Does PSA Nadir + 2 ng/mL Always Indicate Biochemical Recurrence? A PSA Kinetics-Based Evaluation Following Carbon Ion Radiotherapy for Localized High-Risk Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Eligibility
2.2. ADT
2.3. CIRT
2.4. Follow-Up
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical Outcome
3.3. Comparison of Patient Backgrounds
3.4. PSA Kinetics
3.5. PSA Bounce
3.6. PSA Cutoff Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIRT | carbon ion radiotherapy |
PSA | prostate-specific antigen |
ADT | androgen deprivation therapy |
LH-RH | luteinizing hormone-releasing hormone |
CT | computed tomography |
MRI | magnetic resonance imaging |
CTV | clinical target volume |
PTV | planning target volume |
HR-PCa | high-risk prostate cancer |
NR | non-recurrence |
PR | pseudorecurrence |
R | recurrence |
AUC | area under the curve |
ROC | receiver operating characteristic |
References
- Cancer Statistics. Cancer Information Service, National Cancer Center, Japan (National Cancer Registry, Ministry of Health, Labour and Welfare). Available online: https://ganjoho.jp/reg_stat/statistics/stat/cancer/20_prostate.html (accessed on 9 July 2025).
- Cancer Today Globocan 2022. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/27-prostate-fact-sheet.pdf (accessed on 9 July 2025).
- NCCN Guidelines for Prostate Cancer. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (accessed on 9 July 2025).
- Ishikawa, H.; Tsuji, H.; Kamada, T.; Akakura, K.; Suzuki, H.; Shimazaki, J.; Tsujii, H.; the Working Group for Genitourinary Tumors. Carbon-ion radiation therapy for prostate cancer. Int. J. Urol. 2012, 19, 296–305. [Google Scholar] [CrossRef]
- Fukata, K.; Kawamura, H.; Kubo, N.; Kanai, T.; Torikoshi, M.; Nakano, T.; Tashiro, M.; Ohno, T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys. Medica 2021, 90, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Oike, T.; Niimi, A.; Okonogi, N.; Murata, K.; Matsumura, A.; Noda, S.-E.; Kobayashi, D.; Iwanaga, M.; Tsuchida, K.; Kanai, T.; et al. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy. Sci. Rep. 2016, 6, 22275. [Google Scholar] [CrossRef]
- Gerelchuluun, A.; Manabe, E.; Ishikawa, T.; Sun, L.; Itoh, K.; Sakae, T.; Suzuki, K.; Hirayama, R.; Asaithamby, A.; Chen, D.J.; et al. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions. Radiat. Res. 2015, 183, 345–356. [Google Scholar] [CrossRef]
- Gretzer, M.B.; Partin, A.W. PSA markers in prostate cancer detection. Urol. Clin. N. Am. 2003, 30, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.; Hanks, G.; Thames, H.; Schellhammer, P.; Shipley, W.U.; Sokol, G.H.; Sandler, H. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int. J. Radiat. Oncol. 2006, 65, 965–974. [Google Scholar] [CrossRef]
- Critz, F.A.; Williams, W.H.; Benton, J.B.; Levinson, A.K.; Holladay, C.T.; Holladay, D.A. Prostate specific antigen bounce after radioactive seed implantation followed by external beam radiation for prostate cancer. J. Urol. 2000, 163, 1085–1089. [Google Scholar] [CrossRef]
- Darwis, N.D.M.; Oike, T.; Kawamura, H.; Kawahara, M.; Kubo, N.; Sato, H.; Miyasaka, Y.; Katoh, H.; Ishikawa, H.; Matsui, H.; et al. Kinetics of prostate-specific antigen after carbon ion radiotherapy for prostate cancer. Cancers 2020, 12, 589. [Google Scholar] [CrossRef]
- Slade, A.N.; Dahman, B.; Chang, M.G. Racial differences in the PSA bounce in predicting prostate cancer outcomes after brachytherapy: Evidence from the Department of Veterans Affairs. Brachytherapy 2020, 19, 6–12. [Google Scholar] [CrossRef]
- Hauck, C.R.; Ye, H.; Chen, P.Y.; Gustafson, G.S.; Limbacher, A.; Krauss, D.J. Increasing fractional doses increases the probability of benign PSA bounce in patients undergoing definitive HDR brachytherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, E.; Levy, L.; Martinez, A.; Potters, L.; Beyer, D.; Blasko, J.; Sandler, H.; Buskirk, S.; Zietman, A.; Kuban, D. The post-treatment PSA bounce for prostate cancer patients treated with external beam RT or permanent brachytherapy alone is not biochemically or clinically significant: A multi-institutional pooled analysis of more than 7500 patients. Int. J. Radiat. Oncol. 2006, 66, S205. [Google Scholar] [CrossRef]
- King, C.R.; Freeman, D.; Kaplan, I.; Fuller, D.; Bolzicco, G.; Collins, S.; Meier, R.; Wang, J.; Kupelian, P.; Steinberg, M.; et al. Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother. Oncol. 2013, 109, 217–221. [Google Scholar] [CrossRef]
- Takakusagi, Y.; Oike, T.; Kano, K.; Anno, W.; Tsuchida, K.; Mizoguchi, N.; Serizawa, I.; Yoshida, D.; Katoh, H.; Kamada, T.; et al. Prostate-specific antigen dynamics after neoadjuvant androgen-deprivation therapy and carbon ion radiotherapy for prostate cancer. PLoS ONE 2020, 15, e0241636. [Google Scholar] [CrossRef] [PubMed]
- D’AMico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Takakusagi, Y.; Katoh, H.; Kano, K.; Anno, W.; Tsuchida, K.; Mizoguchi, N.; Serizawa, I.; Yoshida, D.; Kamada, T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat. Oncol. 2020, 15, 127. [Google Scholar] [CrossRef]
- Tsuchida, K.; Minohara, S.; Kusano, Y.; Kano, K.; Anno, W.; Takakusagi, Y.; Mizoguchi, N.; Serizawa, I.; Yoshida, D.; Imura, K.; et al. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: An analysis based on dose distribution from daily in-room CT images. J. Appl. Clin. Med. Phys. 2021, 22, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Python Software Foundation. Python. Available online: https://www.python.org/ (accessed on 21 August 2025).
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pedregosa, G.; Varoquaux, A.; Gramfort, V.; Michel, B.; Thirion, O.; Grisel, M.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Deek, M.; Lilleby, W.; Vaage, V.; Hole, K.H.; DeWeese, T.; Stensvold, A.; Tran, P.; Seierstad, T. Impact of radiation dose on recurrence in high-risk prostate cancer patients. Prostate 2020, 80, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT Trial): An analysis of survival endpoints for a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Suzuki, O.; Isohashi, F.; Seo, Y.; Okubo, H.; Yamaguchi, H.; Oda, M.; Otani, Y.; Sumida, I.; Uemura, M.; et al. High-dose-rate brachytherapy as monotherapy for intermediate- and high-risk prostate cancer: Clinical results for a median 8-year follow-up. Int. J. Radiat. Oncol. 2016, 94, 675–682. [Google Scholar] [CrossRef]
- Takagi, M.; Demizu, Y.; Fujii, O.; Terashima, K.; Niwa, Y.; Daimon, T.; Tokumaru, S.; Fuwa, N.; Hareyama, M.; Okimoto, T. Proton therapy for localized prostate cancer: Long-term results from a single-center experience. Int. J. Radiat. Oncol. 2021, 109, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Nomiya, T.; Tsuji, H.; Kawamura, H.; Ohno, T.; Toyama, S.; Shioyama, Y.; Nakayama, Y.; Nemoto, K.; Tsujii, H.; Kamada, T. A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: A report from the Japan Carbon ion Radiation Oncology Study Group (J-CROS). Radiother. Oncol. 2016, 121, 288–293. [Google Scholar] [CrossRef]
- Kasuya, G.; Ishikawa, H.; Tsuji, H.; Haruyama, Y.; Kobashi, G.; Ebner, D.K.; Akakura, K.; Suzuki, H.; Ichikawa, T.; Shimazaki, J.; et al. Cancer-specific mortality of high-risk prostate cancer after carbon-ion radiotherapy plus long-term androgen deprivation therapy. Cancer Sci. 2017, 108, 2422–2429. [Google Scholar] [CrossRef]
- D’AMico, A.V.; Chen, M.-H.; Renshaw, A.A.; Loffredo, B.; Kantoff, P.W. Risk of prostate cancer recurrence in men treated with radiation alone or in conjunction with combined or less than combined androgen suppression therapy. J. Clin. Oncol. 2008, 26, 2979–2983. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Taylor, J.M.; Williams, S.G.; Ankerst, D.P.; Liu, N.; Kestin, L.L.; Bae, K.; Sandler, H.M. Determinants of change in prostate-specific antigen over time and its association with recurrence after external beam radiation therapy for prostate cancer in five large cohorts. Int. J. Radiat. Oncol. 2008, 72, 782–791. [Google Scholar] [CrossRef]
- Nam, W.; Choi, S.Y.; Yoo, S.J.; Ryu, J.; Lee, J.; Kyung, Y.S.; Han, J.H.; You, D.; Jeong, I.G.; Hong, J.H.; et al. Factors associated with testosterone recovery after androgen deprivation therapy in patients with prostate cancer. Investig. Clin. Urol. 2018, 59, 18–24. [Google Scholar] [CrossRef]
- Ma, T.M.; Roy, S.; Wu, X.; Mantz, C.; Fuller, D.; Miszczyk, L.; Napieralska, A.; Namysł-Kaletka, A.; Bagshaw, H.P.; Buyyounouski, M.K.; et al. Refining the definition of biochemical failure in the era of stereotactic body radiation therapy for prostate cancer: The Phoenix definition and beyond. Radiother. Oncol. 2022, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Darwis, N.D.M.; Oike, T.; Kubo, N.; Gondhowiardjo, S.A.; Ohno, T. Characteristics of PSA bounce after radiotherapy for prostate cancer: A meta-analysis. Cancers 2020, 12, 2180. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) | |||
---|---|---|---|---|
Follow-up duration, months, median (range) | 69 (47–95) | |||
Age, years, median (range) | 70 (47–84) | |||
D’Amico classification | ||||
High | 171 (100%) | |||
T stage | ||||
1c | 16 (9.4%) | |||
2a | 38 (22.2%) | |||
2b | 24 (14.0%) | |||
2c | 49 (28.7%) | |||
3a | 34 (19.9%) | |||
3b | 10 (5.8%) | |||
4 | 0 (0%) | |||
Pretreatment PSA, ng/mL, median (range) | 10.2 (3.37–187) | |||
≤10 | 80 (46.8%) | |||
10 ≤ 20 | 55 (32.2%) | |||
<20 | 36 (21.0%) | |||
Gleason Score | ||||
6 | 3 (1.8%) | |||
7 | 31 (18.1%) | |||
8 | 91 (53.2%) | |||
9 | 46 (26.9%) | |||
ADT | ||||
neoadjuvant | 171 (100%) | |||
adjuvant | 171 (100%) | |||
duration, month, median (range) | 24 (12–36) |
No. | Age | T Stage | Pretreatment PSA (ng/mL) | GS | ADT Duration (Months) | Time to Recurrence (Months) | Clinical Recurrence | Site |
---|---|---|---|---|---|---|---|---|
1 | 68 | T3a | 34 | 4 + 4 = 8 | 29 | 41 | No | - |
2 | 66 | T3a | 13.49 | 4 + 4 = 8 | 27 | 77 | No | - |
3 | 63 | T3a | 11.257 | 4 + 5 = 9 | 26 | 45 | Yes | Lumber bone |
4 | 69 | T2b | 7.5 | 4 + 5 = 9 | 24 | 36 | Yes | Left external iliac lymph node |
5 | 68 | T3b | 10.4 | 4 + 5 = 9 | 18 | 53 | No | - |
6 | 72 | T3a | 23.97 | 4 + 5 = 9 | 24 | 54 | Yes | Prostate, left obturator lymph node |
7 | 65 | T3b | 10.1 | 5 + 4 = 9 | 25 | 55 | No | - |
8 | 73 | T2c | 7.36 | 4 + 5 = 9 | 15 | 42 | Yes | Multiple pelvic lymph nodes |
9 | 70 | T2a | 20.244 | 4 + 4 = 8 | 24 | 65 | Yes | Prostate |
10 | 69 | T2a | 10.2 | 4 + 4 = 8 | 27 | 55 | No | - |
11 | 68 | T3b | 35 | 4 + 5 = 9 | 22 | 42 | Yes | Prostate |
12 | 75 | T3a | 48.65 | 4 + 5 = 9 | 22 | 41 | No | - |
Characteristics | n (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Non-Recurrence (n = 153) | Pseudo-Recurrence (n = 6) | Recurrence (n = 12) | p-Value 1 | Effect Size | NR vs. PR 2 | NR vs. R 2 | PR 2 vs. R 2 | |||
Follow-up duration, months, median (range) | 69 (53–95) | 71 (62–79) | 63 (36–77) | 0.218 | η2 = 0.006 | - | - | - | |||
Age, years, median (range) | 70 (47–84) | 65 (55–70) | 68 (63–75) | 0.07 | η2 = 0.020 | - | - | - | |||
T stage | 0.043 | Cramer’s V = 0.234 | 1 | 0.021 | 1 | ||||||
1c | 16 (10.5%) | 0 (0%) | 0 (0%) | ||||||||
2a | 35 (22.9%) | 1 (16.7%) | 2 (16.7%) | ||||||||
2b | 23 (15.0%) | 0 (0%) | 1 (8.3%) | ||||||||
2c | 46 (30.1%) | 2 (33.3%) | 1 (8.3%) | ||||||||
3a | 27 (17.6%) | 2 (33.3%) | 5 (41.6%) | ||||||||
3b | 6 (3.9%) | 1 (16.7%) | 3 (25%) | ||||||||
4 | 0 (0%) | 0 (0%) | 0 (0%) | ||||||||
Pretreatment PSA, ng/mL, median (range) | 10.09 (3.37–187) | 26.81 (4.95–108.64) | 12.37 (7.36–48.65) | 0.07 | η2 = 0.020 | - | - | - | |||
≤10 | 76 (49.7%) | 2 (33.3%) | 2 (16.7%) | ||||||||
10 ≤ 20 | 50 (32.7%) | 0 (0%) | 5 (41.7%) | ||||||||
>20 | 27 (17.6%) | 4 (66.7%) | 5 (41.7%) | ||||||||
Gleason score | 0.002 | Cramer’s V = 0.25 | 0.064 | 0.031 | 0.197 | ||||||
6 | 2 (1.3%) | 1 (16.7%) | 0 (0%) | ||||||||
7 | 29 (19.0%) | 2 (33.3%) | 0 (0%) | ||||||||
8 | 86 (56.2%) | 1 (16.7%) | 4 (33.3%) | ||||||||
9 | 36 (23.5%) | 2 (33.3%) | 8 (66.7%) | ||||||||
ADT | |||||||||||
neoadjuvant | 153 (100%) | 6 (100%) | 12 (100%) | - | |||||||
adjuvant | 153 (100%) | 6 (100%) | 12 (100%) | - | |||||||
duration, month, median (range) | 24 (12–36) | 24 (22–27) | 24 (15–29) | 0.912 | η2 = −0.010 | - | - | - | |||
PSA nadir, ng/mL, median (range) | 0.008 (0–0.1) | 0.011 (0.001–0.06) | 0.008 (0.003–0.17) | 0.011 | η2 = 0.042 | 0.089 | 0.089 | 1 |
No-Bounce (n = 105) | Bounce (n = 48) | p-Value 1 | Effect Size | ||
---|---|---|---|---|---|
Age, years, median (range) | 71 (57–84) | 68 (47–79) | 0.004 | r = −0.23 | |
T stage | 0.143 | Cramer’s V = 0.23 | |||
1c | 7 (6.7%) | 9 (18.8%) | |||
2a | 26 (24.8%) | 9 (18.8%) | |||
2b | 15 (14.3%) | 8 (16.7%) | |||
2c | 33 (31.4%) | 13 (27.1%) | |||
3a | 18 (17.1%) | 9 (18.8%) | |||
3b | 6 (5.7%) | 0 (0%) | |||
4 | 0 (0%) | 0 (0%) | |||
Pretreatment PSA, ng/mL, median (range) | 9.2 (3.37–187) | 10.675 (4.02–84.3) | 0.665 | r = 0.035 | |
≤10 | 56 (53.3%) | 20 (41.7%) | |||
10 ≤ 20 | 30 (28.6%) | 20 (41.7%) | |||
<20 | 19 (18.1%) | 8 (16.7%) | |||
PSA nadir, ng/mL, median (range) | 0.008 (0–0.1) | 0.008 (0–0.062) | 0.345 | r = 0.076 | |
Gleason Score | 0.182 | Cramer’s V = 0.18 | |||
6 | 2 (1.9%) | 0 (0%) | |||
7 | 17 (16.2%) | 12 (25%) | |||
8 | 57 (54.3%) | 29 (60.4%) | |||
9 | 29 (27.6%) | 7 (14.6%) | |||
ADT duration, months, median (range) | 25 (13–36) | 24 (12–35) | 0.256 | r = −0.092 |
PSA Cutoff Value (ng/mL) | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Positive predictive value (%) | 37.5 | 61.1 | 77.8 | 83.3 | 100 | |
Sensitivity (%) | 100 | 91.7 | 58.3 | 41.7 | 25 | |
Specificity (%) | 87.4 | 95.6 | 98.7 | 99.3 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shima, S.; Takakusagi, Y.; Okuda, T.; Koge, H.; Kano, K.; Okada, K.; Tsuchida, K.; Kawashiro, S.; Mizoguchi, N.; Yoshida, D.; et al. Does PSA Nadir + 2 ng/mL Always Indicate Biochemical Recurrence? A PSA Kinetics-Based Evaluation Following Carbon Ion Radiotherapy for Localized High-Risk Prostate Cancer. Cancers 2025, 17, 2867. https://doi.org/10.3390/cancers17172867
Shima S, Takakusagi Y, Okuda T, Koge H, Kano K, Okada K, Tsuchida K, Kawashiro S, Mizoguchi N, Yoshida D, et al. Does PSA Nadir + 2 ng/mL Always Indicate Biochemical Recurrence? A PSA Kinetics-Based Evaluation Following Carbon Ion Radiotherapy for Localized High-Risk Prostate Cancer. Cancers. 2025; 17(17):2867. https://doi.org/10.3390/cancers17172867
Chicago/Turabian StyleShima, Satoshi, Yosuke Takakusagi, Tatsuya Okuda, Hiroaki Koge, Kio Kano, Kohei Okada, Keisuke Tsuchida, Shohei Kawashiro, Nobutaka Mizoguchi, Daisaku Yoshida, and et al. 2025. "Does PSA Nadir + 2 ng/mL Always Indicate Biochemical Recurrence? A PSA Kinetics-Based Evaluation Following Carbon Ion Radiotherapy for Localized High-Risk Prostate Cancer" Cancers 17, no. 17: 2867. https://doi.org/10.3390/cancers17172867
APA StyleShima, S., Takakusagi, Y., Okuda, T., Koge, H., Kano, K., Okada, K., Tsuchida, K., Kawashiro, S., Mizoguchi, N., Yoshida, D., Katoh, H., & Uno, T. (2025). Does PSA Nadir + 2 ng/mL Always Indicate Biochemical Recurrence? A PSA Kinetics-Based Evaluation Following Carbon Ion Radiotherapy for Localized High-Risk Prostate Cancer. Cancers, 17(17), 2867. https://doi.org/10.3390/cancers17172867