Prognostic Significance of Lymph Node Ratio in Intrahepatic and Extrahepatic Cholangiocarcinomas †
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Variables and Definitions
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Baseline Characteristics
3.2. Cancer Staging
3.3. Positive Surgical Margins and Adjuvant Treatment
3.4. Survival Analysis
3.5. Factors Associated with Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qurashi, M.; Vithayathil, M.; Khan, S.A. Epidemiology of cholangiocarcinoma. Eur. J. Surg. Oncol. 2023, 107064. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, J.L.A.; Gaspersz, M.P.; Coelen, R.J.S.; Vugts, J.; Labeur, T.A.; de Jonge, J.; Polak, W.G.; Busch, O.R.C.; Besselink, M.G.; JNM, I.J.; et al. The prognostic value of portal vein and hepatic artery involvement in patients with perihilar cholangiocarcinoma. HPB 2018, 20, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Bagante, F.; Spolverato, G.; Weiss, M.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; Shen, F.; et al. Defining Long-Term Survivors Following Resection of Intrahepatic Cholangiocarcinoma. J. Gastrointest. Surg. 2017, 21, 1888–1897. [Google Scholar] [CrossRef]
- Popescu, I.; Dumitrascu, T. Curative-intent surgery for hilar cholangiocarcinoma: Prognostic factors for clinical decision making. Langenbecks Arch. Surg. 2014, 399, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Groot Koerkamp, B.; Wiggers, J.K.; Gonen, M.; Doussot, A.; Allen, P.J.; Besselink, M.G.H.; Blumgart, L.H.; Busch, O.R.C.; D’Angelica, M.I.; DeMatteo, R.P.; et al. Survival after resection of perihilar cholangiocarcinoma-development and external validation of a prognostic nomogram. Ann. Oncol. 2015, 26, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Nagorney, D.M.; Pawlik, T.M.; Chun, Y.S.; Ebata, T.; Vauthey, J.N. Perihilar bile ducts. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Ed.; Springer International Publishing: Chicago, IL, USA, 2017. [Google Scholar]
- Krasinskas, A.P.T.M.; Mino-Kenudson, M.; Vauthey, J.-N. Distal bile duct. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Ed.; Springer International Publishing: Chicago, IL, USA, 2017. [Google Scholar]
- Aloia, T.A.; Pawlik, T.M.; Taouli, B.; Rubbia-Brandt, L. Intrahepatic bile ducts. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Ed.; Springer International Publishing: Chicago, IL, USA, 2017. [Google Scholar]
- Conci, S.; Ruzzenente, A.; Sandri, M.; Bertuzzo, F.; Campagnaro, T.; Bagante, F.; Capelli, P.; D’Onofrio, M.; Piccino, M.; Dorna, A.E.; et al. What is the most accurate lymph node staging method for perihilar cholangiocarcinoma? Comparison of UICC/AJCC pN stage, number of metastatic lymph nodes, lymph node ratio, and log odds of metastatic lymph nodes. Eur. J. Surg. Oncol. 2017, 43, 743–750. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, Q.Y.; Chen, W.Y.; Huang, Y.Y.; Zhang, Y.Q.; Gong, Y.; Jiang, Y.; Bai, J.; Chen, Z.Y.; Dai, H.S. Evaluation of Four Lymph Node Classifications for the Prediction of Survival in Hilar Cholangiocarcinoma. J. Gastrointest. Surg. 2022, 26, 1030–1040. [Google Scholar] [CrossRef]
- Bagante, F.; Tran, T.; Spolverato, G.; Ruzzenente, A.; Buttner, S.; Ethun, C.G.; Groot Koerkamp, B.; Conci, S.; Idrees, K.; Isom, C.A.; et al. Perihilar Cholangiocarcinoma: Number of Nodes Examined and Optimal Lymph Node Prognostic Scheme. J. Am. Coll. Surg. 2016, 222, 750–759.e752. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.; Arcinega, J.; Smith, C.; Wisnivesky, J.P. Validation of the lymph node ratio as a prognostic factor in patients with N1 nonsmall cell lung cancer. Cancer 2011, 117, 4724–4731. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Friederichs, J.; Schuster, T.; Gertler, R.; Maak, M.; Becker, K.; Grebner, A.; Ulm, K.; Höfler, H.; Nekarda, H.; et al. Prognosis of patients with colorectal cancer is associated with lymph node ratio: A single-center analysis of 3,026 patients over a 25-year time period. Ann. Surg. 2008, 248, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.C.; McMasters, K.M.; Scoggins, C.R.; Martin, R.C.; Chagpar, A.B. Lymph node ratio: A proposed refinement of current axillary staging in breast cancer patients. J. Am. Coll. Surg. 2011, 213, 45–52, discussion 43–52. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, Y.; Sasaki, R.; Kobayashi, A.; Murata, S.; Fukunaga, K.; Kondo, T.; Oda, T.; Ohkohchi, N. Prognostic relevance of the lymph node ratio in surgical patients with extrahepatic cholangiocarcinoma. Eur. J. Surg. Oncol. 2011, 37, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, M.H.; Ma, W.J.; Li, F.Y.; Deng, Y.L. Extended lymphadenectomy in hilar cholangiocarcinoma: What it will bring? World J. Gastroenterol. 2020, 26, 3318–3325. [Google Scholar] [CrossRef]
- Sakata, J.; Wakai, T.; Matsuda, Y.; Ohashi, T.; Hirose, Y.; Ichikawa, H.; Kobayashi, T.; Minagawa, M.; Kosugi, S.; Koyama, Y.; et al. Comparison of Number Versus Ratio of Positive Lymph Nodes in the Assessment of Lymph Node Status in Extrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2016, 23, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Li, C.; Wang, M.D.; Xing, H.; Diao, Y.K.; Jia, H.D.; Lau, W.Y.; Pawlik, T.M.; Zhang, C.W.; Shen, F.; et al. The value of lymphadenectomy in surgical resection of perihilar cholangiocarcinoma: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2021, 26, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- Luvira, V.; Satitkarnmanee, E.; Pugkhem, A.; Kietpeerakool, C.; Lumbiganon, P.; Pattanittum, P. Postoperative adjuvant chemotherapy for resectable cholangiocarcinoma. Cochrane Database Syst. Rev. 2021, 9, Cd012814. [Google Scholar] [CrossRef]
- American Joint Committee on Cancer. AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2010. [Google Scholar]
- Guglielmi, A.; Ruzzenente, A.; Campagnaro, T.; Valdegamberi, A.; Bagante, F.; Bertuzzo, F.; Conci, S.; Iacono, C. Patterns and prognostic significance of lymph node dissection for surgical treatment of perihilar and intrahepatic cholangiocarcinoma. J. Gastrointest. Surg. 2013, 17, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Giuliante, F.; Ardito, F.; Guglielmi, A.; Aldrighetti, L.; Ferrero, A.; Calise, F.; Giulini, S.M.; Jovine, E.; Breccia, C.; De Rose, A.M.; et al. Association of Lymph Node Status with Survival in Patients After Liver Resection for Hilar Cholangiocarcinoma in an Italian Multicenter Analysis. JAMA Surg. 2016, 151, 916–922. [Google Scholar] [CrossRef]
- Aoba, T.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y.; Nagino, M. Assessment of nodal status for perihilar cholangiocarcinoma: Location, number, or ratio of involved nodes. Ann. Surg. 2013, 257, 718–725. [Google Scholar] [CrossRef]
- Tamandl, D.; Kaczirek, K.; Gruenberger, B.; Koelblinger, C.; Maresch, J.; Jakesz, R.; Gruenberger, T. Lymph node ratio after curative surgery for intrahepatic cholangiocarcinoma. Br. J. Surg. 2009, 96, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Appleby, D.-H.; Zhang, X.; Gan, L.; Wang, J.-J.; Wan, F. Comparison of three lymph node staging schemes for predicting outcome in patients with gastric cancer. Br. J. Surg. 2013, 100, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Dinescu, V.C.; Gheorman, V.; Georgescu, E.F.; Paitici, Ș.; Bică, M.; Pătrașcu, Ș.; Bunescu, M.G.; Popa, R.; Berceanu, M.C.; Pătrașcu, A.M.; et al. Uncovering the Impact of Lymphadenectomy in Advanced Gastric Cancer: A Comprehensive Review. Life 2023, 13, 1769. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Noh, K.T.; Min, B.S. Lymphadenectomy in Colorectal Cancer: Therapeutic Role and How Many Nodes Are Needed for Appropriate Staging? Curr. Color. Cancer Rep. 2017, 13, 45–53. [Google Scholar] [CrossRef]
- Erdem, S.; Bolli, M.; Müller, S.A.; von Flüe, M.; White, R.; Worni, M. Role of lymphadenectomy in resectable pancreatic cancer. Langenbeck’s Arch. Surg. 2020, 405, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liu, J.; Dou, C.W.; Xie, Z.C.; Fan, B.F.; Jin, L.M.; Liang, L.; Zhang, C.W. Standardized lymph node dissection for gallbladder cancer under laparoscopy: En-bloc resection technique. Langenbecks Arch. Surg. 2023, 408, 183. [Google Scholar] [CrossRef]
- Kizy, S.; Altman, A.M.; Marmor, S.; Wirth, K.; Ching Hui, J.Y.; Tuttle, T.M.; Denbo, J.W.; Jensen, E.H. Surgical resection of lymph node positive intrahepatic cholangiocarcinoma may not improve survival. HPB 2019, 21, 235–241. [Google Scholar] [CrossRef]
- Wang, F.-H.; Zhang, X.-T.; Tang, L.; Wu, Q.; Cai, M.-Y.; Li, Y.-F.; Qu, X.-J.; Qiu, H.; Zhang, Y.-J.; Ying, J.-E.; et al. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2023. Cancer Commun. 2024, 44, 127–172. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, D.H.; Choi, G.H.; Choi, J.S.; Kim, K.S. Recommended Minimal Number of Harvested Lymph Nodes for Intrahepatic Cholangiocarcinoma. J. Gastrointest. Surg. 2021, 25, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Sakata, J.; Takizawa, K.; Miura, K.; Hirose, Y.; Muneoka, Y.; Tajima, Y.; Ichikawa, H.; Shimada, Y.; Kobayashi, T.; Wakai, T. Rational Extent of Regional Lymphadenectomy and the Prognostic Impact of the Number of Positive Lymph Nodes for Perihilar Cholangiocarcinoma. Ann. Surg. Oncol. 2023, 30, 4306–4317. [Google Scholar] [CrossRef]
- Kambakamba, P.; Linecker, M.; Slankamenac, K.; DeOliveira, M.L. Lymph node dissection in resectable perihilar cholangiocarcinoma: A systematic review. Am. J. Surg. 2015, 210, 694–701. [Google Scholar] [CrossRef]
- Kim, B.J.; Newhook, T.E.; Tzeng, C.D.; Ikoma, N.; Chiang, Y.J.; Chun, Y.S.; Vauthey, J.N.; Tran Cao, H.S. Lymphadenectomy and margin-negative resection for biliary tract cancer surgery in the United States-Differential technical performance by approach. J. Surg. Oncol. 2022, 126, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Moazzam, Z.; Alaimo, L.; Endo, Y.; Lima, H.A.; Pawlik, T.M. Predictors, Patterns, and Impact of Adequate Lymphadenectomy in Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2023, 30, 1966–1977. [Google Scholar] [CrossRef] [PubMed]
- Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and Prognosis for Patients with Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014, 149, 565–574. [Google Scholar] [CrossRef]
- de Jong, M.C.; Nathan, H.; Sotiropoulos, G.C.; Paul, A.; Alexandrescu, S.; Marques, H.; Pulitano, C.; Barroso, E.; Clary, B.M.; Aldrighetti, L.; et al. Intrahepatic cholangiocarcinoma: An international multi-institutional analysis of prognostic factors and lymph node assessment. J. Clin. Oncol. 2011, 29, 3140–3145. [Google Scholar] [CrossRef] [PubMed]
- Hyder, O.; Marques, H.; Pulitano, C.; Marsh, J.W.; Alexandrescu, S.; Bauer, T.W.; Gamblin, T.C.; Sotiropoulos, G.C.; Paul, A.; Barroso, E.; et al. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma: An Eastern and Western experience. JAMA Surg. 2014, 149, 432–438. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, C.; Li, H.; Ren, H.; Cai, Y.; Lan, T.; Wu, H. Adequate lymph node dissection is essential for accurate nodal staging in intrahepatic cholangiocarcinoma: A population-based study. Cancer Med. 2023, 12, 8184–8198. [Google Scholar] [CrossRef]
- Chen, X.; Rong, D.; Zhang, L.; Ni, C.; Han, G.; Lu, Y.; Chen, X.; Gao, Y.; Wang, X. Evaluation of nodal status in intrahepatic cholangiocarcinoma: A population-based study. Ann. Transl. Med. 2021, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Liu, J.; Sun, J.; Zhang, J.; Chen, J.; Pawlik, T.M.; Jacobs, L.K.; Xiao, Z.; Wang, J. Patterns and prognostic value of lymph node dissection for resected perihilar cholangiocarcinoma. J. Gastroenterol. Hepatol. 2016, 31, 417–426. [Google Scholar] [CrossRef]
- Bando, E.; Yonemura, Y.; Taniguchi, K.; Fushida, S.; Fujimura, T.; Miwa, K. Outcome of ratio of lymph node metastasis in gastric carcinoma. Ann. Surg. Oncol. 2002, 9, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Beal, E.W.; Cloyd, J.M.; Pawlik, T.M. Surgical Treatment of Intrahepatic Cholangiocarcinoma: Current and Emerging Principles. J. Clin. Med. 2020, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, D.B.; Brown, Z.J.; Pawlik, T.M. Current Perspectives on the Surgical Management of Perihilar Cholangiocarcinoma. Cancers 2022, 14, 2208. [Google Scholar] [CrossRef]
- Hakeem, A.R.; Marangoni, G.; Chapman, S.J.; Young, R.S.; Nair, A.; Hidalgo, E.L.; Toogood, G.J.; Wyatt, J.I.; Lodge, P.A.; Prasad, K.R. Does the extent of lymphadenectomy, number of lymph nodes, positive lymph node ratio and neutrophil-lymphocyte ratio impact surgical outcome of perihilar cholangiocarcinoma? Eur. J. Gastroenterol. Hepatol. 2014, 26, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.M.; Di Martino, M.; Syn, N.; Ielpo, B.; Hilal, M.A.; Goh, B.K.P.; Koh, Y.X.; Prieto, M. Re-appraising the role of lymph node status in predicting survival in resected distal cholangiocarcinoma—A meta-analysis and systematic review. Eur. J. Surg. Oncol. 2021, 47, 1267–1277. [Google Scholar] [CrossRef]
- Capuozzo, M.; Santorsola, M.; Landi, L.; Granata, V.; Perri, F.; Celotto, V.; Gualillo, O.; Nasti, G.; Ottaiano, A. Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New towards Precision Oncology. Int. J. Mol. Sci. 2022, 23, 15124. [Google Scholar] [CrossRef]
- Valery, M.; Vasseur, D.; Fachinetti, F.; Boilève, A.; Smolenschi, C.; Tarabay, A.; Antoun, L.; Perret, A.; Fuerea, A.; Pudlarz, T.; et al. Targetable Molecular Alterations in the Treatment of Biliary Tract Cancers: An Overview of the Available Treatments. Cancers 2023, 15, 4446. [Google Scholar] [CrossRef]
- Bridgewater, J.; Fletcher, P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Long-Term Outcomes and Exploratory Analyses of the Randomized Phase III BILCAP Study. J. Clin. Oncol. 2022, 40, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Jiang, X. Efficacy and safety comparison of neoadjuvant chemotherapy followed by surgery and upfront surgery for treating intrahepatic cholangiocarcinoma: A systematic review and meta-analysis. BMC Gastroenterol. 2023, 23, 122. [Google Scholar] [CrossRef] [PubMed]
- Maithel, S.K.; Keilson, J.M.; Cao, H.S.T.; Rupji, M.; Mahipal, A.; Lin, B.S.; Javle, M.M.; Cleary, S.P.; Akce, M.; Switchenko, J.M.; et al. NEO-GAP: A Single-Arm, Phase II Feasibility Trial of Neoadjuvant Gemcitabine, Cisplatin, and Nab-Paclitaxel for Resectable, High-Risk Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2023, 30, 6558–6566. [Google Scholar] [CrossRef] [PubMed]
- Parente, A.; Kamarajah, S.K.; Baia, M.; Tirotta, F.; Manzia, T.M.; Hilal, M.A.; Pawlik, T.M.; White, S.A.; Dahdaleh, F.S. Neoadjuvant Chemotherapy for Intrahepatic, Perihilar, and Distal Cholangiocarcinoma: A National Population-Based Comparative Cohort Study. J. Gastrointest. Surg. 2023, 27, 741–749. [Google Scholar] [CrossRef]
Primary Site | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intrahepatic Cholangiocarcinoma | Extrahepatic Cholangiocarcinoma | ||||||||||||||||||
LNR 0 (N = 553) | LNR < 30% (N = 223) | LNR ≥ 30% (N = 178) | Total (N = 954) | LNR 0 (N = 680) | LNR < 30% (N = 683) | LNR ≥ 30% (N = 244) | Total (N = 1607) | ||||||||||||
N | % | N | % | N | % | N | % | p | N | % | N | % | N | % | N | % | p | ||
Age at Diagnosis, years (Median) | 66 (58–73) | 66 (57–73) | 63 (55–70) | 65 (57–72) | 0.02 | 68 (60–75) | 68 (60–74) | 68 (60–75) | 68 (60–75) | 0.865 | |||||||||
Age Group | <65 years | 248 | 44.8% | 113 | 50.7% | 99 | 55.6% | 460 | 48.2% | 0.031 | 278 | 40.9% | 248 | 36.3% | 92 | 37.7% | 618 | 38.5% | 0.215 |
≥65 years | 305 | 55.2% | 110 | 49.3% | 79 | 44.4% | 494 | 51.8% | 402 | 59.1% | 435 | 63.7% | 152 | 62.3% | 989 | 61.5% | |||
Sex | Male | 251 | 45.4% | 105 | 47.1% | 92 | 51.7% | 448 | 47.0% | 0.342 | 444 | 65.3% | 408 | 59.7% | 155 | 63.5% | 1007 | 62.7% | 0.101 |
Female | 302 | 54.6% | 118 | 52.9% | 86 | 48.3% | 506 | 53.0% | 236 | 34.7% | 275 | 40.3% | 89 | 36.5% | 600 | 37.3% | |||
Race | White | 463 | 83.7% | 184 | 82.5% | 153 | 86.0% | 800 | 83.9% | 0.072 | 547 | 80.4% | 540 | 79.1% | 204 | 83.6% | 1291 | 80.3% | 0.425 |
Asian | 41 | 7.4% | 13 | 5.8% | 16 | 9.0% | 70 | 7.3% | 54 | 7.9% | 47 | 6.9% | 17 | 7.0% | 118 | 7.3% | |||
Black | 38 | 6.9% | 17 | 7.6% | 6 | 3.4% | 61 | 6.4% | 62 | 9.1% | 71 | 10.4% | 15 | 6.1% | 148 | 9.2% | |||
American Indian/Aleutian/Eskimo | 0 | 0.0% | 1 | 0.4% | 0 | 0.0% | 1 | 0.1% | 1 | 0.1% | 7 | 1.0% | 1 | 0.4% | 9 | 0.6% | |||
Other | 10 | 1.8% | 4 | 1.8% | 3 | 1.7% | 17 | 1.8% | 11 | 1.6% | 13 | 1.9% | 4 | 1.6% | 28 | 1.7% | |||
Unknown | 1 | 0.2% | 4 | 1.8% | 0 | 0.0% | 5 | 0.5% | 5 | 0.7% | 5 | 0.7% | 3 | 1.2% | 13 | 0.8% | |||
Charlson–Deyo Score | 0 | 369 | 66.7% | 166 | 74.4% | 122 | 68.5% | 657 | 68.9% | 0.029 | 468 | 68.8% | 458 | 67.1% | 162 | 66.4% | 1088 | 67.7% | 0.606 |
1 | 107 | 19.3% | 46 | 20.6% | 36 | 20.2% | 189 | 19.8% | 136 | 20.0% | 134 | 19.6% | 47 | 19.3% | 317 | 19.7% | |||
2 | 36 | 6.5% | 5 | 2.2% | 12 | 6.7% | 53 | 5.6% | 42 | 6.2% | 47 | 6.9% | 23 | 9.4% | 112 | 7.0% | |||
≥3 | 41 | 7.4% | 6 | 2.7% | 8 | 4.5% | 55 | 5.8% | 34 | 5.0% | 44 | 6.4% | 12 | 4.9% | 90 | 5.6% | |||
Facility Type | Community Cancer Program | 13 | 2.4% | 3 | 1.4% | 5 | 3.0% | 21 | 2.3% | 0.108 | 18 | 2.7% | 23 | 3.4% | 9 | 3.8% | 50 | 3.2% | 0.953 |
Comprehensive Community Cancer Program | 105 | 19.4% | 57 | 27.1% | 32 | 19.2% | 194 | 21.1% | 152 | 23.0% | 156 | 23.4% | 59 | 24.6% | 367 | 23.4% | |||
Academic/Research Program | 318 | 58.7% | 124 | 59.0% | 102 | 61.1% | 544 | 59.2% | 372 | 56.2% | 377 | 56.5% | 132 | 55.0% | 881 | 56.2% | |||
Integrated Network Cancer Program | 106 | 19.6% | 26 | 12.4% | 28 | 16.8% | 160 | 17.4% | 120 | 18.1% | 111 | 16.6% | 40 | 16.7% | 271 | 17.3% | |||
Distance Traveled, miles (Median) | 20.3 (9–66) | 17.8 (8–70) | 15.3 (7–39) | 18.8 (8–61) | 0.1 | 16.8 (3–43) | 17.1 (7–49) | 20.5 (7–50) | 17.6 (7–46) | 0.536 | |||||||||
NCDB Analytic Stage Group | Stage I | 229 | 41.4% | 13 | 5.8% | 1 | 0.6% | 243 | 25.5% | <0.001 | 113 | 16.6% | 4 | 0.6% | 0 | 0.0% | 117 | 7.3% | <0.001 |
Stage II | 192 | 34.7% | 5 | 2.2% | 5 | 2.8% | 202 | 21.2% | 385 | 56.6% | 295 | 43.2% | 20 | 8.2% | 700 | 43.6% | |||
Stage III | 71 | 12.8% | 79 | 35.4% | 83 | 46.6% | 233 | 24.4% | 74 | 10.9% | 309 | 45.2% | 161 | 66.0% | 544 | 33.9% | |||
Stage IV | 17 | 3.1% | 91 | 40.8% | 75 | 42.1% | 183 | 19.2% | 7 | 1.0% | 18 | 2.6% | 39 | 16.0% | 64 | 4.0% | |||
AJCC Pathologic T | p0 | 3 | 1.3% | 3 | 2.9% | 0 | 0.0% | 6 | 1.4% | <0.001 | 2 | 1.2% | 0 | 0.0% | 1 | 1.6% | 3 | 0.9% | <0.001 |
p1 | 93 | 40.4% | 8 | 7.7% | 12 | 15.0% | 113 | 27.3% | 22 | 13.4% | 5 | 4.7% | 0 | 0.0% | 27 | 8.1% | |||
p2 | 2 | 1.2% | 1 | 0.9% | 0 | 0.0% | 3 | 0.9% | |||||||||||
p2A | 47 | 20.4% | 26 | 25.0% | 15 | 18.8% | 88 | 21.3% | 70 | 42.7% | 24 | 22.6% | 9 | 14.1% | 103 | 30.8% | |||
p2B | 26 | 11.3% | 14 | 13.5% | 20 | 25.0% | 60 | 14.5% | 29 | 17.7% | 19 | 17.9% | 21 | 32.8% | 69 | 20.7% | |||
p3 | 25 | 10.9% | 26 | 25.0% | 15 | 18.8% | 66 | 15.9% | 30 | 18.3% | 55 | 51.9% | 29 | 45.3% | 114 | 34.1% | |||
p4 | 15 | 6.5% | 10 | 9.6% | 12 | 15.0% | 37 | 8.9% | 5 | 3.0% | 2 | 1.9% | 2 | 3.1% | 9 | 2.7% | |||
AJCC Pathologic N | p0 | 205 | 89.1% | 1 | 1.0% | 1 | 1.3% | 207 | 49.9% | <0.001 | 165 | 99.4% | 0 | 0.0% | 1 | 0.4% | 166 | 49.4% | <0.001 |
p1 | 0 | 0.0% | 87 | 82.9% | 75 | 93.8% | 162 | 39.0% | 0 | 0.0% | 100 | 94.3% | 52 | 81.3% | 152 | 45.2% | |||
p2 | 0 | 0.0% | 6 | 5.7% | 11 | 17.2% | 17 | 5.1% | |||||||||||
NOS/Other | 25 | 10.9% | 17 | 16.2% | 4 | 5.0% | 46 | 11.1% | 1 | 0.6% | 0 | 0.0% | 0 | 0.0% | 1 | 0.3% | |||
Regional Lymph Nodes Examined, number (Mean) | 7.8 | 12.0 | 8.1 | 8.8 | <0.001 | 14.9 | 19.2 | 12.5 | 16.4 | <0.001 | |||||||||
Regional Lymph Nodes Positive, number (Mean) | 0 | 1.6 | 4.8 | 1.3 | <0.001 | 0 | 2.3 | 6.1 | 1.9 | <0.001 | |||||||||
Surgical Margins | R0 | 444 | 80.3% | 155 | 69.5% | 101 | 56.7% | 700 | 73.4% | <0.001 | 556 | 81.8% | 510 | 74.7% | 144 | 59.0% | 1210 | 75.3% | <0.001 |
R1 | 65 | 11.8% | 33 | 14.8% | 41 | 23.0% | 139 | 14.6% | 74 | 10.9% | 100 | 14.6% | 58 | 23.8% | 232 | 14.4% | |||
R2 | 3 | 0.5% | 1 | 0.4% | 2 | 1.1% | 6 | 0.6% | 2 | 0.3% | 1 | 0.1% | 5 | 2.0% | 8 | 0.5% | |||
NOS | 41 | 7.4% | 34 | 15.2% | 34 | 19.1% | 109 | 11.4% | 48 | 7.1% | 72 | 10.5% | 37 | 15.2% | 157 | 9.8% | |||
Systemic Chemotherapy | No systemic therapy | 235 | 42.5% | 50 | 22.4% | 36 | 20.2% | 321 | 33.6% | <0.001 | 250 | 36.8% | 186 | 27.2% | 64 | 26.2% | 500 | 31.1% | <0.001 |
Systemic therapy before surgery | 84 | 15.2% | 27 | 12.1% | 20 | 11.2% | 131 | 13.7% | 64 | 9.4% | 41 | 6.0% | 7 | 2.9% | 112 | 7.0% | |||
Systemic therapy after surgery | 209 | 37.8% | 131 | 58.7% | 104 | 58.4% | 444 | 46.5% | 338 | 49.7% | 439 | 64.3% | 167 | 68.4% | 944 | 58.7% | |||
Systemic therapy both before and after surgery | 25 | 4.5% | 15 | 6.7% | 18 | 10.1% | 58 | 6.1% | 28 | 4.1% | 17 | 2.5% | 6 | 2.5% | 51 | 3.2% | |||
Radiation | No radiation therapy | 454 | 82.1% | 161 | 72.2% | 132 | 74.2% | 747 | 78.3% | <0.001 | 503 | 74.0% | 460 | 67.3% | 159 | 65.2% | 1122 | 69.8% | <0.001 |
Radiation therapy before surgery | 35 | 6.3% | 7 | 3.1% | 4 | 2.2% | 46 | 4.8% | 43 | 6.3% | 13 | 1.9% | 1 | 0.4% | 57 | 3.5% | |||
Radiation therapy after surgery | 61 | 11.0% | 49 | 22.0% | 0 | 20.2% | 146 | 15.3% | 128 | 18.8% | 205 | 30.0% | 79 | 32.4% | 412 | 25.6% | |||
Radiation therapy both before and after surgery | 0 | 0.0% | 1 | 0.4% | 1 | 0.6% | 2 | 0.2% | 2 | 0.3% | 0 | 0.0% | 0 | 0.0% | 2 | 0.1% |
Intrahepatic Cholangiocarcinoma | Extrahepatic Cholangiocarcinoma | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LNR Group | Mean | Median | Mean | Median | ||||||||
OS | 95% CI | OS | 95% CI | OS | 95% CI | OS | 95% CI | |||||
Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | |||||
LNR 0 | 49.6 | 47.3 | 51.9 | 62.7 | - | - | 46.2 | 44.0 | 48.5 | 55.7 | 48.4 | 63.0 |
LNR < 30% | 39.4 | 35.6 | 43.2 | 40.8 | 31.5 | 50.0 | 33.3 | 31.0 | 35.5 | 27.9 | 24.4 | 31.4 |
LNR ≥ 30% | 31.8 | 27.8 | 35.8 | 25.2 | 21.0 | 29.4 | 26.2 | 23.2 | 29.2 | 20.5 | 16.6 | 24.5 |
Overall | 44.2 | 42.4 | 46.1 | 48.2 | 42.4 | 53.9 | 38.0 | 36.5 | 39.5 | 35.7 | 32.8 | 38.6 |
LODDS 0 | 50.2 | 47.7 | 52.7 | - | - | - | 44.7 | 2.5 | 46.9 | 51.6 | 45.9 | 57.2 |
LODDS 1 | 41.5 | 38.4 | 44.7 | 44.0 | 3.3 | 37.5 | 33.8 | 31.6 | 36.0 | 27.9 | 24.8 | 30.9 |
LODDS 2 | 31.5 | 27.5 | 35.6 | 25.2 | 2.3 | 20.7 | 25.3 | 22.1 | 28.5 | 20.1 | 15.8 | 24.3 |
Overall | 44.2 | 42.4 | 46.1 | 48.2 | 2.9 | 42.4 | 38.0 | 36.5 | 39.5 | 35.7 | 32.8 | 38.6 |
Intrahepatic Cholangiocarcinoma | Extrahepatic Cholangiocarcinoma | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | |||||||||||||
HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | |||||
L | U | L | U | L | U | L | U | |||||||||
Group: LNR 0 | ref | ref | ref | ref | ref | ref | ref | ref | ||||||||
Group: LNR < 3 0% | 1.85 | 1.46 | 2.34 | <0.001 | 2.08 | 1.62 | 2.68 | <0.001 | 1.96 | 1.66 | 2.32 | <0.001 | 2.07 | 1.75 | 2.46 | <0.001 |
Group: LNR ≥ 30% | 2.75 | 2.16 | 3.49 | <0.001 | 2.94 | 2.25 | 3.84 | <0.001 | 2.89 | 2.36 | 3.53 | <0.001 | 2.98 | 2.41 | 3.68 | <0.001 |
Age at Diagnosis | 1.01 | 1.00 | 1.02 | 0.01 | 1.01 | 1.00 | 1.02 | 0.01 | 1.03 | 1.02 | 1.03 | <0.001 | 1.02 | 1.01 | 1.03 | <0.001 |
Sex | 0.81 | 0.67 | 0.99 | 0.04 | 0.89 | 0.72 | 1.08 | 0.24 | 0.94 | 0.81 | 1.09 | 0.41 | 0.91 | 0.78 | 1.05 | 0.19 |
Charlson–Deyo Score 0 | ref | ref | ref | ref | ref | ref | Ref | ref | ||||||||
Charlson–Deyo Score 1 | 0.98 | 0.77 | 1.26 | 0.90 | 1.00 | 0.78 | 1.29 | 0.97 | 1.27 | 1.06 | 1.52 | 0.01 | 1.26 | 1.05 | 1.51 | 0.01 |
Charlson–Deyo Score 2 | 0.77 | 0.47 | 1.26 | 0.30 | 0.73 | 0.45 | 1.21 | 0.22 | 1.58 | 1.23 | 2.05 | <0.001 | 1.28 | 0.99 | 1.66 | 0.06 |
Charlson–Deyo Score ≥ 3 | 0.96 | 0.62 | 1.47 | 0.84 | 1.08 | 0.69 | 1.69 | 0.74 | 1.84 | 1.39 | 2.44 | <0.001 | 1.60 | 1.20 | 2.13 | 0.00 |
Histology: ICC 8140 | ref | ref | ref | ref | ref | ref | ref | ref | ||||||||
Histology: ICC 8160 | 0.85 | 0.61 | 1.20 | 0.36 | 0.92 | 0.65 | 1.31 | 0.66 | 0.88 | 0.76 | 1.02 | 0.08 | 0.86 | 0.75 | 1.00 | 0.05 |
Histology: ICC 8162 | 0.79 | 0.11 | 5.74 | 0.81 | 1.08 | 0.15 | 8.03 | 0.94 | 0.68 | 0.32 | 1.43 | 0.31 | 0.84 | 0.40 | 1.79 | 0.66 |
Surgical Margins: R0 | ref | ref | ref | ref | ref | ref | ref | ref | ||||||||
Surgical Margins: R1 | 2.30 | 1.80 | 2.95 | <0.001 | 2.02 | 1.56 | 2.63 | <0.001 | 1.7 | 1.4 | 2.0 | <0.001 | 1.66 | 1.36 | 2.02 | <0.001 |
Surgical Margins: R2 | 3.58 | 1.48 | 8.68 | 0.01 | 4.56 | 1.80 | 11.55 | <0.001 | 1.0 | 0.4 | 2.7 | 0.96 | 0.87 | 0.32 | 2.36 | 0.79 |
Surgical Margins NOS | 2.06 | 1.55 | 2.74 | <0.001 | 1.91 | 1.43 | 2.57 | <0.001 | 1.5 | 1.2 | 1.9 | <0.001 | 1.43 | 1.14 | 1.81 | <0.01 |
Systemic Chemotherapy: None | ref | ref | ref | ref | ref | ref | ref | ref | ||||||||
Systemic Chemotherapy: Neoadjuvant only | 0.63 | 0.45 | 0.88 | 0.01 | 0.63 | 0.44 | 0.90 | 0.01 | 0.48 | 0.35 | 0.66 | <0.001 | 0.82 | 0.57 | 1.19 | 0.3 |
Systemic Chemotherapy: Adjuvant only | 0.76 | 0.61 | 0.94 | 0.01 | 0.56 | 0.44 | 0.71 | <0.001 | 0.59 | 0.50 | 0.68 | <0.001 | 0.57 | 0.48 | 0.67 | <.001 |
Systemic Chemotherapy: Neoadjuvant + Adjuvant | 0.61 | 0.38 | 0.97 | 0.04 | 0.49 | 0.30 | 0.81 | <0.001 | 0.42 | 0.26 | 0.67 | <0.001 | 0.49 | 0.31 | 0.79 | <0.01 |
Radiation: None | ref | ref | ref | ref | ref | ref | ref | ref | ||||||||
Radiation: Neoadjuvant only | 0.68 | 0.41 | 1.13 | 0.14 | 1.07 | 0.62 | 1.85 | 0.81 | 0.34 | 0.20 | 0.58 | <0.001 | 0.50 | 0.27 | 0.91 | 0.03 |
Radiation: Adjuvant only | 1.01 | 0.77 | 1.33 | 0.93 | 0.93 | 0.69 | 1.25 | 0.61 | 0.72 | 0.61 | 0.85 | <0.001 | 0.76 | 0.63 | 0.92 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomiak, A.; Ghaffar, S.A.; Rodriguez Franco, S.; Ziogas, I.A.; Cumbler, E.; Gleisner, A.L.; Del Chiaro, M.; Schulick, R.D.; Mungo, B. Prognostic Significance of Lymph Node Ratio in Intrahepatic and Extrahepatic Cholangiocarcinomas. Cancers 2025, 17, 220. https://doi.org/10.3390/cancers17020220
Khomiak A, Ghaffar SA, Rodriguez Franco S, Ziogas IA, Cumbler E, Gleisner AL, Del Chiaro M, Schulick RD, Mungo B. Prognostic Significance of Lymph Node Ratio in Intrahepatic and Extrahepatic Cholangiocarcinomas. Cancers. 2025; 17(2):220. https://doi.org/10.3390/cancers17020220
Chicago/Turabian StyleKhomiak, Andrii, Sumaya Abdul Ghaffar, Salvador Rodriguez Franco, Ioannis Asterios Ziogas, Ethan Cumbler, Ana Luiza Gleisner, Marco Del Chiaro, Richard David Schulick, and Benedetto Mungo. 2025. "Prognostic Significance of Lymph Node Ratio in Intrahepatic and Extrahepatic Cholangiocarcinomas" Cancers 17, no. 2: 220. https://doi.org/10.3390/cancers17020220
APA StyleKhomiak, A., Ghaffar, S. A., Rodriguez Franco, S., Ziogas, I. A., Cumbler, E., Gleisner, A. L., Del Chiaro, M., Schulick, R. D., & Mungo, B. (2025). Prognostic Significance of Lymph Node Ratio in Intrahepatic and Extrahepatic Cholangiocarcinomas. Cancers, 17(2), 220. https://doi.org/10.3390/cancers17020220