Protein and Peptide in Cancer Research: From Biomarker to Biotherapeutics
Simple Summary
Abstract
1. Introduction
2. Proteins and Peptides as Biomarkers in Cancer
2.1. Protein Biomarkers: Concepts and Clinical Applications
2.2. Peptide Biomarkers: Concepts and Clinical Applications
2.3. Methodologies and Quantitative Analytical Technologies for Protein and Peptide Biomarker Discovery
2.4. Quantitative Analytical Technologies: ELISA, Mass Spectrometry, and Emerging High-Sensitivity Platforms
2.5. Case Studies of Biomarker Discovery Using Omics-Based Approaches
3. Roles of Proteins and Peptides in Tumor Biology
4. Peptide-Based Therapeutics in Cancer
5. Protein-Based Therapeutics: Monoclonal Antibodies, Fusion Proteins, and Beyond
6. Computational Tools for Anticancer Peptide Prediction
7. Emerging Trends in Protein and Peptide Drug Development
7.1. Targeting Specificity and Resistance
7.2. Stability and Bioavailability
7.3. Immunogenicity and Manufacturing Challenges
7.4. Biomarker Reliability and Clinical Translation
7.5. Toward Adaptive and Personalized Therapeutics
7.6. Artificial Intelligence in Drug Design and Clinical Practice
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lunt, N. The global challenge of cancer governance. World Med. Health Policy 2023, 15, 672–681. [Google Scholar] [CrossRef]
- Fan, J.; Li, X.; Yu, X.; Liu, Z.; Jiang, Y.; Fang, Y.; Zong, M.; Suo, C.; Man, Q.; Xiong, L. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030. Neurology 2023, 101, e137–e150. [Google Scholar] [CrossRef]
- Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a006098. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Ren, B.; Fang, Y.; Ren, J.; Liu, X.; Wang, X.; Zhou, F.; Xiao, R.; Luo, X.; You, L. Epigenetic regulation in cancer. MedComm 2024, 5, e495. [Google Scholar] [CrossRef] [PubMed]
- Sabit, H. Cancer Epigenetics: Shifting to More Deep Action. Nov. Approaches Cancer Study 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Ciardiello, D.; Roda, D.; Gambardella, V.; Cervantes, A. In the literature: April 2022. ESMO Open 2022, 7, 100479. [Google Scholar] [CrossRef] [PubMed]
- Tennant, D.A.; Durán, R.V.; Boulahbel, H.; Gottlieb, E. Metabolic transformation in cancer. Carcinogenesis 2009, 30, 1269–1280. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Wang, Y.; Chan, A.M. Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers 2019, 11, 1247. [Google Scholar] [CrossRef]
- Pappas, K.; Xu, J.; Zairis, S.; Resnick-Silverman, L.; Abate, F.; Steinbach, N.; Ozturk, S.; Saal, L.H.; Su, T.; Cheung, P. p53 maintains baseline expression of multiple tumor suppressor genes. Mol. Cancer Res. 2017, 15, 1051–1062. [Google Scholar] [CrossRef]
- Hudler, P.; Gorsic, M.; Komel, R. Proteomic strategies and challenges in tumor metastasis research. Clin. Exp. Metastasis 2010, 27, 441–451. [Google Scholar] [CrossRef]
- Urbiola-Salvador, V.; Miroszewska, D.; Jabłońska, A.; Qureshi, T.; Chen, Z. Proteomics approaches to characterize the immune responses in cancer. Biochim. Biophys. Acta-Mol. Cell Res. 2022, 1869, 119266. [Google Scholar] [CrossRef]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors 2023, 24, 37. [Google Scholar] [CrossRef]
- More, A.; Kaur, S.; Bhatele, S.; Vasdev, N.; Gupta, T.; Pawar, B.; Tekade, R.K. Biomarkers: Revolutionizing disease monitoring and therapeutic strategies. In Public Health and Toxicology Issues Drug Research; Academic Press: Cambridge, MA, USA, 2024; Volume 2, pp. 1–25. [Google Scholar]
- Desai, S.; Guddati, A.K. Carcinoembryonic antigen, carbohydrate antigen 19-9, cancer antigen 125, prostate-specific antigen and other cancer markers: A primer on commonly used cancer markers. World J. Oncol. 2023, 14, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Diouf, O.B.; Soumboundou, M.; Sall, C. Proteomics analysis techniques and Bioinformatics approaches for biomarkers discovery. Int. J. Biol. Chem. Sci. 2023, 17, 2943–2957. [Google Scholar] [CrossRef]
- Babaei, M.; Kashanian, S.; Lee, H.T.; Harding, F. Proteomics techniques in protein biomarker discovery. Quant. Biol. 2024, 12, 53–69. [Google Scholar] [CrossRef]
- Nice, E.C. The discovery and validation of novel protein and peptide biomarkers. In Amino Acids, Peptides and Proteins; Ryadnov, M., Hudecz, F., Eds.; The Royal Society of Chemistry: London, UK, 2016; Volume 41, pp. 30–52. [Google Scholar]
- Karagiannis, S.N.; Hoffmann, R.M.; Nakamura, M.; Crescioli, S.; Bax, H.J.; Chenoweth, A.; Cheung, A.; Tsoka, S.; Spicer, J.F.; Lacy, K.E. Translational aspects of biologicals: Monoclonal antibodies and antibody-drug conjugates as examples. In Principles of Translational Science in Medicine; Elsevier: Amsterdam, The Netherlands, 2021; pp. 329–350. [Google Scholar]
- Trail, P.A. Antibody drug conjugates as cancer therapeutics. Antibodies 2013, 2, 113–129. [Google Scholar] [CrossRef]
- Gogia, P.; Ashraf, H.; Bhasin, S.; Xu, Y. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence. Cancers 2023, 15, 3886. [Google Scholar] [CrossRef] [PubMed]
- Vadevoo, S.M.P.; Gurung, S.; Khan, F.; Haque, M.E.; Gunassekaran, G.R.; Chi, L.; Permpoon, U.; Lee, B. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch. Pharmacal Res. 2019, 42, 150–158. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, K.; Beg, S.; Chauhan, D.; Kumar, V.; Hafeez, A.; Sahoo, A.; Almalki, W.H.; Ansari, M.J. Peptide-based anticancer targeted therapeutics. In Nanotherapeutics in Cancer Vaccination and Challenges; Academic Press Inc.: Cambridge, MA, USA, 2022; pp. 149–166. [Google Scholar]
- Li, C.M.; Haratipour, P.; Lingeman, R.G.; Perry, J.J.P.; Gu, L.; Hickey, R.J.; Malkas, L.H. Novel peptide therapeutic approaches for cancer treatment. Cells 2021, 10, 2908. [Google Scholar] [CrossRef]
- Vadevoo, S.M.P.; Gurung, S.; Lee, H.-S.; Gunassekaran, G.R.; Lee, S.-M.; Yoon, J.-W.; Lee, Y.-K.; Lee, B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023, 55, 1099–1109. [Google Scholar] [CrossRef]
- K Ko, J.; K Auyeung, K. Identification of functional peptides from natural and synthetic products on their anticancer activities by tumor targeting. Curr. Med. Chem. 2014, 21, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Nyahatkar, S.; Sonar, S.; Kalele, K.; Subramaniyan, V. Unlocking the potential of exosomes: A new frontier in liver cancer liquid biopsy. J. Liq. Biopsy 2024, 6, 100166. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Huang, R.; Wumaier, R.; Lyu, J.; Huang, M.; Zhang, Y.; Chen, Q.; Liu, W.; Tao, M.; Li, J. Proteomic profiling of serum extracellular vesicles identifies diagnostic signatures and therapeutic targets in breast cancer. Cancer Res. 2024, 84, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Wanjari, U.R.; Gopalakrishnan, A.V.; Bradu, P.; Biswas, A.; Ganesan, R.; Renu, K.; Dey, A.; Vellingiri, B.; El Allali, A. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed. Pharmacother. 2023, 163, 114832. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Thakkar, D.; Panchal, N.; Jha, R. Artificial intelligence and machine learning in drug discovery. In Converging Pharmacy Science and Engineering in Computational Drug Discovery; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 54–75. [Google Scholar]
- Afrose, N.; Chakraborty, R.; Hazra, A.; Bhowmick, P.; Bhowmick, M. AI-Driven drug discovery and Development. In Future of AI in Biomedicine and Biotechnology; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 259–277. [Google Scholar]
- Haga, Y.; Minegishi, Y.; Ueda, K. Frontiers in mass spectrometry–based clinical proteomics for cancer diagnosis and treatment. Cancer Sci. 2023, 114, 1783–1791. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Gawronski, A.; Hach, F.; Li, S.; Numanagić, I.; Sarrafi, I.; Mishra, S.; McPherson, A.; Collins, C.C.; Radovich, M. Computational identification of micro-structural variations and their proteogenomic consequences in cancer. Bioinformatics 2018, 34, 1672–1681. [Google Scholar] [CrossRef]
- Peiris, P.M.; Karathanasis, E. Is nanomedicine still promising? Oncotarget 2011, 2, 430–432. [Google Scholar] [CrossRef][Green Version]
- Alajmi, A.A.; Al Otaibi, S.G.; Alzubidi, A.H.A.; Alanazi, A.A.A.; Almorshed, A.S.A.; Alrbian, A.A.M. Advancements in Nanomedicine: Targeted Drug Delivery Systems for Cancer Treatment. Int. J. Health Sci. 2023, 7, 3655–3682. [Google Scholar] [CrossRef]
- Haider, N.; Fatima, S.; Taha, M.; Rizwanullah, M.; Firdous, J.; Ahmad, R.; Mazhar, F.; Khan, M.A. Nanomedicines in diagnosis and treatment of cancer: An update. Curr. Pharm. Des. 2020, 26, 1216–1231. [Google Scholar] [CrossRef]
- Esim, O.; Hascicek, C. Lipid-coated nanosized drug delivery systems for an effective cancer therapy. Curr. Drug Deliv. 2021, 18, 147–161. [Google Scholar] [CrossRef]
- Xiao, X.; Teng, F.; Shi, C.; Chen, J.; Wu, S.; Wang, B.; Meng, X.; Essiet Imeh, A.; Li, W. Polymeric nanoparticles-Promising carriers for cancer therapy. Front. Bioeng. Biotechnol. 2022, 10, 1024143. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Huang, B.; Liu, F.; Cui, R.; Zhang, M.; Sun, T. Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling. Nanoscale 2022, 14, 7473–7479. [Google Scholar] [CrossRef]
- Höcker, B.; Zielonka, S. Protein engineering & design: Hitting new heights. Biol. Chem. 2022, 403, 453. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, C.; Zhang, T.; Zhang, X.; Shen, Q.; Tang, B.; Liang, H.; Lai, L. Rational design of TNFalpha binding proteins based on the de novo designed protein DS119. Protein Sci. 2016, 25, 2066–2075. [Google Scholar] [CrossRef]
- Manoto, S.L.; Lugongolo, M.; Govender, U.; Mthunzi-Kufa, P. Point of Care Diagnostics for HIV in Resource Limited Settings: An Overview. Medicina 2018, 54, 3. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P. Personalized biosensors for point-of-care diagnostics: From bench to bedside applications. Nanotheranostics 2023, 7, 210–215. [Google Scholar] [CrossRef]
- Smith, E.A.; Hodges, H.C. The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends Cancer 2019, 5, 411–425. [Google Scholar] [CrossRef]
- Djavan, B.; Eckersberger, E.; Finkelstein, J.; Sadri, H.; Taneja, S.S.; Lepor, H. Prostate-specific antigen testing and prostate cancer screening. Prim. Care Clin. Off. Pract. 2010, 37, 441–459. [Google Scholar] [CrossRef]
- Bast, R., Jr.; Xu, F.-J.; Yu, Y.-H.; Barnhill, S.; Zhang, Z.; Mills, G. CA 125: The past and the future. Int. J. Biol. Markers 1998, 13, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin. Liver Dis. 2001, 5, 145–159. [Google Scholar] [CrossRef]
- Tanwisa, T.; Raj, A.; Puttiga, A.; Gopinathan, A.; Alex, A.T. Role of MYC inhibition in overcoming resistance to HER2-targeted therapies for breast cancer. Life Sci. 2025, 379, 123902. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Wang, C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun. Signal. 2023, 21, 77. [Google Scholar] [CrossRef]
- Bechtel, T.J.; Weerapana, E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017, 17, 1600391. [Google Scholar] [CrossRef]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for improving peptide stability and delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef] [PubMed]
- Hamadou, M. Bioactive peptides and metabolic health: A mechanistic review of the impact on insulin sensitivity, lipid profiles, and inflammation. Appl. Food Res. 2025, 5, 101056. [Google Scholar] [CrossRef]
- Thanasukarn, V.; Prajumwongs, P.; Muangritdech, N.; Loilome, W.; Namwat, N.; Klanrit, P.; Wangwiwatsin, A.; Charoenlappanit, S.; Jaresitthikunchai, J.; Roytrakul, S.; et al. Discovery of novel serum peptide biomarkers for cholangiocarcinoma recurrence through MALDI-TOF MS and LC-MS/MS peptidome analysis. Sci. Rep. 2025, 15, 2582. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.M.; Ahmad, S.; Sarwar, A.; Bashir, H. Unlocking the potential of tumor-targeting peptides in precision oncology. Oncol. Res. 2025, 33, 1547–1570. [Google Scholar] [CrossRef]
- Tenchov, R.; Sapra, A.K.; Sasso, J.; Ralhan, K.; Tummala, A.; Azoulay, N.; Zhou, Q.A. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol. Transl. Sci. 2024, 7, 586–613. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, T.; Wang, L.; Ming, J. Research progress on estrogen receptor-positive/progesterone receptor-negative breast cancer. Transl. Oncol. 2025, 56, 102387. [Google Scholar] [CrossRef]
- Esen, B.; Seymen, H.; Tarim, K.; Koseoglu, E.; Bolukbasi, Y.; Falay, O.; Selcukbiricik, F.; Molinas Mandel, N.; Kordan, Y.; Demirkol, M.O.; et al. Diagnostic Performance of (68)Ga-PSMA-11 Positron Emission Tomography/Computed Tomography to Monitor Treatment Response in Patients with Metastatic Prostate Cancer: The Concordance Between Biochemical Response and Prostate-specific Membrane Antigen Results. Eur. Urol. Focus. 2023, 9, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Ma, H.; Li, X.; Zhai, H.; Li, X.; Cheng, X.; Zhao, X.; Zhao, Z.; Hao, Z. Ovarian cancer: Diagnosis and treatment strategies. Oncol. Lett. 2024, 28, 441. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska, M.; Bańkosz, M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review. J. Clin. Med. 2024, 13, 7131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- de Azevedo, A.L.K.; Gomig, T.H.B.; Batista, M.; de Oliveira, J.C.; Cavalli, I.J.; Gradia, D.F.; Ribeiro, E.M.d.S.F. Peptidomics and Machine Learning–based Evaluation of Noncoding RNA–Derived Micropeptides in Breast Cancer: Expression Patterns and Functional/Therapeutic Insights. Lab. Investig. 2024, 104, 102150. [Google Scholar] [CrossRef]
- Kondo, E.; Iioka, H.; Saito, K. Tumor-homing peptide and its utility for advanced cancer medicine. Cancer Sci. 2021, 112, 2118–2125. [Google Scholar] [CrossRef]
- Kane, L.E.; Mellotte, G.S.; Mylod, E.; O’Brien, R.M.; O’Connell, F.; Buckley, C.E.; Arlow, J.; Nguyen, K.; Mockler, D.; Meade, A.D. Diagnostic accuracy of blood-based biomarkers for pancreatic cancer: A systematic review and meta-analysis. Cancer Res. Commun. 2022, 2, 1229–1243. [Google Scholar] [CrossRef]
- Kallah-Dagadu, G.; Mohammed, M.; Nasejje, J.B.; Mchunu, N.N.; Twabi, H.S.; Batidzirai, J.M.; Singini, G.C.; Nevhungoni, P.; Maposa, I. Breast cancer prediction based on gene expression data using interpretable machine learning techniques. Sci. Rep. 2025, 15, 7594. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.; Lim, Y.-S.; Gwak, G.-Y.; Yeo, I.; Kim, Y.; Lee, J.; Shin, D.; Lee, J.-H.; Kim, Y. Proteome multimarker panel for the early detection of hepatocellular carcinoma: Multicenter derivation, validation, and comparison. ACS Omega 2022, 7, 29934–29943. [Google Scholar] [CrossRef]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef]
- Taylor, M.S.; Wu, C.; Fridy, P.C.; Zhang, S.J.; Senussi, Y.; Wolters, J.C.; Cajuso, T.; Cheng, W.-C.; Heaps, J.D.; Miller, B.D. Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multicancer biomarker. Cancer Discov. 2023, 13, 2532–2547. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Akbani, R.; Ju, Z.; Roebuck, P.L.; Liu, W.; Yang, J.Y.; Broom, B.M.; Verhaak, R.G.; Kane, D.W.; et al. TCPA: A resource for cancer functional proteomics data. Nat. Methods 2013, 10, 1046–1047. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Y.; Su, Y.; Qu, N.; Chen, B.; Zhou, D.; Yuan, L.; Yin, M.; Liu, M.; Zhou, W. TCF12-regulated GRB7 facilitates the HER2+ breast cancer progression by activating Notch1 signaling pathway. J. Transl. Med. 2024, 22, 745. [Google Scholar] [CrossRef]
- Hellstrom, I.; Raycraft, J.; Hayden-Ledbetter, M.; Ledbetter, J.A.; Schummer, M.; McIntosh, M.; Drescher, C.; Urban, N.; Hellström, K.E. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003, 63, 3695–3700. [Google Scholar] [PubMed]
- James, N.E.; Gura, M.; Woodman, M.; Freiman, R.N.; Ribeiro, J.R. A bioinformatic analysis of WFDC2 (HE4) expression in high grade serous ovarian cancer reveals tumor-specific changes in metabolic and extracellular matrix gene expression. Med. Oncol. 2022, 39, 71. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Arafah, A.; Bhat, K.A.; Khan, A.; Khan, M.S.; Ali, A.; Ahmad, S.M.; Rashid, S.M.; Rehman, M.U. Multiomics technologies: Role in disease biomarker discoveries and therapeutics. Brief. Funct. Genom. 2023, 22, 76–96. [Google Scholar] [CrossRef] [PubMed]
- Al-Tashi, Q.; Saad, M.B.; Muneer, A.; Qureshi, R.; Mirjalili, S.; Sheshadri, A.; Le, X.; Vokes, N.I.; Zhang, J.; Wu, J. Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review. Int. J. Mol. Sci. 2023, 24, 7781. [Google Scholar] [CrossRef] [PubMed]
- Mahadevarao Premnath, S.; Zubair, M. Laboratory Evaluation of Tumor Biomarkers; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chen, J.; Zheng, N. Accelerating protein biomarker discovery and translation from proteomics research for clinical utility. Bioanalysis 2020, 12, 1469–1481. [Google Scholar] [CrossRef]
- Dobbin, K.K.; Cesano, A.; Alvarez, J.; Hawtin, R.; Janetzki, S.; Kirsch, I.; Masucci, G.V.; Robbins, P.B.; Selvan, S.R.; Streicher, H.Z. Validation of biomarkers to predict response to immunotherapy in cancer: Volume II—Clinical validation and regulatory considerations. J. Immunother. Cancer 2016, 4, 77. [Google Scholar] [CrossRef]
- Safari, F.; Kehelpannala, C.; Safarchi, A.; Batarseh, A.M.; Vafaee, F. Biomarker reproducibility challenge: A review of non-nucleotide biomarker discovery protocols from body fluids in breast cancer diagnosis. Cancers 2023, 15, 2780. [Google Scholar] [CrossRef]
- Kim, J.W.; You, J. Protein target quantification decision tree. Int. J. Proteom. 2013, 2013, 701247. [Google Scholar] [CrossRef]
- Hu, R.; Sou, K.; Takeoka, S. A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci. Rep. 2020, 10, 18086. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chen, M.; Hsieh, Y.-C.; Su, Y.-C.; Wang, C.-H.; Cheng, C.-M.; Kao, A.-P.; Wang, K.-H.; Cheng, J.-J.; Chuang, K.-H. Development of a highly sensitive enzyme-linked immunosorbent assay (ELISA) through use of poly-protein G-expressing cell-based microplates. Sci. Rep. 2018, 8, 17868. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, M.; Lin, C.; Hu, M.; Wang, Y.; Lou, Y.; Kong, Q.; Zhang, J.; Li, J.; Zhang, Y. Mass cytometry-based peripheral blood analysis as a novel tool for early detection of solid tumours: A multicentre study. Gut 2023, 72, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Picotti, P.; Aebersold, R. Selected reaction monitoring–based proteomics: Workflows, potential, pitfalls and future directions. Nat. Methods 2012, 9, 555–566. [Google Scholar] [CrossRef]
- Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 2007, 389, 1017–1031. [Google Scholar] [CrossRef]
- Martínez-Moreno, J.M.; Llamas-Urbano, A.; Barbarroja, N.; Pérez-Sánchez, C. Proteomics by qPCR Using the Proximity Extension Assay (PEA). Methods Mol. Biol. 2025, 2929, 129–142. [Google Scholar]
- Wik, L.; Nordberg, N.; Broberg, J.; Björkesten, J.; Assarsson, E.; Henriksson, S.; Grundberg, I.; Pettersson, E.; Westerberg, C.; Liljeroth, E. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell. Proteom. 2021, 20, 100168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Warden, A.R.; Li, Y.; Ding, X. Progress and applications of mass cytometry in sketching immune landscapes. Clin. Transl. Med. 2020, 10, e206. [Google Scholar] [CrossRef] [PubMed]
- Asleh, K.; Negri, G.L.; Spencer Miko, S.E.; Colborne, S.; Hughes, C.S.; Wang, X.Q.; Gao, D.; Gilks, C.B.; Chia, S.K.; Nielsen, T.O. Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat. Commun. 2022, 13, 896. [Google Scholar] [CrossRef]
- Seliger, B.; Massa, C. CyTOF as a suitable tool for stratification and monitoring of cancer patients. J. Transl. Med. 2025, 23, 734. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef]
- Kan, C.W.; Tobos, C.I.; Rissin, D.M.; Wiener, A.D.; Meyer, R.E.; Svancara, D.M.; Comperchio, A.; Warwick, C.; Millington, R.; Collier, N. Digital enzyme-linked immunosorbent assays with sub-attomolar detection limits based on low numbers of capture beads combined with high efficiency bead analysis. Lab. Chip 2020, 20, 2122–2135. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Chikkaveeraiah, B.V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 2009, 3, 585–594. [Google Scholar] [CrossRef]
- Spitzer, M.H.; Gherardini, P.F.; Fragiadakis, G.K.; Bhattacharya, N.; Yuan, R.T.; Hotson, A.N.; Finck, R.; Carmi, Y.; Zunder, E.R.; Fantl, W.J.; et al. IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system. Science 2015, 349, 1259425. [Google Scholar] [CrossRef]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.E11. [Google Scholar] [CrossRef]
- Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7, 1016. [Google Scholar]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef] [PubMed]
- Benmokhtar, S.; Laraqui, A.; Hilali, F.; Bajjou, T.; El Zaitouni, S.; Jafari, M.; Baba, W.; Elannaz, H.; Lahlou, I.A.; Hafsa, C.; et al. RAS/RAF/MAPK Pathway Mutations as Predictive Biomarkers in Middle Eastern Colorectal Cancer: A Systematic Review. Clin. Med. Insights Oncol. 2024, 18, 11795549241255651. [Google Scholar] [CrossRef]
- Xia, P.; Xu, X.-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res. 2015, 5, 1602. [Google Scholar]
- Shang, S.; Hua, F.; Hu, Z.-W. The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget 2017, 8, 33972. [Google Scholar] [CrossRef]
- Leong, K.G.; Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis. Blood 2006, 107, 2223–2233. [Google Scholar] [CrossRef]
- Shi, Y.; Norberg, E.; Vakifahmetoglu-Norberg, H. Mutant p53 as a Regulator and Target of Autophagy. Front. Oncol. 2021, 10, 607149. [Google Scholar] [CrossRef] [PubMed]
- Kirkin, V.; Joos, S.; Zornig, M. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta 2004, 1644, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef] [PubMed]
- Kania, E.; Roest, G.; Vervliet, T.; Parys, J.B.; Bultynck, G. IP(3) Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Front. Oncol. 2017, 7, 140. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef]
- Abuetabh, Y.; Wu, H.H.; Chai, C.; Al Yousef, H.; Persad, S.; Sergi, C.M.; Leng, R. DNA damage response revisited: The p53 family and its regulators provide endless cancer therapy opportunities. Exp. Mol. Med. 2022, 54, 1658–1669. [Google Scholar] [CrossRef]
- Shen, L.; Sun, X.; Fu, Z.; Yang, G.; Li, J.; Yao, L. The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy. Clin. Cancer Res. 2012, 18, 1561–1567. [Google Scholar] [CrossRef]
- Li, Q.; Qian, W.; Zhang, Y.; Hu, L.; Chen, S.; Xia, Y. A new wave of innovations within the DNA damage response. Signal Transduct. Target. Ther. 2023, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.L.; Lan, L.; Zou, L. DNA repair defects in cancer and therapeutic opportunities. Genes. Dev. 2022, 36, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Man, X.; Zhang, Y.; He, J.; Wang, P.; Qu, W. From bench to bedside: Synthetic strategies and clinical application of PARP inhibitors. Bioorg Chem. 2025, 163, 108761. [Google Scholar] [CrossRef]
- Nickoloff, J.A.; Taylor, L.; Sharma, N.; Kato, T.A. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist. 2021, 4, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Stacker, S.A.; Achen, M.G. The VEGF signaling pathway in cancer: The road ahead. Chin. J. Cancer 2013, 32, 297. [Google Scholar]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis:A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Coso, S.; Zeng, Y.; Opeskin, K.; Williams, E.D. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis. PLoS ONE 2012, 7, e39558. [Google Scholar] [CrossRef]
- Ono, M.; Kuwano, M. Molecular Mechanisms of Epidermal Growth Factor Receptor (EGFR) Activation and Response to Gefitinib and Other EGFR-Targeting Drugs. Clin. Cancer Res. 2006, 12, 7242–7251. [Google Scholar] [CrossRef]
- French, R.; Feng, Y.; Pauklin, S. Targeting TGFbeta Signalling in Cancer: Toward Context-Specific Strategies. Trends Cancer 2020, 6, 538–540. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, J.; Yang, H. OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2(+) breast cancer patients. Onco Targets Ther. 2018, 11, 7873–7881. [Google Scholar] [CrossRef]
- Xue, C.; Chu, Q.; Shi, Q.; Zeng, Y.; Lu, J.; Li, L. Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 106. [Google Scholar] [CrossRef]
- Haddadin, L.; Sun, X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025, 14, 538. [Google Scholar] [CrossRef] [PubMed]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef]
- Ott, P.A.; Hodi, F.S.; Robert, C. CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients. Clin. Cancer Res. 2013, 19, 5300–5309. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Neve, R.M.; Lane, H.A.; Hynes, N.E. The role of overexpressed HER2 in transformation. Ann. Oncol. 2001, 12 (Suppl. 1), S9–S13. [Google Scholar] [CrossRef]
- Saxena, P.; Trerotola, M.; Wang, T.; Li, J.; Sayeed, A.; Vanoudenhove, J.; Adams, D.S.; Fitzgerald, T.J.; Altieri, D.C.; Languino, L.R. PSA regulates androgen receptor expression in prostate cancer cells. Prostate 2012, 72, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The Future of Peptide-based Drugs. Chem. Biol. Drug Des. 2012, 81, 136–147. [Google Scholar] [CrossRef]
- Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed. Pharmacother. 2023, 164, 114996. [Google Scholar] [CrossRef]
- Khairkhah, N.; Namvar, A.; Bolhassani, A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol. Biotechnol. 2023, 65, 1387–1402. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, S.M.; Deep, A.; Magoo, D.; Gupta, C.; Gupta, N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood–Brain Barrier (BBB). Pharmaceutics 2023, 15, 1999. [Google Scholar] [CrossRef]
- Shen, X.; Pan, D.; Gong, Q.; Gu, Z.; Luo, K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact. Mater. 2024, 32, 445–472. [Google Scholar] [CrossRef]
- Townsend, P.A.; Kozhevnikova, M.V.; Cexus, O.N.F.; Zamyatnin, A.A., Jr.; Soond, S.M. BH3-mimetics: Recent developments in cancer therapy. J. Exp. Clin. Cancer Res. 2021, 40, 355. [Google Scholar] [CrossRef]
- Burns, K.E.; McCleerey, T.P.; Thevenin, D. pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Sci. Rep. 2016, 6, 28465. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Pearce, M.C.; Gamble, J.T.; Kopparapu, P.R.; O’Donnell, E.F.; Mueller, M.J.; Jang, H.S.; Greenwood, J.A.; Satterthwait, A.C.; Tanguay, R.L.; Zhang, X.-K. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget 2018, 9, 26072. [Google Scholar] [CrossRef]
- Kawamoto, M.; Horibe, T.; Kohno, M.; Kawakami, K. HER2-targeted hybrid peptide that blocks HER2 tyrosine kinase disintegrates cancer cell membrane and inhibits tumor growth in vivo. Mol. Cancer Ther. 2013, 12, 384–393. [Google Scholar] [CrossRef]
- Yi, M.; Li, T.; Niu, M.; Zhang, H.; Wu, Y.; Wu, K.; Dai, Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef]
- Tasdemiroglu, Y.; Gourdie, R.G.; He, J.Q. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur. J. Pharmacol. 2022, 932, 175192. [Google Scholar] [CrossRef]
- Fu, C.; Yu, L.; Miao, Y.; Liu, X.; Yu, Z.; Wei, M. Peptide-drug conjugates (PDCs): A novel trend of research and development on targeted therapy, hype or hope? Acta Pharm. Sin. B 2023, 13, 498–516. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Ni, M.H.; Esposito, E.; Dallavalle, S.; Musso, L.; Bargiotti, A.; Pisano, C.; Vesci, L.; Bucci, F.; Castorina, M.; et al. Novel tumor-targeted RGD peptide-camptothecin conjugates: Synthesis and biological evaluation. Bioorg Med. Chem. 2010, 18, 64–72. [Google Scholar] [CrossRef]
- Lucana, M.C.; Arruga, Y.; Petrachi, E.; Roig, A.; Lucchi, R.; Oller-Salvia, B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021, 13, 2065. [Google Scholar] [CrossRef]
- Demeule, M.; Charfi, C.; Currie, J.C.; Larocque, A.; Zgheib, A.; Kozelko, S.; Beliveau, R.; Marsolais, C.; Annabi, B. TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer. Cancer Sci. 2021, 112, 4317–4334. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Teng, L.; Gao, L.; Su, T.; Fu, L.; Qiu, Z.; Bi, Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int. J. Nanomed. 2021, 16, 1525–1551. [Google Scholar] [CrossRef]
- Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control Release 2015, 219, 205–214. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, X.; Shen, Q.; Xing, D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704. [Google Scholar] [CrossRef]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.-H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 20. [Google Scholar] [CrossRef]
- Cavallaro, P.A.; De Santo, M.; Belsito, E.L.; Longobucco, C.; Curcio, M.; Morelli, C.; Pasqua, L.; Leggio, A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. Nanomaterials 2023, 13, 2476. [Google Scholar] [CrossRef] [PubMed]
- Son, A.; Park, J.; Kim, W.; Lee, W.; Yoon, Y.; Ji, J.; Kim, H. Integrating computational design and experimental approaches for next-generation biologics. Biomolecules 2024, 14, 1073. [Google Scholar] [CrossRef]
- Wang, G.; Vaisman, I.I.; Van Hoek, M.L. Machine learning prediction of antimicrobial peptides. In Computational Peptide Science: Methods and Protocols; Humana: New York, NY, USA, 2022; pp. 1–37. [Google Scholar]
- Wu, Z.; Johnston, K.E.; Arnold, F.H.; Yang, K.K. Protein sequence design with deep generative models. Curr. Opin. Chem. Biol. 2021, 65, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Rouet, R.; Jackson, K.J.L.; Langley, D.B.; Christ, D. Next-Generation Sequencing of Antibody Display Repertoires. Front. Immunol. 2018, 9, 118. [Google Scholar] [CrossRef]
- Caschera, F. Cell-free protein synthesis platforms for accelerating drug discovery. Biotechnol. Notes 2025, 6, 126–132. [Google Scholar] [CrossRef]
- Samec, T.; Boulos, J.; Gilmore, S.; Hazelton, A.; Alexander-Bryant, A. Peptide-based delivery of therapeutics in cancer treatment. Mater. Today Bio 2022, 14, 100248. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, S.; Saeidikia, Z.; Seradj, H.; Mohagheghzadeh, A. Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents. Pharmaceuticals 2024, 17, 201. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Fang, J.; Lou, C.; Yang, L.; Shan, S.; Wang, Z.; Chen, Y.; Li, H.; Li, X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm. Sin. B 2024, 14, 3432–3456. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, S.; Park, S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers 2020, 12, 1906. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z.; Laster, K.V.; Liu, K.; Dong, Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189197. [Google Scholar] [CrossRef]
- Espelin, C.W.; Leonard, S.C.; Geretti, E.; Wickham, T.J.; Hendriks, B.S. Dual HER2 Targeting with Trastuzumab and Liposomal-Encapsulated Doxorubicin (MM-302) Demonstrates Synergistic Antitumor Activity in Breast and Gastric Cancer. Cancer Res. 2016, 76, 1517–1527. [Google Scholar] [CrossRef]
- Boku, N. HER2-positive gastric cancer. Gastric Cancer 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Specenier, P.; Vermorken, J.B. Cetuximab: Its unique place in head and neck cancer treatment. Biologics 2013, 7, 77–90. [Google Scholar] [PubMed]
- Salles, G.; Barrett, M.; Foa, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef]
- Ly, S.; Nedosekin, D.; Wong, H.K. Review of an Anti-CD20 Monoclonal Antibody for the Treatment of Autoimmune Diseases of the Skin. Am. J. Clin. Dermatol. 2023, 24, 247–273. [Google Scholar] [CrossRef]
- van der Horst, H.J.; Nijhof, I.S.; Mutis, T.; Chamuleau, M.E.D. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers 2020, 12, 3041. [Google Scholar] [CrossRef]
- Goulet, D.R.; Chatterjee, S.; Lee, W.-P.; Waight, A.B.; Zhu, Y.; Mak, A.N.-S. Engineering an Enhanced EGFR Engager: Humanization of Cetuximab for Improved Developability. Antibodies 2022, 11, 6. [Google Scholar] [CrossRef]
- Jurczak, W.; Cohen, S.; Illidge, T.M.; Silva, A.D.; Amersdorffer, J. Scientific rationale underpinning the development of biosimilar rituximab in hematological cancers and inflammatory diseases. Future Oncol. 2019, 15, 4223–4234. [Google Scholar] [CrossRef]
- Yang, W.; Lei, C.; Song, S.; Jing, W.; Jin, C.; Gong, S.; Tian, H.; Guo, T. Immune checkpoint blockade in the treatment of malignant tumor: Current statue and future strategies. Cancer Cell Int. 2021, 21, 589. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.; Arkenau, H.T.; Infante, J.R. Clinical impact of checkpoint inhibitors as novel cancer therapies. Drugs 2014, 74, 1993–2013. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Ning, J.; Zhang, M. Immune checkpoint inhibitors as first-line therapy for non-small cell lung cancer: A systematic evaluation and meta-analysis. Hum. Vaccin. Immunother. 2023, 19, 2169531. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.M.; George, D.J.; Lisi, S.; Salama, A.K.S. Immune Checkpoint Blockade: The New Frontier in Cancer Treatment. Target. Oncol. 2018, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lei, Y.; Liu, L.; Zhang, S.; Wang, W.; Zhao, J.; Zhao, S.; Dong, X.; Yao, M.; Wang, K.; et al. Integration of comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression to identify novel biomarkers of immunotherapy in non-small cell lung cancer. Cancer Med. 2021, 10, 2216–2231. [Google Scholar] [CrossRef]
- Liu, D. Cancer biomarkers for targeted therapy. Biomark. Res. 2019, 7, 25. [Google Scholar] [CrossRef]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef]
- Combe, B. Update on the use of etanercept across a spectrum of rheumatoid disorders. Biologics 2008, 2, 165–173. [Google Scholar] [CrossRef]
- Trichonas, G.; Kaiser, P.K. Aflibercept for the treatment of age-related macular degeneration. Ophthalmol. Ther. 2013, 2, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Ciombor, K.K.; Berlin, J. Aflibercept—A decoy VEGF receptor. Curr. Oncol. Rep. 2014, 16, 368. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Parry, H.E.; Cross, R.S.; Jenkins, M.R. The Evolving Protein Engineering in the Design of Chimeric Antigen Receptor T Cells. Int. J. Mol. Sci. 2020, 21, 204. [Google Scholar] [CrossRef]
- Voltà-Durán, E.; Cano-Garrido, O.; Serna, N.; López-Laguna, H.; Sánchez-García, L.; Pesarrodona, M.; Sánchez-Chardi, A.; Mangues, R.; Villaverde, A.; Vázquez, E.; et al. Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering. Sci. China Mater. 2019, 63, 147–156. [Google Scholar] [CrossRef]
- Krop, I.; Winer, E.P. Trastuzumab emtansine: A novel antibody-drug conjugate for HER2-positive breast cancer. Clin. Cancer Res. 2014, 20, 15–20. [Google Scholar] [CrossRef]
- Schwarting, R.; Behling, E.; Allen, A.; Arguello-Guerra, V.; Budak-Alpdogan, T. CD30+ Lymphoproliferative Disorders as Potential Candidates for CD30-Targeted Therapies. Arch. Pathol. Lab. Med. 2022, 146, 415–432. [Google Scholar] [CrossRef]
- Pettinato, M.C. Introduction to Antibody-Drug Conjugates. Antibodies 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Maass, K.F.; Kulkarni, C.; Betts, A.M.; Wittrup, K.D. Determination of Cellular Processing Rates for a Trastuzumab-Maytansinoid Antibody-Drug Conjugate (ADC) Highlights Key Parameters for ADC Design. AAPS J. 2016, 18, 635–646. [Google Scholar] [CrossRef]
- Su, D.; Zhang, D. Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Front. Pharmacol. 2021, 12, 687926. [Google Scholar] [CrossRef]
- Dan, N.; Setua, S.; Kashyap, V.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications. Pharmaceuticals 2018, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q. Site-Specific Antibody Conjugation for ADC and Beyond. Biomedicines 2017, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell 2016, 9, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Shivatare, V.S.; Huang, H.W.; Tseng, T.H.; Chuang, P.K.; Zeng, Y.F.; Wong, C.H. Probing the Internalization and Efficacy of Antibody-Drug Conjugate via Site-Specific Fc-Glycan Labelling of a Homogeneous Antibody Targeting SSEA-4 Bearing Tumors. Isr. J. Chem. 2023, 63, 10–11. [Google Scholar] [CrossRef]
- Dean, A.Q.; Luo, S.; Twomey, J.D.; Zhang, B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021, 13, 1951427. [Google Scholar] [CrossRef]
- Delidakis, G.; Kim, J.E.; George, K.; Georgiou, G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu. Rev. Biomed. Eng. 2022, 24, 249–274. [Google Scholar] [CrossRef]
- Kim, H.; Alten, R.; Cummings, F.; Danese, S.; D’Haens, G.; Emery, P.; Ghosh, S.; Gilletta de Saint Joseph, C.; Lee, J.; Lindsay, J.O.; et al. Innovative approaches to biologic development on the trail of CT-P13: Biosimilars, value-added medicines, and biobetters. MAbs 2021, 13, 1868078. [Google Scholar] [CrossRef]
- Jo, M.; Kwon, H.S.; Lee, K.H.; Lee, J.C.; Jung, S.T. Engineered aglycosylated full-length IgG Fc variants exhibiting improved FcgammaRIIIa binding and tumor cell clearance. MAbs 2018, 10, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Tobinai, K.; Klein, C.; Oya, N.; Fingerle-Rowson, G. A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies. Adv. Ther. 2017, 34, 324–356. [Google Scholar] [CrossRef]
- Bolli, G.B.; DeVries, J.H. New long-acting insulin analogs: From clamp studies to clinical practice. Diabetes Care 2015, 38, 541–543. [Google Scholar] [CrossRef]
- Carrera, F.; Disney, A.; Molina, M. Extended dosing intervals with erythropoiesis-stimulating agents in chronic kidney disease: A review of clinical data. Nephrol. Dial. Transplant. 2007, 22, iv19–iv30. [Google Scholar] [CrossRef]
- Luo, R.; Liu, H.; Cheng, Z. Protein scaffolds: Antibody alternatives for cancer diagnosis and therapy. RSC Chem. Biol. 2022, 3, 830–847. [Google Scholar] [CrossRef] [PubMed]
- Jovcevska, I.; Muyldermans, S. The Therapeutic Potential of Nanobodies. BioDrugs 2020, 34, 11–26. [Google Scholar] [CrossRef]
- Peter, M.; Kühnel, F. Oncolytic Adenovirus in Cancer Immunotherapy. Cancers 2020, 12, 3354. [Google Scholar] [CrossRef]
- Hemminki, O.; Dos Santos, J.M.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 84. [Google Scholar] [CrossRef]
- Zhang, B.; Cheng, P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Mol. Cancer 2020, 19, 158. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 117. [Google Scholar] [CrossRef]
- Conry, R.M.; Westbrook, B.; McKee, S.; Norwood, T.G. Talimogene laherparepvec: First in class oncolytic virotherapy. Hum. Vaccin. Immunother. 2018, 14, 839–846. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Shalhout, S.Z.; Iodice, G. Talimogene Laherparepvec: Moving from First-In-Class to Best-In-Class. Front. Mol. Biosci. 2022, 9, 834841. [Google Scholar] [CrossRef]
- Heidbuechel, J.P.W.; Engeland, C.E. Oncolytic viruses encoding bispecific T cell engagers: A blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 2021, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Kuryk, L.; Bertinato, L.; Staniszewska, M.; Pancer, K.; Wieczorek, M.; Salmaso, S.; Caliceti, P.; Garofalo, M. From Conventional Therapies to Immunotherapy: Melanoma Treatment in Review. Cancers 2020, 12, 3057. [Google Scholar] [CrossRef] [PubMed]
- Bethany, M.C.; Iegre, J.; Daniel, H.O.D.; Maria Ölwegård, H.; David, R.S. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs). Chem. Soc. Rev. 2021, 50, 1480–1494. [Google Scholar]
- Jun, S.-Y.; Kim, D.-S.; Kim, Y.-S. Expanding the Therapeutic Window of EGFR-Targeted PE24 Immunotoxin for EGFR-Overexpressing Cancers by Tailoring the EGFR Binding Affinity. Int. J. Mol. Sci. 2022, 23, 15820. [Google Scholar] [CrossRef]
- Yue, J.; Li, T.; Xu, J.; Chen, Z.; Li, Y.; Liang, S.; Liu, Z.; Wang, Y. Discovery of anticancer peptides from natural and generated sequences using deep learning. Int. J. Biol. Macromol. 2025, 290, 138880. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159–177. [Google Scholar] [CrossRef]
- Ramazi, S.; Mohammadi, N.; Allahverdi, A.; Khalili, E.; Abdolmaleki, P. A review on antimicrobial peptides databases and the computational tools. Database 2022, 2022, baac011. [Google Scholar] [CrossRef]
- Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: Machine-learning-based prediction of anticancer peptides. Oncotarget 2017, 8, 77121. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, R.; Guo, J.; Wang, X. The role and future prospects of artificial intelligence algorithms in peptide drug development. Biomed. Pharmacother. 2024, 175, 116709. [Google Scholar] [CrossRef]
- Abdellatif, M.K.; Hassanin, I.; Mahmoud, Y.S.; Teleb, M.; Bekhit, A.A.; Khattab, S.N. Protein and Peptide-based Nanoparticles as an emerging strategy to tackle cancer drug resistance. Alex. J. Sci. Technol. 2023, 1, 1–21. [Google Scholar] [CrossRef]
- Rodríguez-Nava, C.; Ortuño-Pineda, C.; Illades-Aguiar, B.; Flores-Alfaro, E.; Leyva-Vázquez, M.A.; Parra-Rojas, I.; del Moral-Hernández, O.; Vences-Velázquez, A.; Cortés-Sarabia, K.; Alarcón-Romero, L.d.C. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023, 11, 1610. [Google Scholar] [CrossRef] [PubMed]
- McKertish, C.M.; Kayser, V. Current Protein Conjugation Strategies and Pioneering Anti-Cancer Applications. Discov. Med. 2023, 35, 697–714. [Google Scholar] [CrossRef]
- Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 2020, 5, 127–148. [Google Scholar] [CrossRef]
- Jerath, G.; Darvin, P.; Christian, Y.; Trivedi, V.; Kumar, T.S.; Ramakrishnan, V. Delivery of small molecules by syndiotactic peptides for breast cancer therapy. Mol. Pharm. 2022, 19, 2877–2887. [Google Scholar] [CrossRef]
- Lamers, C. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discov. 2022, 4, FDD75. [Google Scholar] [CrossRef]
- Sonju, J.J.; Dahal, A.; Jois, S.D. Liposome nanocarriers for peptide drug delivery. In Peptide Therapeutics: Fundamentals of Design, Development, and Delivery; Springer: Cham, Switzerland, 2022; pp. 203–235. [Google Scholar]
- Sun, W.; Lu, Y.; Gu, Z. Advances in anticancer protein delivery using micro-/nanoparticles. Part. Part. Syst. Charact. 2014, 31, 1204–1222. [Google Scholar] [CrossRef]
- Zhu, C.; Mu, J.; Liang, L. Nanocarriers for intracellular delivery of proteins in biomedical applications: Strategies and recent advances. J. Nanobiotechnol. 2024, 22, 688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, Z.; Qi, X. Design and application of hybrid polymer-protein systems in cancer therapy. Polymers 2023, 15, 2219. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Santos, H.A. Nano-and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. Adv. Mater. 2024, 36, 2409522. [Google Scholar]
- Sikder, S.; Gote, V.; Alshamrani, M.; Sicotte, J.; Pal, D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert. Opin Drug Deliv. 2019, 16, 1113–1131. [Google Scholar]
- Moncalvo, F.; Martinez Espinoza, M.I.; Cellesi, F. Nanosized delivery systems for therapeutic proteins: Clinically validated technologies and advanced development strategies. Front. Bioeng. Biotechnol. 2020, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, M.; Covic, A. The protein science of biosimilars. Nephrol Dial Transplant 2006, 21, v4–v8. [Google Scholar] [CrossRef]
- Khakpour, S.; Hosano, N.; Moosavi-Nejad, Z.; Farajian, A.A.; Hosano, H. Advancing tumor therapy: Development and utilization of protein-based nanoparticles. Pharmaceutics 2024, 16, 887. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.H.; Fiala, C.A.; Diamandis, E.P.; Kulasingam, V. Pitfalls in cancer biomarker discovery and validation with emphasis on circulating tumor DNA. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2568–2574. [Google Scholar] [CrossRef]
- Arisi, M.F.; Dotan, E.; Fernandez, S.V. Circulating Tumor DNA in Precision Oncology and Its Applications in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 4441. [Google Scholar] [CrossRef]
- Gasparri, R.; Sabalic, A.; Spaggiari, L. The early diagnosis of lung cancer: Critical gaps in the discovery of biomarkers. J. Clin. Med. 2023, 12, 7244. [Google Scholar] [CrossRef]
- Yin, X.; Song, Y.; Deng, W.; Blake, N.; Luo, X.; Meng, J. Potential predictive biomarkers in antitumor immunotherapy: Navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front. Oncol. 2024, 14, 1483454. [Google Scholar] [CrossRef]
- Zakari, S.; Niels, N.K.; Olagunju, G.V.; Nnaji, P.C.; Ogunniyi, O.; Tebamifor, M.; Israel, E.N.; Atawodi, S.E.; Ogunlana, O.O. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review. Front. Oncol. 2024, 14, 1405267. [Google Scholar] [CrossRef]
- Jürgensmeier, J.M.; Eder, J.P.; Herbst, R.S. New Strategies in Personalized Medicine for Solid Tumors: Molecular Markers and Clinical Trial Designs. Clin. Cancer Res. 2014, 20, 4425–4435. [Google Scholar] [CrossRef]
- Bowes, A.L.; Tarabichi, M.; Pillay, N.; Van Loo, P. Leveraging single-cell sequencing to unravel intratumour heterogeneity and tumour evolution in human cancers. J. Pathol. 2022, 257, 466–478. [Google Scholar] [CrossRef]
- Gilson, P.; Merlin, J.-L.; Harlé, A. Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers 2022, 14, 1384. [Google Scholar] [CrossRef]
- Raufaste-Cazavieille, V.; Santiago, R.; Droit, A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front. Mol. Biosci. 2022, 9, 962743. [Google Scholar] [CrossRef]
- Abil, Z.; Xiong, X.; Zhao, H. Synthetic Biology for Therapeutic Applications. Mol. Pharm. 2015, 12, 322–331. [Google Scholar] [CrossRef]
- Cubillos-Ruiz, A.; Guo, T.; Sokolovska, A.; Miller, P.F.; Collins, J.J.; Lu, T.K.; Lora, J.M. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 2021, 20, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Elemento, O. Cancer systems biology: Embracing complexity to develop better anticancer therapeutic strategies. Oncogene 2015, 34, 3215–3225. [Google Scholar] [CrossRef]
- Singh, K.; Prabhu, A.; Kaur, N. Advancements in AI for Protein Structure Prediction: Impact on Cancer Drug Discovery and Development: A Systematic Review. Curr. Top. Chem. 2025, 5, E29504023345000. [Google Scholar] [CrossRef]
- Bhattarai, S.; Tayara, H.; Chong, K.T. Advancing peptide-based cancer therapy with AI: In-depth analysis of state-of-the-art AI models. J. Chem. Inf. Model. 2024, 64, 4941–4957. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Singhal, G.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Artificial intelligence–driven computational approaches in the development of anticancer drugs. Cancers 2024, 16, 3884. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; Toss, M.; Shiino, S.; Gamble, P.; Jaroensri, R.; Mermel, C.H.; Chen, P.-H.C. Current and future applications of artificial intelligence in pathology: A clinical perspective. J. Clin. Pathol. 2021, 74, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Teh, M.-T.; Chatzopoulou, D.; Holmes, S.; Coulthard, P. Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions. Curr. Oncol. 2024, 31, 5255–5290. [Google Scholar] [CrossRef] [PubMed]
- Lotter, W.; Hassett, M.J.; Schultz, N.; Kehl, K.L.; Van Allen, E.M.; Cerami, E. Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions. Cancer Discov. 2024, 14, 711–726. [Google Scholar] [CrossRef]
- Damane, B.P.; Mkhize-Kwitshana, Z.L.; Kgokolo, M.C.; Luvhengo, T.; Dlamini, Z. Applying artificial intelligence prediction tools for advancing precision oncology in immunotherapy: Future perspectives in personalized care. In Artificial Intelligence and Precision Oncology: Bridging Cancer Research and Clinical Decision Support; Springer: Cham, Switzerland, 2023; pp. 239–258. [Google Scholar]
Biomarker | Cancer Type | Clinical Application | Limitations |
---|---|---|---|
HER2 [47,55] | Breast, gastric | Prognostic/predictive marker; guides trastuzumab therapy | Resistance in some patients |
ER/PR [56] | Breast | Prognostic; endocrine therapy guidance | PR loss linked to resistance |
PSA [55,57] | Prostate | Early detection and monitoring | Elevated in benign conditions |
CA125/HE4 [55,58] | Ovarian | Monitor response and recurrence | Low early sensitivity, elevated in benign states |
CEA [50,55] | Colorectal, GI, breast, liver, pancreatic | Prognosis, recurrence monitoring | Low specificity, expressed in non-tumor tissues |
AFP [46,55] | Hepatocellular carcinoma, germ cell tumors | Diagnosis and prognosis | Elevated in hepatitis, cirrhosis |
CA19-9/CA72-4 [55] | Pancreatic, gastric, colorectal | Diagnosis and monitoring | Low sensitivity, false positives in cholestasis |
p53 [55,59] | Lung, colorectal, pancreatic | Predictive marker; chemotherapy resistance | Mutations reduce therapy response |
LDH [60] | Solid tumors | Prognostic marker; reflects tumor burden | Non-cancer elevations |
NSE [60] | Small cell lung cancer | Staging, relapse prediction | Low specificity |
Peptide Biomarker | Cancer Type | Clinical Application | Limitations |
---|---|---|---|
Pro-BNP [54] | Cardio-oncology | Monitor chemotherapy-related cardiac dysfunction | Not cancer-specific |
Hepcidin [55] | Hepatocellular carcinoma | Iron metabolism regulation | Confounded by inflammation |
Chromogranin A [56] | Neuroendocrine tumors | Diagnosis and monitoring | False positives in renal failure |
Thymosin β4 [57] | Breast, colon | Linked to invasion and metastasis | Limited clinical validation |
GRP/Pro-GRP [60] | Small cell lung cancer | Detection in combination with NSE | Short half-life; requires precursor stability |
Micropeptides [61] | Breast cancer subtypes | Subtype-specific diagnostic/therapeutic potential | Still experimental, limited clinical translation |
Tumor-homing peptides (e.g., iRGD, Angiopep2, PL3) [62] | Gastric, PDAC, prostate (depending on target) | Tumor-targeted imaging and drug delivery | Preclinical stage; limited validation in patients |
Cancer Type | Biomarker(s) | Omics Approach | Detection/Quantification Method |
---|---|---|---|
Breast cancer (HER2-positive subtype) | GRB7, INPP4B, MLPH | Integrative analysis of TCGA (transcriptomics) and CPTAC (proteomics) | RNA sequencing for transcriptomic profiling and LC–MS/MS-based quantitative proteomics for protein validation [68,69] |
Ovarian cancer | WFDC2 (HE4), SLPI | Multi-omics analysis of tumor tissue and plasma (transcriptomics + proteomics) | RNA-seq for transcriptomic profiling, LC–MS/MS for proteomic validation, and ELISA for plasma protein quantification [70,71] |
Technique | Detection Principle | Key Advantages | Typical Technical Limitations | Representative Examples | Potential Clinical Limitations |
---|---|---|---|---|---|
ELISA | Enzyme-linked antigen–antibody interaction | Clinically validated; high sensitivity [79] | Limited to single-analyte; dependent on antibody quality | Quantification of HER2 and CEA in clinical diagnostics [79,80] | Cross-reactivity; low scalability for multiplexing |
MS (MRM/SRM) | Targeted mass spectrometry of specific peptides [81] | Multiplex capability; high specificity [82] | Requires advanced instrumentation and technical expertise | GP73, AFP, and DKK1 panels for hepatocellular carcinoma plasma [82,83] | Limited availability in routine clinical laboratories; need for standardization |
PEA | DNA-tagged antibody proximity extension and qPCR | Ultra-sensitive; minimal sample volume; multiplexing [84] | Proprietary reagents; restricted accessibility | 92-protein plasma panel for ovarian cancer diagnosis [84,85] | High cost and dependence on proprietary kits may limit adoption |
CyTOF | Metal isotope-labeled antibodies with mass cytometry | Single-cell resolution; high-dimensional profiling [86] | High cost; lower throughput than flow cytometry | Immune cell subset profiling in tumor microenvironment; prediction of response to checkpoint inhibitors [86] | Complex data analysis; limited feasibility for routine clinical use |
Protein/Peptide | Role | Associated Pathways and Functions | |
---|---|---|---|
Protein | Bcl-2 | Inhibitor of apoptosis | Suppresses mitochondrial apoptosis and enhances cell survival by interacting with proteins like Beclin-1. |
p53 | Genomic gatekeeper | Senses DNA damage and activates genes for cell cycle arrest, DNA repair, and apoptosis. Mutations lead to a loss of these protective functions. | |
ATR, ATM, CHK1/2, BRCA1/2 | Regulators of the DNA damage response (DDR) | Control DNA repair processes. Their mutation or inactivation can lead to genomic instability. | |
EGF, VEGF, TGF-β | Cell signaling molecules | EGF and VEGF promote cell growth and angiogenesis. TGF-β acts as a tumor suppressor in early stages but promotes tumor progression in later stages. | |
EGFR, VEGFR-2, HER2 | Receptor tyrosine kinases | EGFR and HER2 activate the MAPK and PI3K pathways. VEGFR-2 promotes the proliferation of vascular endothelial cells. | |
Nanog, Sox2, Oct4 | Cancer stem cell (CSC) maintainers | Sustain the self-renewal and tumor-initiating capacity of CSCs, contributing to tumor recurrence. | |
MMP-2, MMP-9, Integrins | Promoters of metastasis | MMPs degrade the extracellular matrix (ECM) to facilitate invasion, while Integrins mediate cell adhesion and migration to promote metastasis. | |
PD-L1, IDO | Mediators of immune evasion | PD-L1 suppresses T-cell activity to help cancer cells evade immune attacks. IDO impairs the function of immune cells. | |
PSA | Prostate cancer biomarker | A serum biomarker for prostate cancer that also modulates the androgen receptor and AKT pathways. | |
Peptide | Emerging peptide-based approaches | Therapeutic modulators | Mimic or inhibit DDR proteins to make cancer cells more sensitive to DNA-damaging agents. |
HER2-specific peptides | Targeted therapeutics | Used as a therapeutic strategy to target HER2-positive tumors. | |
Immune-inhibitory peptides | Immunotherapeutics | Used to block immune-inhibitory interactions to modulate anti-tumor immunity. |
Peptide Type | Primary Function | Representative Mechanism | Examples |
---|---|---|---|
Cell-penetrating peptides (CPPs) | Intracellular delivery of therapeutic payloads | Cross plasma membranes and transport small molecules, proteins, or nucleic acids | TAT [135], penetratin [134] |
Pro-apoptotic peptides | Induction of programmed cell death | Target anti-apoptotic proteins (e.g., Bcl-2), promote mitochondrial membrane permeabilization | BH3-mimetic peptides [137] |
Inhibitory peptides | Interruption of oncogenic signaling | Disrupt ligand-receptor interactions or downstream signaling pathways | HER2-blocking peptides [140,141] |
Limitation | Solution | Example/Technology |
---|---|---|
Proteolytic degradation | Structural modification | Cyclization, D-amino acid substitution, N-terminal capping [146,147] |
Poor bioavailability | Alternative delivery systems | Nanoparticles (liposomes, dendrimers), PEGylation [152] |
Short plasma half-life | Enhanced pharmacokinetics | Backbone stabilization, conjugation with long-circulating carriers [148] |
Lack of tumor specificity | Targeted delivery platforms | Peptide–drug conjugates (PDCs), tumor-penetrating peptides [164,165] |
Therapeutic Class | Representative Drugs | Mechanism of Action | Indications | Advantages | Limitations | Refs. |
---|---|---|---|---|---|---|
Monoclonal antibodies (anti-cancer targets) | -Trastuzumab -Cetuximab | Antigen-specific binding, ADCC/CDC activation | Breast cancer, CRC | High specificity, stability | Drug resistance, limited tissue penetration | [167,168,169] |
Monoclonal antibodies (immune checkpoint inhibitors) | -Nivolumab -Pembrolizumab | Blocking T cell inhibitory pathways (PD-1/PD-L1, CTLA-4) | Melanoma, NSCLC | Long-term survival, broad tumor scope | Limited responders, immune-related AEs | [175,176,177,178,179] |
Fusion proteins | -Etanercept -Aflibercept | Ligand trapping, Fc fusion to extend half-life | Autoimmune diseases, anti-angiogenesis | Improved in vivo stability | Potential immunogenicity | [183,184,185] |
Antibody–drug conjugates (ADCs) | -T-DM1 -Brentuximab vedotin | Antibody-targeted cytotoxic drug delivery | HER2+ breast cancer, etc. | High precision therapy | Linker stability, toxicity concerns | [188,189,190,191,192,193] |
Biobetters | -Obinutuzumab -Darbepoetin alfa | Enhanced pharmacokinetics via structural modifications | Lymphoma, anemia | Reduced dosing frequency, improved efficacy | High development cost, patent issues | [198,199,200,201,202,203] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.H.; Shin, S.H.; Woo, H.R.; An, Y.R.; Youn, A.H.; Kim, S.Y.; Ki, M.-R.; Pack, S.P. Protein and Peptide in Cancer Research: From Biomarker to Biotherapeutics. Cancers 2025, 17, 3031. https://doi.org/10.3390/cancers17183031
Seo JH, Shin SH, Woo HR, An YR, Youn AH, Kim SY, Ki M-R, Pack SP. Protein and Peptide in Cancer Research: From Biomarker to Biotherapeutics. Cancers. 2025; 17(18):3031. https://doi.org/10.3390/cancers17183031
Chicago/Turabian StyleSeo, Joo Hyeong, Seung Hoon Shin, Hye Rin Woo, Yu Rim An, A Hyun Youn, Song Yeon Kim, Mi-Ran Ki, and Seung Pil Pack. 2025. "Protein and Peptide in Cancer Research: From Biomarker to Biotherapeutics" Cancers 17, no. 18: 3031. https://doi.org/10.3390/cancers17183031
APA StyleSeo, J. H., Shin, S. H., Woo, H. R., An, Y. R., Youn, A. H., Kim, S. Y., Ki, M.-R., & Pack, S. P. (2025). Protein and Peptide in Cancer Research: From Biomarker to Biotherapeutics. Cancers, 17(18), 3031. https://doi.org/10.3390/cancers17183031