Survivin Is a Central Mediator of Cell Proliferation in HPV-Negative Head and Neck Squamous Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Antibodies
2.2. Cell Culture
2.3. Drug Treatment
2.4. MTT Cell Viability Assay
2.5. Hemocytometer Cell Counting
2.6. Western Blotting and Co-Immunoprecipitation
2.7. Immunofluorescence Staining
2.8. Immunohistochemistry
2.9. RNA Extraction and Next-Generation Sequencing
2.10. Data Collection and Analysis
3. Results
3.1. The CDK4/6 Inhibitor Palbociclib Suppresses Survivin Gene Expression
3.2. Survivin Is Overexpressed in Human HNSCC Tissues
3.3. Survivin Dimerization Inhibitor LQZ-7i Decreases Cell Proliferation
3.4. LQZ-7i Induces Cytoplasmic Localization of Survivin
3.5. Palbociclib Suppresses USP1 Gene Expression
3.6. Survivin as a Substrate of USP1
3.7. Inhibition of USP1 Reduces Survivin Protein Levels and Decreases Cell Viability
4. Discussion
4.1. Elevated Survivin Levels in HNSCC
4.2. Subcellular Localization of Survivin and Its Biological Function
4.3. Regulation of Survivin by Ubiquitin-Specific Peptidase 1 in HNSCC Cells
4.4. Regulation of Survivin by the CDK4/6-Rb Pathway
4.5. Palbociclib Effects on HPV-Negative and HPV-Positive HNSCC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HNSCC | Head and neck squamous cell carcinoma |
HPV | Human papillomavirus |
CDK4/6 | Cyclin-dependent kinase 4 and 6 |
IAP | Inhibitor of apoptosis proteins |
USP1 | Ubiquitin specific peptidase 1 |
References
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.; Bauman, J.E.; Grandis, J.R. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Sabatini, M.E.; Chiocca, S. Human Papillomavirus as a Driver of Head and Neck Cancers. Br. J. Cancer 2020, 122, 306–314. [Google Scholar] [CrossRef]
- Leemans, C.R.; Snijders, P.; Brakenhoff, R.H. The Molecular Landscape of Head and Neck Cancer. Nat. Rev. Cancer 2018, 18, 662. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.; Chen, J. Mechanisms of the CDK4/6 Inhibitor Palbociclib (PD 0332991) and Its Future Application in Cancer Treatment. Oncol. Rep. 2018, 39, 901–911. [Google Scholar] [CrossRef]
- Gadsden, N.J.; Fulcher, C.D.; Li, D.; Shrivastava, N.; Thomas, C.; Segall, J.E.; Prystowsky, M.B.; Schlecht, N.S.; Gavathiotis, E.; Ow, T.J. Palbociclib Renders Human Papilloma Virus-Negative Head and Neck Squamous Cell Carcinoma Vulnerable to the Senolytic Agent Navitoclax. Mol. Cancer Res. 2021, 19, 862–873. [Google Scholar] [CrossRef]
- Shrivastava, N.; Chavez, C.G.; Li, D.; Mehta, V.; Thomas, C.; Fulcher, C.D.; Kawachi, N.; Bottalico, D.M.; Prystowsky, M.B.; Basu, I.; et al. CDK4/6 Inhibition Induces Senescence and Enhances Radiation Response by Disabling DNA Damage Repair in Oral Cavity Squamous Cell Carcinoma. Cancers 2023, 15, 2005. [Google Scholar] [CrossRef]
- Wiman, K.G.; Zhivotovsky, B. Understanding Cell Cycle and Cell Death Regulation Provides Novel Weapons Against Human Diseases. J. Intern. Med. 2017, 281, 483–495. [Google Scholar] [CrossRef]
- Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key Regulator of Mitosis and Apoptosis and Novel Target for Cancer Therapeutics. Clin. Cancer Res. 2008, 14, 5000–5005. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, S.P.; Altieri, D.C. Survivin at a Glance. J. Cell Sci. 2019, 132, jcs223826. [Google Scholar] [CrossRef] [PubMed]
- Dubrez-Daloz, L.; Dupoux, A.; Cartier, J. IAPs: More Than Just Inhibitors of Apoptosis Proteins. Cell Cycle 2008, 7, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Fairmichael, C.; Longley, D.B.; Turkington, R.C. The Multiple Roles of the IAP Super-Family in Cancer. Pharmacol. Ther. 2020, 214, 107610. [Google Scholar] [CrossRef]
- Ambrosini, G.; Adida, C.; Altieri, D. A Novel Anti-Apoptosis Gene, Survivin, Expressed in Cancer and Lymphoma. Nat. Med. 1997, 3, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Altieri, D.C. The Case for Survivin as a Regulator of Microtubule Dynamics and Cell-Death Decisions. Curr. Opin. Cell Biol. 2006, 18, 609–615. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A Unique Target for Tumor Therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef]
- Rauch, A.; Carlstedt, A.; Emmerich, C.; Mustafa, A.M.; Göder, A.G.; Knauer, S.K.; Linnebacher, M.; Heinzel, T.; Krämer, O.H. Survivin Antagonizes Chemotherapy-Induced Cell Death of Colorectal Cancer Cells. Oncotarget 2018, 9, 27835–27850. [Google Scholar] [CrossRef]
- Chantalat, L.; Skoufias, D.A.; Kleman, J.P.; Jung, B.; Dideberg, O.; Margolis, R.L. Crystal Structure of Human Survivin Reveals a Bow Tie-Shaped Dimer with Two Unusual A-Helical Extensions. Mol. Cell 2000, 6, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Verdecia, M.A.; Bowman, M.E.; Lu, K.P.; Hunter, T.; Noel, J.P. Structure of the Human Anti-Apoptotic Protein Survivin Reveals a Dimeric Arrangement. Nat. Struct. Biol. 2000, 7, 602–608. [Google Scholar] [CrossRef]
- Li, F.; Ambrosini, G.; Chu, E.Y.; Plescia, J.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Control of Apoptosis and Mitotic Spindle Checkpoint by Survivin. Nature 1998, 396, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.A.; Lan, W.; Powers, S.E.; Mccleland, M.L.; Kuang, J.; Stukenberg, P.T. Aurora B Kinase Exists in a Complex with Survivin and INCENP and Its Kinase Activity Is Stimulated by Survivin Binding and Phosphorylation. Mol. Biol. Cell 2002, 13, 3064–3077. [Google Scholar] [CrossRef]
- Chen, X.; Duan, N.; Zhang, C.; Zhang, W. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies. J. Cancer 2016, 7, 314–323. [Google Scholar] [CrossRef]
- Marusawa, H.; Matsuzawa, S.I.; Welsh, K.; Zou, H.; Armstrong, R.; Tamm, I.; Reed, J.C. HBXIP Functions as a Cofactor of Survivin in Apoptosis Suppression. EMBO J. 2003, 22, 2729–2740. [Google Scholar] [CrossRef] [PubMed]
- Peery, R.C.; Liu, J.; Zhang, J. Targeting Survivin for Therapeutic Discovery: Past, Present, And Future Promises. Drug Discov. Today 2017, 22, 1466–1477. [Google Scholar] [CrossRef]
- Liu, T.; Brouha, B.; Grossman, D. Rapid Induction of Mitochondrial Events and Caspase-Independent Apoptosis in Survivin-Targeted Melanoma Cells. Oncogene 2004, 23, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Narimani, M.; Sharifi, M.; Jalili, A. Knockout of BIRC5 Gene by CRISPR/Cas9 Induces Apoptosis and Inhibits Cell Proliferation in Leukemic Cell Lines, HL60 and KG1. Blood Lymphat. Cancer 2019, 9, 53–61. [Google Scholar] [CrossRef]
- Lamers, F.; Ploeg, I.; Schild, L.; Ebus, M.E.; Koster, J.; Hansen, B.R.; Koch, T.; Versteeg, R.; Caron, H.N.; Molenaar, J.J. Knockdown of Survivin (BIRC5) Causes Apoptosis in Neuroblastoma Via Mitotic Catastrophe. Endocr. Relat. Cancer 2011, 18, 657–668. [Google Scholar] [CrossRef]
- Nabzdyk, C.S.; Lancero, H.; Nguyen, K.P.; Salek, S.; Conte, M.S. RNA Interference-Mediated Survivin Gene Knockdown Induces Growth Arrest and Reduced Migration of Vascular Smooth Muscle Cells. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1841–H1849. [Google Scholar] [CrossRef]
- Topacio, B.R.; Zatulovskiy, E.; Cristea, S.; Xie, S.; Tambo, C.S.; Rubin, S.M.; Sage, J.; Kõivomägi, M.; Skotheim, J.M. Cyclin D-CDK4,6 Drives Cell-Cycle Progression Via the Retinoblastoma Protein’s C-Terminal Helix. Mol. Cell 2019, 74, 758–770. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, C.; Pan, J.; Xu, J.; Zhou, Z.; Wang, C. The Ubiquitin Proteasome Pathway (UPP) in the Regulation of Cell Cycle Control and DNA Damage Repair and Its Implication in Tumorigenesis. Int. J. Clin. Exp. Pathol. 2012, 5, 726–738. [Google Scholar]
- Kalu, N.N.; Mazumdar, T.; Peng, S.; Shen, L.; Sambandam, V.; Rao, X.; Xi, Y.; Li, L.; Qi, Y.; Gleber-Netto, F.O.; et al. Genomic Characterization of Human Papillomavirus-Positive and-Negative Human Squamous Cell Cancer Cell Lines. Oncotarget 2017, 8, 86369–86383. [Google Scholar] [CrossRef] [PubMed]
- Ow, T.J.; Mehta, V.; Li, D.; Thomas, C.; Shrivastava, N.; Kawachi, N.; Gersten, A.J.; Zhu, J.; Schiff, B.A.; Smith, R.V.; et al. Characterization of a Diverse Set of Conditionally Reprogrammed Head and Neck Cancer Cell Cultures. Laryngoscope 2024, 134, 2748–2756. [Google Scholar] [CrossRef]
- Li, D.; Thomas, C.; Shrivastava, N.; Gersten, A.; Gadsden, N.; Schlecht, N.; Kawachi, N.; Schiff, B.A.; Smith, R.V.; Rosenblatt, G.; et al. Establishment of a Diverse Head and Neck Squamous Cancer Cell Bank Using Conditional Reprogramming Culture Methods. J. Med. Virol. 2023, 95, e28388. [Google Scholar] [CrossRef]
- Belbin, T.J.; Singh, B.; Barber, I.; Wenig, B.; Smith, R.V.; Prystowsky, M.B.; Childs, G. Molecular Classification of Head and Neck Squamous Cell Carcinoma Using cDNA Microarrays. Nat. Genet. 2001, 27, 42–43. [Google Scholar] [CrossRef]
- Belbin, T.J.; Singh, B.; Smith, R.V.; Socci, N.D.; Wreesmann, V.B.; Sanchez-Carbayo, M.; Masterson, J.; Patel, S.; Cordon-Cardo, C.; Prystowsky, M.B.; et al. Molecular Profiling of Tumor Progression in Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2005, 131, 10–18. [Google Scholar] [CrossRef]
- Peery, R.; Kyei-Baffour, K.; Dong, Z.; Liu, J.; De Andrade Horn, P.; Dai, M.; Liu, J.; Zhang, J. Synthesis and Identification of a Novel Lead Targeting Survivin Dimerization for Proteasome-Dependent Degradation. J. Med. Chem. 2020, 63, 7243–7251. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, J.; Ramnath, N.; Javle, M.M.; Tan, D. Nuclear or Cytoplasmic Expression of Survivin: What Is the Significance? Int. J. Cancer 2005, 114, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tenev, T.; Martins, L.M.; Downward, J.; Lemoine, N.R. The Ubiquitin-Proteasome Pathway Regulates Survivin Degradation in a Cell Cycle-Dependent Manner. J. Cell Sci. 2000, 113, 4363–4371. [Google Scholar] [CrossRef]
- Young, M.; Hsu, K.; Lin, T.E.; Chang, W.; Hung, J. The Role of Ubiquitin-Specific Peptidases in Cancer Progression. J. Biomed. Sci. 2019, 26, 42. [Google Scholar] [CrossRef] [PubMed]
- Muzio, L.L.; Pannone, G.; Staibano, S.; Mignogna, M.D.; Rubini, C.; Mariggiò, M.A.; Procaccini, M.; Ferrari, F.; Rosa, G.D.; Altieri, D.C. Survivin Expression in Oral Squamous Cell Carcinoma. Br. J. Cancer 2003, 89, 2244–2248. [Google Scholar] [CrossRef]
- Beding, A.F.; Larsson, P.; Helou, K.; Einbeigi, Z.; Parris, T.Z. Pan-Cancer Analysis Identifies BIRC5 As a Prognostic Biomarker. BMC Cancer 2022, 22, 322. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Wang, W.; Lv, G.; Li, X.; Wang, J.; Liu, X.; Yuan, D.; Deng, S.; You, D. BIRC5 As a Prognostic and Diagnostic Biomarker in Pan-Cancer: An Integrated Analysis of Expression, Immune Subtypes, and Functional Networks. Front Genet. 2024, 15, 1509342. [Google Scholar] [CrossRef]
- Xie, S.; Xu, H.; Shan, X.; Liu, B.; Wang, K.; Cai, Z. Clinicopathological and Prognostic Significance of Survivin Expression in Patients with Oral Squamous Cell Carcinoma: Evidence from a Meta-Analysis. PLoS ONE 2015, 10, e0116517. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, Y.; Xiao, H. The Prognostic Significance of Survivin Expression in Patients with HNSCC: A Systematic Review and Meta-Analysis. BMC Cancer 2021, 21, 424. [Google Scholar] [CrossRef]
- Connell, C.M.; Colnaghi, R.; Wheatley, S.P. Nuclear Survivin Has Reduced Stability and Is Not Cytoprotective. J. Biol. Chem. 2008, 283, 3289–3296. [Google Scholar] [CrossRef]
- Knauer, S.K.; Bier, C.; Habtemichael, N.; Stauber, R.H. The Survivin-Crm1 Interaction Is Essential for Chromosomal Passenger Complex Localization and Function. EMBO Rep. 2006, 7, 1259–1265. [Google Scholar] [CrossRef]
- Stauber, R.H.; Mann, W.; Knauer, S.K. Nuclear and Cytoplasmic Survivin: Molecular Mechanism, Prognostic, and Therapeutic Potential. Cancer Res. 2007, 67, 5999–6002. [Google Scholar] [CrossRef]
- Colnaghi, R.; Connell, C.M.; Barrett, R.M.A.; Wheatley, S.P. Separating the Anti-Apoptotic and Mitotic Roles of Survivin. J. Biol. Chem. 2006, 281, 33450–33456. [Google Scholar] [CrossRef] [PubMed]
- Stauber, R.H.; Rabenhorst, U.; Rekik, A.; Engels, K.; Bier, C.; Knauer, S.K. Nucleocytoplasmic Shuttling and the Biological Activity of Mouse Survivin Are Regulated by an Active Nuclear Export Signal. Traffic 2006, 7, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Engelsma, D.; Rodriguez, J.A.; Fish, A.; Giaccone, G.; Fornerod, M. Homodimerization Antagonizes Nuclear Export of Survivin. Traffic 2007, 8, 1495–1502. [Google Scholar] [CrossRef]
- García-Santisteban, I.; Peters, G.J.; Giovannetti, E.; Rodríguez, J.A. USP1 Deubiquitinase: Cellular Functions, Regulatory Mechanisms and Emerging Potential as Target in Cancer Therapy. Mol. Cancer 2013, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Cohn, M.A.; Kowal, P.; Yang, K.; Haas, W.; Huang, T.T.; Gygi, S.P.; D’Andrea, A.D. A UAF1-Containing Multisubunit Protein Complex Regulates the Fanconi Anemia Pathway. Mol. Cell 2007, 28, 786–797. [Google Scholar] [CrossRef] [PubMed]
- Arkinson, V.; Chaugule, V.K.; Toth, R.; Walden, H. Specificity for Deubiquitination of Monoubiquitinated FANCD2 Is Driven by the N-Terminus of USP1. Life Sci. Alliance 2018, 1, e201800162. [Google Scholar] [CrossRef]
- Dharadhar, S.; van Dijk, W.J.; Scheffers, S.; Fish, A.; Sixma, T.K. Insert L1 Is a Central Hub for Allosteric Regulation of USP1 Activity. EMBO Rep. 2021, 22, e51749. [Google Scholar] [CrossRef]
- Woo, S.M.; Kim, S.; Seo, S.U.; Kim, S.; Park, J.; Kim, G.; Choi, Y.; Hur, K.; Kwon, T.K. Inhibition of USP1 Enhances Anticancer Drugs-Induced Cancer Cell Death Through Downregulation of Survivin and Mir-216a-5p-Mediated Upregulation of DR5. Cell Death Dis. 2022, 13, 821. [Google Scholar] [CrossRef]
- Vong, Q.P.; Cao, K.; Li, H.Y.; Iglesias, P.A.; Zheng, Y. Chromosome Alignment and Segregation Regulated by Ubiquitination of Survivin. Science 2005, 310, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Keijzer, N.; Sakoltchik, J.; Majumder, K.; van Lil, N.; Oualid, F.E.; Fish, A.; Sixma, T.K. USP1/UAF1 Targets Polyubiquitinated PCNA with an Exo-Cleavage Mechanism That Can Temporarily Enrich for Monoubiquitinated PCNA. Nat. Commun. 2025, 16, 6991. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, S.; Chen, X.; Zheng, X.; Yao, Y.; Lu, G.; Zhou, J.; Palbociclib, A. Selective CDK4/6 Inhibitor, Enhances the Effect of Selumetinib in RAS-Driven Non-Small Cell Lung Cancer. Cancer Lett. 2017, 408, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Armand, J.; Safonov, A.; Zhang, M.; Soni, R.K.; Schwartz, G.; McGuinness, J.E.; Hibshoosh, H.; Razavi, P.; Kim, M.; et al. Sequential Activation of E2F Via Rb Degradation and C-Myc Drives Resistance to CDK4/6 Inhibitors in Breast Cancer. Cell Rep. 2023, 42, 113198. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Saavedra, H.I.; Holloway, M.P.; Leone, G.; Altura, R.A. Aberrant Regulation of Survivin by the RB/E2F Family of Proteins. J. Biol. Chem. 2004, 279, 40511–40520. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Liu, T.; Samadashwily, G.; Li, F.; Grossman, D. Survivin Repression by p53, Rb and E2F2 in Normal Human Melanocytes. Carcinogenesis 2008, 29, 194–201. [Google Scholar] [CrossRef]
- Göttgens, E.; Ansems, M.; Leenders, W.P.J.; Bussink, J.; Span, P.N. Genotyping and Characterization of HPV Status, Hypoxia, and Radiosensitivity in 22 Head and Neck Cancer Cell Lines. Cancers 2021, 13, 1069. [Google Scholar] [CrossRef]
- Göttgens, E.; Bussink, J.; Leszczynska, K.B.; Peters, H.; Span, P.N.; Hammond, E.M. Inhibition of CDK4/CDK6 Enhances Radiosensitivity of HPV Negative Head and Neck Squamous Cell Carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Shi, C.; Li, J.; Han, Y.; Sun, B.; Zhang, W.; Wu, J.; Zhou, G.; Ye, W.; Li, J.; et al. Palbociclib-Based High-Throughput Combination Drug Screening Identifies Synergistic Therapeutic Options in HPV-Negative Head and Neck Squamous Cell Carcinoma. BMC Med. 2022, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Greene, M.I. Survivin as a Therapeutic Target for the Treatment of Human Cancer. Cancers 2024, 16, 1705. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; An, J.; Hu, E.; Rosenblatt, G.; Berner, G.; Roy, A.; Kawachi, N.; Shrivastava, N.; Mehta, V.; Segall, J.E.; et al. Survivin Is a Central Mediator of Cell Proliferation in HPV-Negative Head and Neck Squamous Cell Carcinoma. Cancers 2025, 17, 2864. https://doi.org/10.3390/cancers17172864
Zhu J, An J, Hu E, Rosenblatt G, Berner G, Roy A, Kawachi N, Shrivastava N, Mehta V, Segall JE, et al. Survivin Is a Central Mediator of Cell Proliferation in HPV-Negative Head and Neck Squamous Cell Carcinoma. Cancers. 2025; 17(17):2864. https://doi.org/10.3390/cancers17172864
Chicago/Turabian StyleZhu, Jing, Jianhong An, Erqiang Hu, Gregory Rosenblatt, Gabriela Berner, Aadita Roy, Nicole Kawachi, Nitisha Shrivastava, Vikas Mehta, Jeffrey E. Segall, and et al. 2025. "Survivin Is a Central Mediator of Cell Proliferation in HPV-Negative Head and Neck Squamous Cell Carcinoma" Cancers 17, no. 17: 2864. https://doi.org/10.3390/cancers17172864
APA StyleZhu, J., An, J., Hu, E., Rosenblatt, G., Berner, G., Roy, A., Kawachi, N., Shrivastava, N., Mehta, V., Segall, J. E., Prystowsky, M. B., & Ow, T. J. (2025). Survivin Is a Central Mediator of Cell Proliferation in HPV-Negative Head and Neck Squamous Cell Carcinoma. Cancers, 17(17), 2864. https://doi.org/10.3390/cancers17172864