Survival Machine Learning Methods Improve Prediction of Histologic Transformation in Follicular and Marginal Zone Lymphomas
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. NGS
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics and Survival Outcomes
3.2. Model Comparison: Classification vs. Survival Models
3.3. Incorporating NGS into the Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
DLBCL | Diffuse large B-cell lymphoma |
FL | Follicular lymphoma |
FLIPI | Follicular Lymphoma International Prognostic Index |
GBM-Cox | Gradient-boosted Cox model |
HT | Histologic transformation |
LGBCL | Low-grade B-cell lymphoma |
MALT-IPI | Mucosa-Associated Lymphoid Tissue Lymphoma Prognostic Index |
ML | Machine learning |
MZL | Marginal zone lymphoma |
NGS | Next-generation sequencing |
NHL | Non-Hodgkin lymphoma |
PCA | Principal component analysis |
RSF | Random Survival Forest |
CI | Confidence interval |
HR | Hazard ratio |
FFPE | Formalin-fixed, paraffin-embedded |
References
- Perry, A.M.; Diebold, J.; Nathwani, B.N.; MacLennan, K.A.; Müller-Hermelink, H.K.; Bast, M.; Boilesen, E.; Armitage, J.O.; Weisenburger, D.D. Non-Hodgkin lymphoma in the developing world: Review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica 2016, 101, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Abro, B.; Maurer, M.J.; Habermann, T.M.; Burack, W.R.; Chapman, J.R.; Cohen, J.B.; Friedberg, J.W.; Inghirami, G.; Kahl, B.S.; Larson, M.C.; et al. Real-world impact of differences in the WHO and ICC classifications of non-hodgkin lymphoma: A LEO cohort study analysis. Blood 2024, 144, 2063–2066. [Google Scholar] [CrossRef]
- Wagner-Johnston, N.D.; Link, B.K.; Byrtek, M.; Dawson, K.L.; Hainsworth, J.; Flowers, C.R.; Friedberg, J.W.; Bartlett, N.L. Outcomes of transformed follicular lymphoma in the modern era: A report from the National LymphoCare Study (NLCS). Blood 2015, 126, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Bult, J.A.A.; Huisman, F.; Zhong, Y.; Veltmaat, N.; Kluiver, J.; Tonino, S.H.; Vermaat, J.S.P.; Chamuleau, M.E.D.; Diepstra, A.; van den Berg, A.; et al. A population-based study of transformed marginal zone lymphoma: Identifying outcome-related characteristics. Blood Cancer J. 2023, 13, 130. [Google Scholar] [CrossRef]
- Solal-Céligny, P.; Roy, P.; Colombat, P.; White, J.; Armitage, J.O.; Arranz-Saez, R.; Au, W.Y.; Bellei, M.; Brice, P.; Caballero, D.; et al. Follicular lymphoma international prognostic index. Blood 2004, 104, 1258–1265. [Google Scholar] [CrossRef]
- Bachy, E.; Maurer, M.J.; Habermann, T.M.; Gelas-Dore, B.; Maucort-Boulch, D.; Estell, J.A.; Van den Neste, E.; Bouabdallah, R.; Gyan, E.; Feldman, A.L.; et al. A simplified scoring system in de novo follicular lymphoma treated initially with immunochemotherapy. Blood 2018, 132, 49–58. [Google Scholar] [CrossRef]
- Thieblemont, C.; Cascione, L.; Conconi, A.; Kiesewetter, B.; Raderer, M.; Gaidano, G.; Martelli, M.; Laszlo, D.; Coiffier, B.; Lopez Guillermo, A.; et al. A MALT lymphoma prognostic index. Blood 2017, 130, 1409–1417. [Google Scholar] [CrossRef]
- Mosquera Orgueira, A.; Cid López, M.; Peleteiro Raíndo, A.; Abuín Blanco, A.; Díaz Arias, J.Á.; González Pérez, M.S.; Antelo Rodríguez, B.; Bao Pérez, L.; Ferreiro Ferro, R.; Aliste Santos, C.; et al. Personally tailored survival prediction of patients with follicular lymphoma using machine learning transcriptome-based models. Front. Oncol. 2021, 11, 705010. [Google Scholar] [CrossRef]
- Hopper, M.A.; Wenzl, K.; Hartert, K.T.; Krull, J.E.; Dropik, A.R.; Novak, J.P.; Manske, M.K.; Serres, M.R.; Sarangi, V.; Larson, M.C.; et al. Molecular classification and identification of an aggressive signature in low-grade b-cell lymphomas. Hematol. Oncol. 2023, 41, 644–654. [Google Scholar] [CrossRef]
- Fernández-Miranda, I.; Pedrosa, L.; González-Rincón, J.; Espinet, B.; de la Cruz Vicente, F.; Climent, F.; Gómez, S.; Royuela, A.; Camacho, F.I.; Martín-Acosta, P.; et al. Generation and external validation of a histologic transformation risk model for patients with follicular lymphoma. Mod. Pathol. 2024, 37, 100516. [Google Scholar] [CrossRef]
- Dreval, K.; Hilton, L.K.; Cruz, M.; Shaalan, H.; Ben-Neriah, S.; Boyle, M.; Collinge, B.; Coyle, K.M.; Duns, G.; Farinha, P.; et al. Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns. Blood 2023, 142, 561–573. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Longato, E.; Vettoretti, M.; Di Camillo, B. A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models. J. Biomed. Inform. 2020, 108, 103496. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Mayr, A.; Binder, H.; Gefeller, O.; Schmid, M. The evolution of boosting algorithms. From machine learning to statistical modelling. Methods Inf. Med. 2014, 53, 419–427. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, S.; Zeng, Y.; Mehrabi, S.; Sohn, S.; et al. Clinical information extraction applications: A literature review. J. Biomed. Inform. 2018, 77, 34–49. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jerome, H.F. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Harrell, F.E.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, B.; Jeon, C.Y.; Xie, F.; Lin, Y.C.; Butler, R.K.; Zhou, Y.; Luong, T.Q.; Lustigova, E.; Pisegna, J.R.; et al. Machine learning versus regression for prediction of sporadic pancreatic cancer. Pancreatology 2023, 23, 396–402. [Google Scholar] [CrossRef]
- Cygu, S.; Seow, H.; Dushoff, J.; Bolker, B.M. Comparing machine learning approaches to incorporate time-varying covariates in predicting cancer survival time. Sci. Rep. 2023, 13, 1370. [Google Scholar] [CrossRef]
- Zha, J.; Chen, Q.; Zhang, W.; Jing, H.; Ye, J.; Liu, H.; Yu, H.; Yi, S.; Li, C.; Zheng, Z.; et al. A machine learning-based model to predict POD24 in follicular lymphoma: A study by the Chinese workshop on follicular lymphoma. Biomark. Res. 2025, 13, 2. [Google Scholar] [CrossRef]
- Kridel, R.; Chan, F.C.; Mottok, A.; Boyle, M.; Farinha, P.; Tan, K.; Meissner, B.; Bashashati, A.; McPherson, A.; Roth, A.; et al. Histological transformation and progression in follicular lymphoma: A clonal evolution study. PLoS Med. 2016, 13, e1002197. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Khiabanian, H.; Fangazio, M.; Vasishtha, M.; Messina, M.; Holmes, A.B.; Ouillette, P.; Trifonov, V.; Rossi, D.; Tabbò, F.; et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014, 6, 130–140. [Google Scholar] [CrossRef]
- Warren, M.; Chung, Y.J.; Howat, W.J.; Harrison, H.; McGinnis, R.; Hao, X.; McCafferty, J.; Fredrickson, T.N.; Bradley, A.; Morse, H.C. Irradiated Blm-deficient mice are a highly tumor prone model for analysis of a broad spectrum of hematologic malignancies. Leuk. Res. 2010, 34, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, J.M.; MaCarthur, A.C.; Leach, S.; Lai, A.S.; Gallagher, R.P.; Connors, J.M.; Gascoyne, R.D.; Spinelli, J.J.; Brooks-Wilson, A.R. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC Med. Genet. 2009, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Gindin, T.; Murty, V.; Alobeid, B.; Bhagat, G. MLL/KMT2A translocations in diffuse large B-cell lymphomas. Hematol. Oncol. 2015, 33, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Florindez, J.A.; Chihara, D.; Reis, I.M.; Lossos, I.S.; Alderuccio, J.P. Risk of transformation by frontline management in follicular and marginal zone lymphomas: A US population–based analysis. Blood Adv. 2024, 8, 4423–4432. [Google Scholar] [CrossRef] [PubMed]
Total | Non-HT | HT | p | |
---|---|---|---|---|
(n = 1068) | (n = 1030) | (n = 38) | ||
Age >60 years, n (%) | 317 (29.7) | 302 (29.3) | 15 (39.5) | 0.244 |
Sex | 0.396 | |||
Female | 564 (52.8) | 547 (53.1) | 17 (44.7) | |
Male | 504 (47.2) | 483 (46.9) | 21 (55.3) | |
Diagnosis subtype, n (%) | 0.286 | |||
FL | 744 (69.7) | 721 (70.0) | 23 (60.5) | |
MZL | 324 (30.3) | 309 (30.0) | 15 (39.5) | |
Involvement >4 nodal sites, n (%) | 288 (27.0) | 274 (26.6) | 14 (36.8) | 0.226 |
Axial bone involvement, n (%) | 0.504 | |||
Absent | 741 (69.4) | 717 (69.6) | 24 (63.2) | |
Present | 327 (30.6) | 313 (30.4) | 14 (36.8) | |
Spleen involvement, n (%) | 0.101 | |||
Absent | 902 (84.5) | 874 (84.9) | 28 (73.7) | |
Present | 166 (15.5) | 156 (15.1) | 10 (26.3) | |
Pleural effusion, n (%) | 0.001 | |||
Absent | 1025 (96.0) | 993 (96.4) | 32 (84.2) | |
Present | 43 (4.0) | 37 (3.6) | 6 (15.8) | |
LDH elevation, n (%) | 186 (17.4) | 174 (16.9) | 12 (31.6) | 0.033 |
Hemoglobin, n (%) | <0.001 | |||
≥12 g/dL | 924 (86.5) | 901 (87.5) | 23 (60.5) | |
<12 g/dL | 144 (13.5) | 129 (12.5) | 15 (39.5) | |
Ann Arbor Stage n (%) | 0.011 | |||
I–II | 422 (39.5) | 415 (40.3) | 7 (18.4) | |
III–IV | 646 (60.5) | 615 (59.7) | 31 (81.6) |
Non-HT | HT | p | HR (95% CI) | p | |
---|---|---|---|---|---|
(n = 80) | (n = 12) | ||||
KMT2D | >0.999 | 0.488 | |||
Wild | 45 (56.2) | 7 (58.3) | Reference | ||
Mutation | 35 (43.8) | 5 (41.7) | 1.56 (0.45, 5.43) | ||
CREBBP | >0.999 | 0.807 | |||
Wild | 58 (72.5) | 9 (75.0) | Reference | ||
Mutation | 22 (27.5) | 3 (25.0) | 0.85 (0.23, 3.14) | ||
TP53 | 0.029 | 0.006 | |||
Wild | 74 (92.5) | 8 (66.7) | Reference | ||
Mutation | 6 (7.5) | 4 (33.3) | 6.13 (1.70, 22.1) | ||
ARID1A | 0.39 | 0.105 | |||
Wild | 71 (88.8) | 9 (75.0) | 3.08 (0.79, 12.0) | ||
Mutation | 9 (11.2) | 3 (25.0) | Reference | ||
STAT6 | 0.835 | 0.998 | |||
Wild | 75 (93.8) | 12 (100.0) | Reference | ||
Mutation | 5 (6.2) | 0 (0.0) | Not applicable | ||
TNFRSF14 | 0.835 | 0.998 | |||
Wild | 75 (93.8) | 12 (100.0) | Reference | ||
Mutation | 5 (6.2) | 0 (0.0) | Not applicable | ||
BCL2 | >0.999 | 0.994 | |||
Wild | 74 (92.5) | 11 (91.7) | Reference | ||
Mutation | 6 (7.5) | 1 (8.3) | 1.01 (0.12, 8.14) | ||
EZH2 | 0.86 | 0.504 | |||
Wild | 61 (76.2) | 10 (83.3) | Reference | ||
Mutation | 19 (23.8) | 2 (16.7) | 0.59 (0.13, 2.77) | ||
BRAF | >0.999 | 0.402 | |||
Wild | 71 (88.8) | 11 (91.7) | Reference | ||
Mutation | 9 (11.2) | 1 (8.3) | 0.4 (0.05, 3.36) | ||
KMT2A | 0.819 | 0.031 | |||
Wild | 40 (50.0) | 5 (41.7) | Reference | ||
Rearrangement | 40 (50.0) | 7 (58.3) | 5.46 (1.16, 25.6) | ||
BLM | 0.007 | 0.001 | |||
Wild | 76 (95.0) | 8 (66.7) | Reference | ||
Mutation | 4 (5.0) | 4 (33.3) | 8.44 (2.36, 30.1) | ||
BTK | >0.999 | 0.402 | |||
Wild | 71 (88.8) | 11 (91.7) | Reference | ||
Mutation | 9 (11.2) | 1 (8.3) | 0.4 (0.05, 3.36) | ||
FGFR1 | >0.999 | 0.451 | |||
Wild | 74 (92.5) | 11 (91.7) | Reference | ||
Rearrangement | 6 (7.5) | 1 (8.3) | 2.26 (0.27, 18.8) | ||
ATR | 0.103 | 0.007 | |||
Wild | 44 (55.0) | 3 (25.0) | Reference | ||
Mutation | 36 (45.0) | 9 (75.0) | 6.86 (1.68, 27.9) | ||
TCF7L2 | >0.999 | 0.226 | |||
Wild | 63 (78.8) | 9 (75.0) | Reference | ||
Mutation | 17 (21.2) | 3 (25.0) | 2.44 (0.58, 10.3) | ||
RAD50 | 0.247 | 0.011 | |||
Wild | 77 (96.2) | 10 (83.3) | Reference | ||
Mutation | 3 (3.8) | 2 (16.7) | 8.06 (1.61, 40.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-Y.; Kim, T.-J.; Han, E.J.; Min, G.-J.; Cho, S.-G.; Kim, S.; Lee, J.H.; Kim, B.-S.; Jeoung, J.W.; Won, H.S.; et al. Survival Machine Learning Methods Improve Prediction of Histologic Transformation in Follicular and Marginal Zone Lymphomas. Cancers 2025, 17, 2952. https://doi.org/10.3390/cancers17182952
Kim T-Y, Kim T-J, Han EJ, Min G-J, Cho S-G, Kim S, Lee JH, Kim B-S, Jeoung JW, Won HS, et al. Survival Machine Learning Methods Improve Prediction of Histologic Transformation in Follicular and Marginal Zone Lymphomas. Cancers. 2025; 17(18):2952. https://doi.org/10.3390/cancers17182952
Chicago/Turabian StyleKim, Tong-Yoon, Tae-Jung Kim, Eun Ji Han, Gi-June Min, Seok-Goo Cho, Seoree Kim, Jong Hyuk Lee, Byung-Su Kim, Joon Won Jeoung, Hye Sung Won, and et al. 2025. "Survival Machine Learning Methods Improve Prediction of Histologic Transformation in Follicular and Marginal Zone Lymphomas" Cancers 17, no. 18: 2952. https://doi.org/10.3390/cancers17182952
APA StyleKim, T.-Y., Kim, T.-J., Han, E. J., Min, G.-J., Cho, S.-G., Kim, S., Lee, J. H., Kim, B.-S., Jeoung, J. W., Won, H. S., & Jeon, Y. (2025). Survival Machine Learning Methods Improve Prediction of Histologic Transformation in Follicular and Marginal Zone Lymphomas. Cancers, 17(18), 2952. https://doi.org/10.3390/cancers17182952