–6040. [Google Scholar] [CrossRef]
- Sievers, P.; Hielscher, T.; Schrimpf, D.; Stichel, D.; Reuss, D.E.; Berghoff, A.S.; Neidert, M.C.; Wirsching, H.-G.; Mawrin, C.; Ketter, R.; et al. CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol. 2020, 140, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Aldinger, K.A.; Lehmann, O.J.; Hudgins, L.; Chizhikov, V.V.; Bassuk, A.G.; Ades, L.C.; Krantz, I.D.; Dobyns, W.B.; Millen, K.J. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat. Genet. 2009, 41, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Spalice, A.; Ursitti, F.; Papetti, L.; Mariani, R.; Castronovo, A.; Mastrangelo, M.; Iannetti, P. New trends in neuronal migration disorders. Eur. J. Paediatr. Neurol. 2010, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Spector, J.A.; Greenwald, J.A.; Warren, S.M.; Bouletreau, P.J.; Detch, R.C.; Fagenholz, P.J.; Crisera, F.E.; Longaker, M.T. Dura mater biology: Autocrine and paracrine effects of fibroblast growth factor 2. Plast. Reconstr. Surg. 2002, 109, 645–654. [Google Scholar] [CrossRef]
- Warren, S.M.; Brunet, L.J.; Harland, R.M.; Economides, A.N.; Longaker, M.T. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Lenton, K.A.; Nacamuli, R.P.; Wan, D.C.; Helms, J.A.; Longaker, M.T. Cranial suture biology. Curr. Top. Dev. Biol. 2005, 66, 287–328. [Google Scholar]
- Hari, L.; Brault, V.; Kléber, M.; Lee, H.-Y.; Ille, F.; Leimeroth, R.; Paratore, C.; Suter, U.; Kemler, R.; Sommer, L. Lineage-specific requirements of beta-catenin in neural crest development. J. Cell Biol. 2002, 159, 867–880. [Google Scholar] [CrossRef]
- Paek, H.; Hwang, J.-Y.; Zukin, R.S.; Hébert, J.M. β-Catenin-dependent FGF signaling sustains cell survival in the anterior embryonic head by countering Smad4. Dev. Cell 2011, 20, 689–699. [Google Scholar] [CrossRef]
- Brault, V.; Moore, R.; Kutsch, S.; Ishibashi, M.; Rowitch, D.H.; McMahon, A.P.; Sommer, L.; Boussadia, O.; Kemler, R. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 2001, 128, 1253–1264. [Google Scholar] [CrossRef]
- Row, R.H.; Pegg, A.; Kinney, B.A.; Farr, G.H.; Maves, L.; Lowell, S.; Wilson, V.; Martin, B.L. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018, 7, e31018. [Google Scholar] [CrossRef]
- Farlie, P.G.; McKeown, S.J.; Newgreen, D.F. The neural crest: Basic biology and clinical relationships in the craniofacial and enteric nervous systems. Birth Defects Res. Part C Embryo Today Rev. 2004, 72, 173–189. [Google Scholar] [CrossRef]
- Fuchs, S.; Sommer, L. The neural crest: Understanding stem cell function in development and disease. Neurodegener. Dis. 2007, 4, 6–12. [Google Scholar] [CrossRef]
- Norden, A.D.; Drappatz, J.; Wen, P.Y. Advances in meningioma therapy. Curr. Neurol. Neurosci. Rep. 2009, 9, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sauvageot, C.M.; Kesari, S.; Stiles, C.D. Molecular pathogenesis of adult brain tumors and the role of stem cells. Neurol. Clin. 2007, 25, 891–924, vii. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Wan, Y.-W.; Al-Ouran, R.; Revelli, J.-P.; Cardenas, M.F.; Oneissi, M.; Xi, L.; Jalali, A.; Magnotti, J.F.; Muzny, D.M.; et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc. Natl. Acad. Sci. USA 2019, 116, 21715–21726. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Ozduman, K.; Avşar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017, 171, 1259–1271.e11. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019, 37, 773–782. [Google Scholar] [CrossRef]
- Magill, S.T.; Young, J.S.; Chae, R.; Aghi, M.K.; Theodosopoulos, P.V.; McDermott, M.W. Relationship between tumor location, size, and WHO grade in meningioma. Neurosurg. Focus 2018, 44, E4. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Jenkins, N.A.; Copeland, N.G. The Roles of Initiating Truncal Mutations in Human Cancers: The Order of Mutations and Tumor Cell Type Matters. Cancer Cell 2019, 35, 10–15. [Google Scholar] [CrossRef] [PubMed]
- UCSF. UCSF Meningioma Trial: Vismodegib, FAK Inhibitor GSK2256098, Capivasertib, and Abemaciclib in Treating Patients With Progressive Meningiomas. Available online: https://clinicaltrials.ucsf.edu/trial/NCT02523014 (accessed on 27 July 2025).
- Preusser, M.; Brastianos, P.K.; Mawrin, C. Advances in meningioma genetics: Novel therapeutic opportunities. Nat. Rev. Neurol. 2018, 14, 106–115. [Google Scholar] [CrossRef]
- Tse, J.Y.; Ng, H.K.; Lo, K.W.; Chong, E.Y.; Lam, P.Y.; Ng, E.K.; Poon, W.S.; Huang, D.P. Analysis of cell cycle regulators: p16INK4A, pRb, and CDK4 in low- and high-grade meningiomas. Hum. Pathol. 1998, 29, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Boström, J.; Meyer-Puttlitz, B.; Wolter, M.; Blaschke, B.; Weber, R.G.; Lichter, P.; Ichimura, K.; Collins, V.P.; Reifenberger, G. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am. J. Pathol. 2001, 159, 661–669. [Google Scholar] [CrossRef]
- Mellai, M.; Porrini Prandini, O.; Mustaccia, A.; Fogazzi, V.; Allesina, M.; Krengli, M.; Boldorini, R. Human TERT Promoter Mutations in Atypical and Anaplastic Meningiomas. Diagnostics 2021, 11, 1624. [Google Scholar] [CrossRef]
- Higgins, D.; Shah, A.H.; Komotar, R.J.; Ivan, M.E. Management of Atypical and Anaplastic Meningiomas. Neurosurg. Clin. 2023, 34, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Collord, G.; Tarpey, P.; Kurbatova, N.; Martincorena, I.; Moran, S.; Castro, M.; Nagy, T.; Bignell, G.; Maura, F.; Young, M.D.; et al. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci. Rep. 2018, 8, 13537. [Google Scholar] [CrossRef]
- Nazem, A.A.; Ruzevick, J.; Ferreira, M.J. Advances in meningioma genomics, proteomics, and epigenetics: Insights into biomarker identification and targeted therapies. Oncotarget 2020, 11, 4544–4553. [Google Scholar] [CrossRef]
- Wang, A.Z.; Bowman-Kirigin, J.A.; Desai, R.; Kang, L.-I.; Patel, P.R.; Patel, B.; Khan, S.M.; Bender, D.; Marlin, M.C.; Liu, J.; et al. Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Med. 2022, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, F.; Mamatjan, Y.; Suppiah, S.; Badhiwala, J.H.; Mansouri, S.; Karimi, S.; Saarela, O.; Poisson, L.; Gepfner-Tuma, I.; Schittenhelm, J.; et al. DNA methylation profiling to predict recurrence risk in meningioma: Development and validation of a nomogram to optimize clinical management. Neuro-Oncology 2019, 21, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Sharma, A.; Kulshreshtha, R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. Mol. Ther. Oncol. 2024, 32, 200782. [Google Scholar] [CrossRef] [PubMed]
- Laraba, L.; Hillson, L.; de Guibert, J.G.; Hewitt, A.; Jaques, M.R.; Tang, T.T.; Post, L.; Ercolano, E.; Rai, G.; Yang, S.-M.; et al. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 2022, 146, 1697–1713. [Google Scholar] [CrossRef]
- Zotti, T.; Scudiero, I.; Vito, P.; Stilo, R. The Emerging Role of TRAF7 in Tumor Development. J. Cell Physiol. 2017, 232, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Najm, P.; Zhao, P.; Steklov, M.; Sewduth, R.N.; Baietti, M.F.; Pandolfi, S.; Criem, N.; Lechat, B.; Maia, T.M.; Van Haver, D.; et al. Loss-of-Function Mutations in TRAF7 and KLF4 Cooperatively Activate RAS-Like GTPase Signaling and Promote Meningioma Development. Cancer Res. 2021, 81, 4218–4229. [Google Scholar] [CrossRef]
- Lynes, J.; Flores-Milan, G.; Rubino, S.; Arrington, J.; Macaulay, R.; Liu, J.K.C.; Beer-Furlan, A.; Tran, N.D.; Vogelbaum, M.A.; Etame, A.B. Molecular determinants of outcomes in meningiomas. Front. Oncol. 2022, 12, 962702. [Google Scholar] [CrossRef]
- Ngoi, N.Y.L.; Gallo, D.; Torrado, C.; Nardo, M.; Durocher, D.; Yap, T.A. Synthetic lethal strategies for the development of cancer therapeutics. Nat. Rev. Clin. Oncol. 2025, 22, 46–64. [Google Scholar] [CrossRef]
- Qi, S.M.; Dong, J.; Xu, Z.Y.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Front. Pharmacol. 2021, 12, 692574. [Google Scholar] [CrossRef]
Gene/Pathway | Molecular Role | Associated Meningioma Subtype | Implications |
---|---|---|---|
NF2 (Merlin) | Tumor suppressor | Merlin-intact | Loss of function leads to dysregulated PI3K/mTOR and Hippo signaling, promoting tumorigenesis |
TRAF7 | E3 ubiquitin ligase | Skull base meningiomas | Frequently mutated in non-NF2 meningiomas, influencing MAPK signaling |
CDKN2A/B | Cell cycle regulators | Hypermitotic meningiomas | Frequent homozygous deletions drive high proliferation and poor prognosis |
TERT Promoter | Telomerase activation | High-grade meningiomas | Associated with aggressive tumor behavior and recurrence |
Epigenetic Dysregulation | DNA methylation & histone modifications | All subtypes (esp. hypermitotic) | Drives heterogeneity, affects the response to therapy |
PIK3CA | Catalytic sub-unit of PI3 K | Non-NF2 skull base meningothelial meningiomas | Mutations drive constitutively active PI3K signaling, enriched for hormone receptor positive meningiomas |
SMO | G-PCR in Hedgehog Signaling | Non-NF2 skull base meningiomas | Activating mutations trigger GLI dependent tumor growth |
KLF4 | TF in epithelial differentiation | Secretory meningiomas | K409Q mutation causes mucin rich secretory phenotype |
AKT1 | PI3K downstream kinase | Meningothelial meningiomas | Constitutively active PI3K signaling, moderate recurrence risk |
CNV 1p/22q | Tumor suppressor loci CNV | High grade and aggressive low grade meningiomas | Loss of tumor suppressors, increase in molecular grade |
Tumor Microenvironment Component | Function in Meningioma | Therapeutic Implications |
---|---|---|
Immune Cells (TAMs, Tregs, MDSCs) | Immunosuppressive, promote tumor progression | Potential for immune checkpoint inhibitors |
Extracellular Matrix (ECM) | Supports tumor adhesion, invasion | Targeting ECM remodeling (MMP inhibitors) |
Hypoxia & Angiogenesis | VEGF-mediated neovascularization | Anti-angiogenic therapies (Bevacizumab) |
Cytokines (IL-6, IL-10, TGF-β) | Immune evasion, therapy resistance | Targeted cytokine inhibition strategies |
Therapy Type | Target/Mechanism | Indications | Current Status |
---|---|---|---|
Surgical Resection | Gross total resection | Grade I–III meningiomas | Gold standard, but limited by tumor location |
Radiation Therapy | Fractionated, SRS | Incompletely resected or recurrent tumors | Standard adjunct for high-grade or recurrent cases |
CDK4/6 Inhibitors (Palbociclib, Abemaciclib) | Cell cycle blockade | Hypermitotic meningiomas | Preclinical success, clinical trials underway |
Somatostatin Analogues (Octreotide, Pasireotide) | SST2 receptor inhibition | NF2-null and TRAF7-mutated meningiomas | Some efficacy in non-NF2 meningiomas |
Anti-VEGF Therapy (Bevacizumab) | Angiogenesis inhibition | High-grade and recurrent meningiomas | Mixed clinical trial results |
Organoid & iPSC-based Models | Precision medicine approach | All meningioma subtypes | Emerging tool for patient-specific therapies |
SMO Inhibitors (Vismodegib) | Hh signaling inhibitor | Progressive meningiomas with SMO mutation | Phase II clinical trials underway [125] |
PI3K/AKT axis inhibitors (Capivasertib, Alpeslisib) | PI3Ka, AKT1 or mTORC1/2 blockade | Progressive meningiomas with mutations in PI3Ka or AKT1 and related pathways | Phase I clinical trials of Alpeslisib underway, Phase II clinical trials of Capivasertib underway |
FAK inhibitors (GSK2256098) | Focal adhesion kinase inhibition exploiting loss of NF2/merlin | NF2-null grade I–III meningiomas | Mixed early clinical trial results, phase II clinical trials underway |
Hippo/YAP-TEAD inhibitors (IK-930, VT-3989) | Shuts down YAP/TAZ transcription | NF2-null or YAP-activated meningiomas | Ongoing and recruiting phase I clinical trials. VT-3989 resulted in partial response of 9 meningioma patients [68]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abikenari, M.A.; Regev, A.; Bergsneider, B.H.; Himic, V.; Annagiri, S.; Kim, L.H.; Medikonda, R.; Choi, J.; Jeyaretna, S.; Fountain, D.M.; et al. Spatially Encoded Oncogenesis and Transcriptional Plasticity in Meningioma: Drivers of Therapeutic Resistance and Opportunities for Targeted Intervention. Cancers 2025, 17, 2694. https://doi.org/10.3390/cancers17162694
Abikenari MA, Regev A, Bergsneider BH, Himic V, Annagiri S, Kim LH, Medikonda R, Choi J, Jeyaretna S, Fountain DM, et al. Spatially Encoded Oncogenesis and Transcriptional Plasticity in Meningioma: Drivers of Therapeutic Resistance and Opportunities for Targeted Intervention. Cancers. 2025; 17(16):2694. https://doi.org/10.3390/cancers17162694
Chicago/Turabian StyleAbikenari, Matthew A., Amit Regev, Brandon H. Bergsneider, Vratko Himic, Shreyas Annagiri, Lily H. Kim, Ravi Medikonda, John Choi, Sanjeeva Jeyaretna, Daniel M. Fountain, and et al. 2025. "Spatially Encoded Oncogenesis and Transcriptional Plasticity in Meningioma: Drivers of Therapeutic Resistance and Opportunities for Targeted Intervention" Cancers 17, no. 16: 2694. https://doi.org/10.3390/cancers17162694
APA StyleAbikenari, M. A., Regev, A., Bergsneider, B. H., Himic, V., Annagiri, S., Kim, L. H., Medikonda, R., Choi, J., Jeyaretna, S., Fountain, D. M., & Lim, M. (2025). Spatially Encoded Oncogenesis and Transcriptional Plasticity in Meningioma: Drivers of Therapeutic Resistance and Opportunities for Targeted Intervention. Cancers, 17(16), 2694. https://doi.org/10.3390/cancers17162694