Therapeutic Use of Integrin Signaling in Melanoma Cells: Physical Link with the Extracellular Matrix (ECM)
Simple Summary
Abstract
1. Introduction
2. Integrin–Extracellular Matrix Interactions
2.1. The Role of Integrins
2.2. Extracellular Matrix Remodeling in Melanoma
2.3. Role in Tumor Progression and Metastasis
2.4. Integrins and Therapy Resistance
3. Current Translational Research on Integrin Signaling in Melanoma Treatment
Year | Study Model | Key Findings | Mechanism of Intervention | Reference |
---|---|---|---|---|
2025 | 2D model/A 375, G-361,MeWo, MM127, MM370, RPMI-7951, SH-4, SK-MEL-1, A431, MCC13 | The expression of integrin α1 (ITGA1) was elevated at both the mRNA and protein levels in drug-treated melanoma cells | ITGA1 may serve as a senescent melanoma cell biomarker | [81] |
2024 | 2D model/ WM115, WM266-4 | Melanoma-derived ectosomes are mediated by αvβ5 integrin | αvβ5 integrin present in melanoma ectosomes is a key driver of tumor-induced angiogenesis and may serve as a more effective target | [82] |
2024 | 2D model/ SK-MEL-2, HEMn-MP | CYR61 increases melanoma cell proliferation and survival rate | Blockage of CYR61–integrin β3 may serve as a potential therapeutic target | [83] |
2023 | 2D model/ A375, 1205Lu | SERPINB8 and furin regulate the expression of ITGAX, which promotes the proliferation of melanoma | ITGAX Knockout and SERPINB8 both inhibited the proliferation and invasion of melanoma cells | [84] |
2023 | 2D model/ MDA- MB-435S | KANK2 interacts with talin2, resulting in increased sensitivity to PTX | The talin2 knockdown led to increased sensitivity to PTX and also reduced migration | [85] |
2023 | 2D model/ A375P, K029A, SKMEL3 | Possible targeted therapy for BRAF inhibitor–resistant melanoma characterized by epigenetically repressed PGC1α | Statin treatment blocks cell growth by lowering RAB6B and RAB27A prenylation and affects integrin localization and downstream signaling required for melanoma cell growth | [86] |
2022 | 2D model/ SK-Mel-147 | Knockdown of integrin α3β1 in SK-Mel-147 human melanoma cells led to a marked increase in cellular senescence of melanoma cells | Integrin α3β1 plays a protective role against cellular senescence in melanoma cells | [87] |
2022 | 2D model/ 16F10 | Silencing of STAT3 after treatment with anti-STAT3 siRNA-loaded liposomes triggers apoptotic activity in B16F10 melanoma cancer cells. C-RGD peptide targeted liposomal siRNA delivery system was able to induce apoptosis in a greater amount than non-targeted liposomes on overexpressed integrin αvβ3 receptor cells | C-RGD peptide targeted liposomal siRNA delivery system was able to induce apoptosis more than non-targeted liposomes on overexpressed integrin αvβ3 receptor cells | [88] |
2022 | 2D model/ A375 | NECTIN1 loss activates integrin-dependent matrix adhesion | Knockdown of integrins: β3, β4 and β5 results in reduced migration of NECTIN1-deficient cells | [89] |
2021 | 2D model/ SK-Mel-147 | Integrin α2β1 helps prevent senescence in SK-Mel-147 melanoma cells | The silencing of integrin α2β1 reduced cell proliferation and enhanced the percentage of SA-β-Gal-positive cells, a phenotypic feature of cellular senescence | [90] |
2021 | 2D model/ WM793 | ILK knockdown by siRNA suppresses melanoma cell growth by inducing autophagy through AMPK activation, and simultaneously initiates apoptosis | Combinatorial treatment of melanoma cells with CQ and siILK has a stronger antitumor effect than monotherapy | [91] |
2021 | 2D model/ C32, SK-MEL-28 | CD36 facilitates melanoma cell adhesion to the extracellular matrix (ECM) | CD36 as a regulator of VM by melanoma cancer cells that is facilitated via integrin-α3 | [92] |
2021 | 3D mouse model/ B16 | Regulatory T (Treg) cells expressing the β8 chain of αvβ8 integrin (Itgβ8)—the main cell type in the tumors | Targeting the integrin αvβ8–TGF-β activation axis on Tregs may represent a promising therapeutic strategy | [93] |
Year | Study Model | Key Findings | Mechanism of Intervention | Reference |
---|---|---|---|---|
2025 | 3D mouse model/ B16F10 | Inclusion of αvβ3 integrin into extracellular vesicles and subsequent transfer to recipient melanoma cells promotes migration, invasion, and metastasis | CAV1 phosphorylated on Y14 intrinsically promotes migration, invasion, and metastasis of cells | [94] |
2025 | 3D mouse model/ B16-BL6 | Carnosic acid significantly inhibits the expression of integrins: α4 (ITGA4) and α9 integrin (ITGA9) | Downregulating α4 (ITGA4) and α9 (ITGA9) integrins, carnosic acid effectively reduces the ability of melanoma cells to adhere to the extracellular matrix and proliferate | [95] |
Year | Level of Evidence | Study Model | Key Findings | Mechanism of Intervention | Reference |
---|---|---|---|---|---|
2025 | In vitro In vivo | 2D model/A2058, A375 3D mouse model/C57BL/ BALB/c | 4S5NG-PE24 induced cell pyroptosis in integrin α6 melanoma cells by caspase 3/gasdermin E (GSDME) signaling pathway with lack of histological alterations | The usage of 4S5NG to deliver PE24 for selective elimination of melanoma cells through integrin α6 | [49] |
2024 | In vitro In vivo | 2D model/B16BL6 3D mouse model/B16BL6, CT26 | EVs with 5-FU, DEAP-DOCA, and cRGD peptide targets αvβ3 integrin receptors on melanoma cells | EV-based drug-delivery platform capable of tumor targeting via integrin αvβ3, controlled pH-sensitive release | [96] |
3.1. Peptide–Toxin Conjugates for Tumor-Selective Cytotoxicity via Integrin α6
3.2. Extracellular Vesicle-Mediated Nanotherapies Targeting Integrin αvβ3 and αvβ5
3.3. Intracellular Regulators of Integrin Expression and Chemotherapy Sensitization
3.4. Integrin-Mediated Control of Angiogenesis and Metastasis
3.5. Integrins and Cell Fate: Senescence, Survival, and Adhesion
3.6. Integrins as Immunomodulators and Immunotherapy Enablers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | Protein Kinase B |
AMPK | AMP-Activated Protein Kinase |
BRAF | B-type Rapidly Accelerated Fibrosarcoma |
CD11c | Cluster of Differentiation 11c |
CD36 | Cluster of Differentiation 36 |
CD44 | Cluster of Differentiation 44 |
c-RGD | Cyclic RGD |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats technique |
CQ | Chloroquine |
CYR61 | Cysteine-Rich Angiogenic Inducer 61 |
DDR | Discoidin Domain Receptor 1/2 |
DEAP DOCA | Diethylaminoethyl-Polymer and Deoxycholic Acid |
ECM | Extracellular Matrix |
EGF | Epidermal Growth Factor |
EMT | Epithelial–Mesenchymal Transition |
ERK | Extracellular Signal-Regulated Kinase (1/2) |
EVs | Extracellular Vesicles |
FAK | Focal Adhesion Kinase |
GSDME | Gasdermin E |
GGPP | Geranylgeranyl Pyrophosphate |
GTP | Guanosine Triphosphate |
HDMECs | Human Dermal Microvascular Endothelial Cells |
HMGCR | 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase |
HUVECs | Human Umbilical Vein Endothelial Cells |
IGF1 | Insulin-like Growth Factor 1 |
ILK | Integrin-Linked Kinase |
ITGA1 | Integrin Alpha-1 |
ITGAX | Integrin Alpha-X (CD11c) |
Itgβ8 | Integrin Beta-8 |
JNK | C-Jun N-terminal Kinase |
KANK2 | KN motif and Ankyrin Repeat Domain-Containing Protein 2 |
MAPK | Mitogen-Activated Protein Kinase |
MEK | Mitogen-Activated Protein Kinase (1/2) |
MLC | Myosin Light Chain |
MYPT1 | Myosin Phosphatase Target Subunit 1 |
NECTIN1 | Nectin Cell Adhesion Molecule 1 |
RGD | Arginine-Glycine-Aspartic Acid Peptide |
SA-β-Gal | Senescence-Associated Beta-Galactosidase |
SERPINB8 | Serine Protease Inhibitor B8 |
siILK | Small Interfering RNA Targeting Integrin-Linked Kinase |
siRNA | Small Interfering Ribonucleic Acid |
STAT3 | Signal Transducer and Activator of Transcription 3 |
TGF-β | Transforming Growth Factor Beta |
mTOR/C1 | Mechanistic Target of Rapamycin (Complex 1) |
MT | Microtubules |
P | Phosphorylation |
p130Cas | Crk-Associated Substrate |
PAC/PTX | Paclitaxel |
PGC1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha |
PI3K | Phosphoinositide 3-Kinase |
PD-1 | Programmed Cell Death Protein 1 |
PE24 | De-immunized Exotoxin A |
RAF | Rapidly Accelerated Fibrosarcoma |
RAS | Active State Ras Protein |
RhoA-Ras | Homolog Family Member A |
ROS | Reactive Oxygen Species |
RTK | Receptor Tyrosine Kinase |
SA β Gal | Senescence-associated β-Galactosidase |
SASP | Senescence-associated Secretory Phenotype |
SRC | Proto-Oncogene Tyrosine-Protein Kinase |
TAZ | Transcriptional coactivator |
Treg | Regulatory T Cell |
VM | Vasculogenic Mimicry |
YAP | Yes-Associated Protein, |
5-FU | 5-Fluorouracil |
References
- Slominski, R.M.; Kim, T.K.; Janjetovic, Z.; Brozyna, A.A.; Podgorska, E.; Dixon, K.M.; Mason, R.S.; Tuckey, R.C.; Sharma, R.; Crossman, D.K.; et al. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers 2024, 16, 2262. [Google Scholar] [CrossRef]
- Reinhart, J.; Campbell, E.; Proffer, S.; Crum, O.; Todd, A.; Gibson, L.; Brewer, J.; Demer, A. Incidence and mortality trends of primary cutaneous melanoma: A 50-year Rochester Epidemiologic Project study. JAAD Int. 2024, 16, 144–154. [Google Scholar] [CrossRef]
- Dennis, L. Cumulative Sun Exposure and Melanoma in a Population-Based Case–Control Study: Does Sun Sensitivity Matter? Cancers 2022, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Le Clair, M.; Cockburn, M. Tanning bed use and melanoma: Establishing risk and improving prevention interventions. Prev. Med. Rep. 2016, 3, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef]
- Slominski, R.M.; Raman, C.; Jetten, A.M.; Slominski, A.T. Neuro-immuno-endocrinology of the skin: How environment regulates body homeostasis. Nat. Rev. Endocrinol. 2025, 21, 495–509. [Google Scholar]
- Haussmann, P.; Pavani, C.; Marcolongo-Pereira, C.; Bellettini-Santos, T.; da Silva, B.; Benedito, I.; Freitas, M.; Baptista, M.; Chiarelli-Neto, O. Melanin photosensitization by green light reduces melanoma tumor size. J. Photochem. Photobiol. 2022, 9, 100092. [Google Scholar] [CrossRef]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef]
- Jackson, A.; Wilkinson, C.; Pill, R. Moles and melanomas--who’s at risk, who knows, and who cares? A strategy to inform those at high risk. Br. J. Gen. Pract. 1999, 49, 199–203. [Google Scholar] [PubMed]
- Funchain, P.; Ni, Y.; Heald, B.; Bungo, B.; Arbesman, M.; Behera, T.R.; McCormick, S.; Song, J.; Kennedy, L.; Nielsen, S.; et al. Germline cancer susceptibility in individuals with melanoma. J. Am. Acad. Dermatol. 2024, 91, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Brand, R.; Hogg, D.; Deters, C.; Fusaro, R.; Lynch, J.; Liu, L.; Knezetic, J.; Lassam, N.; Goggins, M.; et al. Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma–pancreatic carcinoma–prone families. Cancer 2002, 94, 84–96. [Google Scholar] [CrossRef]
- Robbins, H.; Clarke, C.; Arron, S.; Tatalovich, Z.; Kahn, A.; Hernandez, B.; Paddock, L.; Yanik, E.; Lynch, C.; Kasiske, B.; et al. Melanoma Risk and Survival among Organ Transplant Recipients. J. Investig. Dermatol. 2015, 135, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, P.; Wysocki, P.J.; Nasierowska-Guttmejer, A.; Jeziorski, A.; Wysocki, W.; Kalinka, E.; Świtaj, T.; Kozak, K.; Kamińska-Winciorek, G.; Czarnecka, A.; et al. Cutaneous Melanoma. Oncol. Clin. Pract. 2020, 16, 163–182. [Google Scholar] [CrossRef]
- Damsky, W.E.; Rosenbaum, L.E.; Bosenberg, M. Decoding Melanoma Metastasis. Cancers 2011, 3, 126–163. [Google Scholar] [CrossRef]
- Younes, R.; Abrao, F.C.; Gross, J. Pulmonary metastasectomy for malignant melanoma. Melanoma Res. 2013, 23, 307–311. [Google Scholar] [CrossRef]
- Guruvaiah, S.; Guruvaiah, S.N.; Li, W.; Ponnatapura, J. A rare radiological presentation of pulmonary metastases from malignant melanoma. Radiol. Case Rep. 2023, 18, 2653–2658. [Google Scholar] [CrossRef]
- Pedersen, S.; Johansen, E.; Højholt, K.; Pedersen, M.; Mogensen, A.; Petersen, S.; Haslund, C.; Donia, M.; Schmidt, H.; Basdtholt, L.; et al. Survival improvements in patients with melanoma brain metastases and leptomeningeal disease in the modern era: Insights from a nationwide study (2015–2022). Eur. J. Cancer 2025, 217, 115253. [Google Scholar] [CrossRef]
- So, J.-K.; Hong, J.-Y.; Chung, M.-W.; Cho, S.-B. A Case of Metastatic Melanoma in the Liver Mimicking Hepatocellular Carcinoma. J. Liver Cancer 2021, 21, 92–96. [Google Scholar] [CrossRef]
- Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef]
- Livingstone, E.; Zaremba, A.; Horn, S.; Ugurel, S.; Casalini, B.; Schlaak, M.; Hassel, J.; Herbst, R.; Utikal, J.; Weide, B.; et al. GNAQ and GNA11 mutant nonuveal melanoma: A subtype distinct from both cutaneous and uveal melanoma. Br. J. Dermatol. 2020, 183, 928–929. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Gurung, T.; Mallela, K.; Jenkins, B.; von Kriegsheim, A.; Manrique, E.; Millan-Esteban, D.; Romero-Camarero, I.; Amaral, F.; Craig, S.; et al. Stromal lipid species dictate melanoma metastasis and tropism. Cancer Cell 2025, 43, 1108–1124.e11. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Kim, T.K.; Brozyna, A.A.; Janjetovic, Z.; Brooks, D.L.; Schwab, L.P.; Skobowiat, C.; Jozwicki, W.; Seagroves, T.N. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch. Biochem. Biophys. 2014, 563, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment. Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef]
- Slominski, A.; Zbytek, B.; Slominski, R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int. J. Cancer 2009, 124, 1470–1477. [Google Scholar] [CrossRef]
- Slominski, A.T.; Carlson, J.A. Melanoma resistance: A bright future for academicians and a challenge for patient advocates. Mayo Clin. Proc. 2014, 89, 429–433. [Google Scholar] [CrossRef]
- Piskounova, E.; Agathocleous, M.; Murphy, M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, M.; Johnson, T.; Deberardinis, R.; Morrison, S. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015, 527, 186–191. [Google Scholar] [CrossRef]
- Gargett, T.; Abbas, M.; Rolan, P.; Price, J.; Gosling, K.M.; Ferrante, A.; Ruszkiewicz, A.; Atmosukarto, I.; Altin, j.; Parish, C.; et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol. Immunother. 2018, 67, 1461–1472. [Google Scholar] [CrossRef]
- Karimkhani, C.; Green, A.; Nijsten, T.; Weinstock, M.; Dellavalle, R.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the Global Burden of Disease Study 2015. Br. J. Dermatol. 2017, 177, 134–140. [Google Scholar] [CrossRef]
- Siegel, R.; Miller, K.; Fuchs, H.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Ramirez, N.; Zhang, Z.; Madamanchi, A.; Boyd, K.; O’Rear, L.; Nashabi, A.; Li, Z.; Dupont, W.; Zijlstra, A.; Zutter, M. The α2β1 integrin is a metastasis suppressor in mouse models and human cancer. J. Clin. Investig. 2022, 121, 226–237. [Google Scholar] [CrossRef]
- Xiong, J.; Stehle, T.; Diefenbach, B.; Zhang, R.; Dunker, R.; Scott, D.L.; Joachimiak, A.; Goodman, S.; Arnaout, M. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001, 294, 339–345. [Google Scholar] [CrossRef]
- Okada, T.; Lee, A.; Qin, Y.; Li-Xuan, A.; Narasimhan, M.; Takahiro, S.; Shen, Y.; O’Connor, R.; Lopez-Lago, M.; Craig, A.; et al. Integrin-α10 Dependency Identifies RAC and ICTOR as Therapeutic Targets in High-Grade Myxofibrosarcoma. Cancer Discov. 2016, 6, 1148–1165. [Google Scholar] [CrossRef]
- Almeida, E.; Ilić, D.; Han, Q.; Hauck, C.; Jin, F.; Kawakatsu, H.; Schlaepfer, D.; Damsky, C. Matrix Survival Signaling. J. Cell Biol. 2000, 149, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Li, J.; Springer, T. Regulation of integrin α5β1 conformational states and intrinsic affinities by metal ions and the ADMIDAS. Mol. Biol. Cell 2022, 33, ar56. [Google Scholar] [CrossRef] [PubMed]
- Wegener, K.; Partridge, A.; Han, J.; Pickford, A.; Liddington, R.; Ginsberg, M.; Campbell, I. Structural Basis of Integrin Activation by Talin. Cell 2007, 128, 171–182. [Google Scholar] [CrossRef] [PubMed]
- de Fougerolles, A.; Sprague, A.; Nickerson-Nutter, C.h.; Chi-Rosso, G.; Rennert, P.; Gardner, H.; Gotwals, P.; Lobb, R.; Koteliansky, V. Regulation of inflammation by collagen-binding integrins α1β1 and α2β1 in models of hypersensitivity and arthritis. J. Clin. Investig. 2000, 105, 721–729. [Google Scholar] [CrossRef]
- Arimori, T.; Miyazaki, N.; Mihara, E.; Takizawa, M.; Taniguchi, Y.; Cabañas, C.; Sekiguchi, K.; Takagi, J. Structural mechanism of laminin recognition by integrin. Nat. Commun. 2021, 12, 4012. [Google Scholar] [CrossRef]
- Lahti, M.; Heino, J.; Käpylä, J. Leukocyte integrins αLβ2, αMβ2 and αXβ2 as collagen receptors—Receptor activation and recognition of GFOGER motif. Int. J. Biochem. Cell Biol. 2013, 45, 1204–1211. [Google Scholar] [CrossRef]
- Mauri, E.; Sacchetti, A.; Vicario, N.; Peruzzotti-Jametti, L.; Rossi, F.; Pluchino, S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater. Sci. 2018, 6, 501–510. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Zhang, Q.; Gong, H.; Gao, D.; Wang, Y.; Li, B.; Li, X.; Zheng, H.; Wu, Z.; et al. Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth. Nat. Commun. 2022, 13, 4012. [Google Scholar] [CrossRef]
- Dyring-Andersen, B.; Løvendorf, M.; Coscia, F.; Santos, A.; Møller, L.; Colaço, A. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 2020, 11, 5587. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Ecker, B.; Douglass, S.; Kugel, C.; Webster, M.; Almeida, F.; Somasundaram, R.; Hayden, J.; Ban, E.; Ahmadzadech, H.; et al. Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov. 2019, 9, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mrksich, M.; Huang, S.; Whitesides, G.; Ingber, D. Geometric control of cell life and death. Science 1997, 276, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R. The emergence of integrins: A personal and historical perspective. Matrix Biol. 2004, 23, 333–340. [Google Scholar] [CrossRef]
- Levi, L.; Toyooka, T.; Patarroyo, M.; Frisan, T. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading. PLoS ONE 2015, 10, e0124119. [Google Scholar] [CrossRef]
- Nicolas-Boluda, A.; Vaquero, J.; Vimeux, L.; Guilbert, T.; Barrin, S.; Kantari-Mimoun, C.; Ponzo, M.; Renault, G.; Deptula, P.; Pogoda, K.; et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. Elife 2021, 10, e58688. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.-Q.; Huang, Y.-B.; Liu, M.; Cao, F.; Bu, G.-L.; Xu, P.-F.; Fang, Q.; Hu, Z.-L.; Wu, D.; et al. An optimized integrin α6-targeted peptide capable of delivering toxins for melanoma treatment. J. Transl. Med. 2025, 23, 495. [Google Scholar] [CrossRef]
- Alanko, J.; Mai, A.; Jacquemet, G.; Schauer, K.; Kaukonen, R.; Saari, M. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 2015, 17, 1412–1421. [Google Scholar] [CrossRef]
- Alabi, S.; Jaime-Figueroa, S.; Yao, Z.; Gao, Y.; Hines, J.; Samarasinghe, K.; Vogt, L.; Rosen, N.; Crews, C. Mutant-selective degradation by BRAF-targeting PROTACs. Nat. Commun. 2021, 12, 920. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, M.; Song, J.; Zheng, X.; Xu, G.; Bao, Y.; Lan, J.; Luo, D.; Hu, J.; Li, J.; et al. Integrin-Src-YAP1 signaling mediates the melanoma acquired resistance to MAPK and PI3K/mTOR dual targeted therapy. Mol. Biomed. 2020, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Svenson, K.B.; Longmate, W.; Gkirtzimanaki, K.; Sadej, R.; Wang, X.; Zhao, J.; Eliopoulos, A.; Berdithevski, F.; Dipersio, C. Suppression of integrin α3β1 in breast cancer cells reduces COX-2 gene expression and inhibits tumorigenesis, invasion, and crosstalk to endothelial cells. Cancer Res. 2010, 70, 6359–6367. [Google Scholar] [CrossRef] [PubMed]
- Albelda, S.; Mette, S.; Elder, D.; Stewart, R.; Damjanovich, L.; Herlyn; Buck, C. Integrin distribution in malignant melanoma: Association of the β3 subunit with tumor progression. Cancer Res. 1990, 50, 6757–6764. [Google Scholar]
- Wong, R.; Ng, P.; Dedhar, S.; Li, G. The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Mol. Cancer Ther. 2007, 6, 1692–1700. [Google Scholar] [CrossRef]
- Watson-Hurst, K.; Becker, D. The role of N-Cadherin, MCAM, and β3 integrin in melanoma progression, proliferation, migration and invasion. Cancer Biol. Ther. 2006, 5, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Lydolph, M.; Morgan-Fisher, M.; Høye, A.; Couchman, J.; Wewer; Yoneda, A. α9β1 integrin in melanoma cells can signal different adhesion states for migration and anchorage. Exp. Cell Res. 2009, 315, 3312–3324. [Google Scholar] [CrossRef]
- Voura, E.; Ramjeesingh, R.; Montgomery, A.; Siu, C. Involvement of integrin αvβ3and cell adhesion molecule l1 in transendothelial migration of melanoma cells. Mol. Biol. Cell 2001, 12, 2699–2710. [Google Scholar] [CrossRef]
- Bosserhoff, A.; Stoll, R.; Sleeman, J.; Bataille, F.; Buettner, R.; Holak, T. Active detachment involves inhibition of cell-matrix contacts of malignant melanoma cells by secretion of melanoma inhibitory activity. Lab. Investig. 2003, 83, 1583–1594. [Google Scholar] [CrossRef][Green Version]
- Anggradita, L.; Kim, J.; Kim, M.; Son, J.; Farhan, M.; Jeberson, J. Targeting the integrin beta 1-focal adhesion kinase axis with artemisinin: Biophysical disruption of cell adhesion, migration, and invasion in tongue cancer. View 2025, 6, 20240089. [Google Scholar] [CrossRef]
- McKenzie, J.; Liu, T.; Goodson, A.; Grossman, D. Survivin enhances motility of melanoma cells by supporting Akt activation and α5 integrin upregulation. Cancer Res. 2010, 70, 7927–7937. [Google Scholar] [CrossRef]
- Mitjans, F.; Meyer, T.; Fittschen, C.; Goodman, S.; Jonczyk, A.; Marshall, J. In vivo therapy of malignant melanoma by means of antagonists of αv integrins. Int. J. Cancer 2000, 87, 716–723. [Google Scholar] [CrossRef]
- Desch, A.; Strozyk, E.; Bauer, A.; Huck, V.; Niemeyer, V.; Wieland, T. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/Integrin αvβ5–induced secretion of VEGF-A. Am. J. Patol. 2012, 181, 693–705. [Google Scholar] [CrossRef]
- Hegerfeldt, Y.; Tusch, M.; Bröcker, E.; Friedl, P. Collective cell movement in primary melanoma explants: Plasticity of cell-cell interaction, β1-integrin function, and migration strategies. Cancer Res. 2002, 62, 2125–2130. [Google Scholar]
- Leonard, M.; Novak, M.; Snyder, D.; Snow, G.; Pamidimukkala, N.; McCorkle, J. The metastasis suppressor NME1 inhibits melanoma cell motility via direct transcriptional induction of the integrin beta-3 gene. Exp. Cell Res. 2019, 374, 85–93. [Google Scholar] [CrossRef]
- Vannini, A.; Leoni, V.; Barboni, C.; Sanapo, M.; Zaghini, A.; Malatesta, P. αvβ3-integrin regulates PD-L1 expression and is involved in cancer immune evasion. Proc. Natl. Acad. Sci. USA 2019, 116, 20141–20150. [Google Scholar] [CrossRef] [PubMed]
- Quattrocchi, E.; Sominidi-Damodaran, S.; Murphree, D.; Meves, A. β3 integrin immunohistochemistry as a method to predict sentinel lymph node status in patients with primary cutaneous melanoma. Int. J. Dermatol. 2020, 59, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Nurzat, Y.; Su, W.; Min, P.; Li, K.; Xu, H.; Zhang, Y. Identification of therapeutic targets and prognostic biomarkers among integrin subunits in the skin cutaneous melanoma microenvironment. Front. Oncol. 2021, 11, 751875. [Google Scholar] [CrossRef] [PubMed]
- Militaru, I.; Rus, A.; Munteanu, C.; Manica, G.; Petrescu, S. New panel of biomarkers to discriminate between amelanotic and melanotic metastatic melanoma. Front. Oncol. 2023, 12, 1061832. [Google Scholar] [CrossRef]
- Xie, R.; Li, B.; Jia, L.; Li, Y. Identification of core genes and pathways in melanoma metastasis via bioinformatics analysis. Int. J. Mol. Sci. 2022, 23, 794. [Google Scholar] [CrossRef]
- Zeltz, C.; Navab, R.; Heljasvaara, R.; Kusche-Gullberg, M.; Lu, N.; Tsao, M.; Gullberg, D. Integrin α11β1 in tumor fibrosis: More than just another cancer-associated fibroblast biomarker? J. Cell Commun. Signal. 2022, 16, 649–660. [Google Scholar] [CrossRef]
- Talluri, B.; Amar, K.; Saul, M.; Shireen, T.; Konjufca, V.; Ma, J.; Ha, T.; Chowdhury, F. COL2A1 is a novel biomarker of melanoma tumor repopulating cells. Biomedicines 2020, 8, 360. [Google Scholar] [CrossRef]
- Rezaie, Y.; Fattahi, F.; Mashinchi, B.; Kamyab Hesari, K.; Montazeri, S.; Kalantari; Madjd, Z.; Zanjani, L. High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients. BMC Cancer 2023, 23, 302. [Google Scholar] [CrossRef]
- Shidal, C.; Singh, N.; Nagarkatti, P.; Nagarkatti, M. MicroRNA-92 expression in CD133+ melanoma stem cells regulates immunosuppression in the tumor microenvironment via integrin-dependent activation of TGFβ. Cancer Res. 2019, 79, 3622–3635. [Google Scholar] [CrossRef]
- Cui, J.; Shu, C.; Xu, J.; Chen, D.; Li, J.; Ding, K. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling. Theranostics 2020, 10, 8036–8050. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Gholipour, M.; Taheri, M. MicroRNA signature in melanoma: Biomarkers and therapeutic targets. Front. Oncol. 2021, 11, 608987. [Google Scholar] [CrossRef] [PubMed]
- Surman, M.; Kędracka-Krok, S.; Hoja-Łukowicz, D.; Jankowska, U.; Drożdż, A.; Stępień, E. Mass spectrometry-based proteomic characterization of cutaneous melanoma ectosomes reveals the presence of cancer-related molecules. Int. J. Mol. Sci. 2020, 21, 2934. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ge, M.; Li, X.; Xie, Q.; Sun, M.; Li, K. Synthesis and Preclinical Evaluation of Dual-Targeted Molecular Tracer for Positron Emission Tomography Imaging of Programmed Cell Death Ligand-1 and Integrin αvβ3. ACS Pharmacol. Transl. Sci. 2025, 8, 2465–2473. [Google Scholar] [CrossRef]
- Nguyen, A.; Heim, J.; Cordara, G.; Chan, M.; Johannesen, H.; Charlesworth, C.; Li, M.; Azumaya, C.; Madden, B.; Krengel, U.; et al. Structural and functional characterization of integrin α5-targeting antibodies for anti-angiogenic therapy. bioRxiv 2025. [Google Scholar] [CrossRef]
- Pozniak, J.; Roda, N.; Landeloos, E.; Antoranz, A.; Van Herck, Y.; De Visscher, A.; Demaerel, P.; Vanwynsberghe, L.; Declercq, J.; Gkemisis, C.; et al. Cytotoxic NK Cells Impede Response to Checkpoint Immunotherapy in Melanoma with an Immune-Excluded Phenotype. Cancer Discov. 2025, 15, 1819–1834. [Google Scholar] [CrossRef]
- Słaby, J.; Wnuk, M.; Błoniarz, D.; Stec, P.; Szmatoła, T.; Kaznowska, E.; Reich, A.; Moros, M.; Lewinska, A. ITGA1, the alpha 1 subunit of integrin receptor, is a novel marker of drug-resistant senescent melanoma cells in vitro. Arch. Toxicol. 2025, 99, 2611–2625. [Google Scholar] [CrossRef]
- Surman, M.; Wilczak, M.; Bzowska, M.; Tylko, G.; Przybyło, M. The Proangiogenic Effects of Melanoma-Derived Ectosomes Are Mediated by αvβ5 Integrin Rather than αvβ3 Integrin. Cells 2024, 13, 1336. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, K.; Park, S.; Kim, D.; Choi, Y.; Nam, H.; Lee, S.; Cho, M. CYR61 Is Overexpressed in Human Melanoma Tissue Ex Vivo and Promotes Melanoma Cell Survival and Proliferation Through Its Binding Ligand Integrin β3 In Vitro. Ann. Dermatol. 2024, 36, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Li, P.; Li, M.; Huang, S.; Dang, N. SERPINB8 and furin regulate ITGAX expression and affect the proliferation and invasion of melanoma cells. Exp. Dermatol. 2023, 32, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, M.; Stojanović, N.; Rac-Justament, A.; Coopmans, K.; Majhen, D.; Humphries, J. Talin2 and KANK2 functionally interact to regulate microtubule dynamics, paclitaxel sensitivity and cell migration in the MDA-MB-435S melanoma cell line. Cell. Mol. Biol. Lett. 2023, 28, 56. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yu, D.; Luo, C.; Bennet, C.; Jedrychowski, M.; Gygi, S.; Widlund, H.; Puigserver, P. Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat. Commun. 2023, 14, 3251. [Google Scholar] [CrossRef]
- Morozevich, G.; Kozlova, N.; Gevorkian, N.; Berman, A. The Integrin α3β1 Signaling in the Regulation of the SK-Mel-147 Melanoma Cell Senescence. Biochem. Mosc. Suppl. B Biomed. Chem. 2022, 16, 187–194. [Google Scholar] [CrossRef]
- Khabazian, E.; Vakhshiteh, F.; Norouzi, P.; Fatahi, Y.; Dinarvand, R.; Atyabi, F. Cationic liposome decorated with cyclic RGD peptide for targeted delivery of anti-STAT3 siRNA to melanoma cancer cells. J. Drug Target. 2022, 30, 522–533. [Google Scholar] [CrossRef]
- Ablain, J.; Al Mahi, A.; Rothschild, H.; Prasad, M.; Aires, S.; Yang, S.; Dokukin, M.; Xu, S.; Dang, M.; Sokolov, I.; et al. Loss of NECTIN1 triggers melanoma dissemination upon local IGF1 depletion. Nat. Genet. 2022, 54, 1839–1852. [Google Scholar] [CrossRef]
- Kozlova, N.; Morozevich, G.; Berman, A. Implication of integrin α2β1 in senescence of SK-Mel-147 human melanoma cells. Aging 2021, 13, 18006–18017. [Google Scholar] [CrossRef]
- Gil, D.; Laidler, P.; Zarzycka, M.; Dulińska-Litewka, J. Inhibition effect of chloroquine and integrin-linked kinase knockdown on translation in melanoma cells. Int. J. Mol. Sci. 2021, 22, 3682. [Google Scholar] [CrossRef]
- Martini, C.; DeNichilo, M.; King, D.; Cockshell, M.; Ebert, B.; Dale, B. CD36 promotes vasculogenic mimicry in melanoma by mediating adhesion to the extracellular matrix. BMC Cancer 2021, 21, 765. [Google Scholar] [CrossRef]
- Lainé, A.; Labiad, O.; Hernandez-Vargas, H.; This, S.; Sanlaville, A.; Léon, S. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat. Commun. 2021, 12, 6228. [Google Scholar] [CrossRef] [PubMed]
- Huilcaman, R.; Campos, A.; Contreras, P.; Simón, M.; Varas-Godoy, F.; Grünenwald, B.-S.; Shao, B.; Heinecke, J.; Loboz-Gonzalez, L.; Leyton, L.; et al. Quest. Inclusion of αvβ3 integrin into extracellular vesicles in a caveolin-1 tyrosine-14-phosphorylation dependent manner and subsequent transfer to recipient melanoma cells promotes migration, invasion and metastasis. Cell Commun. Signal 2025, 23, 139. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Yamada, K.; Shigeyuki, K. Carnosic acid inhibits integrin expression and prevents pulmonary metastasis of melanoma. Biosci. Biotechnol. Biochem. 2025, 89, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, E.; Lee, E. Development of 5-Fluorouracil/pH-Responsive Adjuvant-Embedded Extracellular Vesicles for Targeting αvβ3 Integrin Receptors in Tumors. Pharmaceutics 2024, 16, 599. [Google Scholar] [CrossRef]
- Yuan, R.; Li, Y.; Yang, B.; Jin, Z.; Xu, J.; Shao, Z.; Miao, H.; Ren, T.; Yang, Y.; Li, G.; et al. LOXL1 exerts oncogenesis and stimulates angiogenesis through the LOXL1-FBLN5/αvβ3 integrin/FAK-MAPK axis in ICC. Mol. Ther. Nucl. Acids 2021, 23, 797–810. [Google Scholar] [CrossRef]
- Nakagawa, T.; Ohta, K.; Naruse, T.; Sakuma, M.; Fukada, S.; Yamakado, N.; Akagi, M.; Sasaki, K.; Niwata, C.; Ono, S.; et al. Inhibition of angiogenesis and tumor progression of MK-0429, an integrin αvβ3 antagonist, on oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 3281–3292. [Google Scholar] [CrossRef]
- Li, J.; Fukase, Y.; Shang, Y.; Zou, W.; Muñoz-Félix, J.; Buitrago, L.; van Aghhoven, J.; Zhang, Y.; Hara, R.; Tanaka, Y.; et al. Novel pure αvβ3 integrin antagonists that do not induce receptor extension, prime the receptor, or enhance angiogenesis at low concentrations. ACS Pharmacol. Transl. Sci. 2019, 2, 387–401. [Google Scholar] [CrossRef]
- Lin, X.; Sun, Y.; Yang, S.; Yu, M.; Pan, L.; Yang, J.; Yang, j.; Shao, Q.; Liu, J.; Liu, Y.; et al. Omentin-1 modulates macrophage function via integrin receptors αvβ3 and αvβ5 and reverses plaque vulnerability in animal models of atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 757926. [Google Scholar] [CrossRef]
- Zeng, L.; Nie, H.; Xiong, H.; Yang, Z.; Hu, X.; Su, T. A Study on Regulating OSCC Cell Function by Blocking Integrin αvβ3 With Cilengitide. J. Oral Patol. Med. 2025, 54, 597–606. [Google Scholar] [CrossRef]
- Ludwig, B.; Krautkremer, N.; Tomassi, S.; Di Maro, S.; Di Leva, F.; Benge, A.; Nieberler, M.; Kessler, H.; Marinelli, L.; Kossatz, S.; et al. Switching Roles—Exploring Concentration-Dependent Agonistic versus Antagonistic Behavior of Integrin Ligands. J. Med. Chem. 2025, 68, 4334–4351. [Google Scholar] [CrossRef]
- Kim, T.K.; Slominski, R.M.; Pyza, E.; Kleszczynski, K.; Tuckey, R.C.; Reiter, R.J.; Holick, M.F.; Slominski, A.T. Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol. Rev. Camb. Philos. Soc. 2024, 99, 1772–1790. [Google Scholar] [CrossRef]
- Adamiak, K.; Gaida, V.A.; Schäfer, J.; Bosse, L.; Diemer, C.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Sionkowska, A.; Kleszczyński, K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int. J. Mol. Sci. 2024, 25, 4858. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Ganguli-Indra, G.; Athar, M.; Indra, A.K.; Reiter, R.J.; Kleszczynski, K. Melatonin and the Skin: Current Progress and Perspectives for Human Health. J. Investig. Dermatol. 2025, 145, 1345–1360. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Li, W.; Jetten, A.M.; Indra, A.K.; Mason, R.S.; Tuckey, R.C. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J. Investig. Dermatol. 2024, 144, 2145–2161. [Google Scholar] [CrossRef]
- Reiter, R.J.; De Almeida Chuffa, L.G.; Simão, V.A.; Martín Giménez, V.M.; De Las Heras, N.; Spandidos, D.A.; Manucha, W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int. J. Oncol. 2024, 65, 114. [Google Scholar] [CrossRef]
- Janjetovic, Z.; Qayyum, S.; Reddy, S.B.; Podgorska, E.; Scott, S.G.; Szpotan, J.; Mobley, A.A.; Li, W.; Boda, V.K.; Ravichandran, S.; et al. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024, 13, 239. [Google Scholar] [CrossRef]
- Janjetovic, Z.; Postlethwaite, A.; Kang, H.S.; Kim, T.K.; Tuckey, R.C.; Crossman, D.K.; Qayyum, S.; Jetten, A.M.; Slominski, A.T. Antifibrogenic Activities of CYP11A1-derived Vitamin D3-hydroxyderivatives Are Dependent on RORgamma. Endocrinology 2021, 162, bqaa198. [Google Scholar] [CrossRef] [PubMed]
- Brown Lobbins, M.L.; Scott, I.O.; Slominski, A.T.; Hasty, K.A.; Zhang, S.; Miller, D.D.; Li, W.; Kim, T.K.; Janjetovic, Z.; Patel, T.S.; et al. 17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. Int. J. Mol. Sci. 2021, 22, 8926. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Zhang, Y.; Wang, W.; Zhao, S.; Su, J.; Li, S.; Chen, X. Identification of two molecularly and prognostically distinct subtypes in acral melanoma using network prediction method. J. Eur. Acad. Dermatol. Venereol. 2025, 39, 1254–1266. [Google Scholar] [CrossRef]
- Farshidfar, F.; Rhrissorrakrai, K.; Levovitz, C.; Peng, C.; Knight, J.; Bacchiocchi, A.; Su, H.; Yin, M.; Sznol, M.; Ariyan, S.; et al. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11. 21 to metastasis. Nat. Commun. 2022, 13, 898. [Google Scholar] [CrossRef]
- Farshidfar, F.; Peng, C.; Levovitz, C.; Knight, J.; Bacchiocchi, A.; Su, J.; Rhrissorrakrai, K.; Yin, M.; Sznol, M.; Ariyan, S. Integrative molecular and clinical profiling of acral melanoma identifies LZTR1 as a key tumor promoter and therapeutic target. bioRxiv 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak-Nikolouzou, K.; Słomiński, A.T.; Skalska, Z.; Inkielewicz-Stępniak, I. Therapeutic Use of Integrin Signaling in Melanoma Cells: Physical Link with the Extracellular Matrix (ECM). Cancers 2025, 17, 3037. https://doi.org/10.3390/cancers17183037
Adamiak-Nikolouzou K, Słomiński AT, Skalska Z, Inkielewicz-Stępniak I. Therapeutic Use of Integrin Signaling in Melanoma Cells: Physical Link with the Extracellular Matrix (ECM). Cancers. 2025; 17(18):3037. https://doi.org/10.3390/cancers17183037
Chicago/Turabian StyleAdamiak-Nikolouzou, Katarzyna, Andrzej T. Słomiński, Zofia Skalska, and Iwona Inkielewicz-Stępniak. 2025. "Therapeutic Use of Integrin Signaling in Melanoma Cells: Physical Link with the Extracellular Matrix (ECM)" Cancers 17, no. 18: 3037. https://doi.org/10.3390/cancers17183037
APA StyleAdamiak-Nikolouzou, K., Słomiński, A. T., Skalska, Z., & Inkielewicz-Stępniak, I. (2025). Therapeutic Use of Integrin Signaling in Melanoma Cells: Physical Link with the Extracellular Matrix (ECM). Cancers, 17(18), 3037. https://doi.org/10.3390/cancers17183037