Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches
Simple Summary
Abstract
1. Introduction
2. Current Immunotherapy for Advanced Unresectable HCC
3. Mechanisms of Resistance to Conventional Immune Checkpoint Inhibition
3.1. Tumor Extrinsic—Immunosuppressive Tumor Microenvironment
3.1.1. Tumor-Associated Macrophages (TAMs)
3.1.2. Regulatory T Cells (Tregs)
3.1.3. Non-Cellular Components
3.2. Tumor Intrinsic–Impaired Antigen Presentation
3.3. Tumor Intrinsic–Tumor Heterogeneity
4. Novel Immunotherapy Approaches
4.1. ICI-Based Combinations
4.1.1. Targeting Adaptive and Innate Immune Cells
NCT # [Acronym] | Phase | Study Drug (MOA) | Control | Response | Ref |
---|---|---|---|---|---|
ICI-ICI-based combinations Neoadjuvant | |||||
NCT05440864 | 2 | tremelimumab (anti-CTLA4) + durvalumab (anti-PD-L1) | none | recruiting | [81] |
NCT03682276 | 1b | ipilimumab (anti-CTLA4) + nivolumab (anti-PD-1) | none | MPR 56% | [82] |
NCT05908786 | 1b/2 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) +/− tiragolumab (anti-TIGIT) bevacizumab (anti-VEGF-A) + tobemstomig (PD-1/LAG-3 bsAb) | none | recruiting | [83] |
NCT04658147 | 1 | nivolumab (anti-PD-1) +/− relatlimab (anti-LAG-3) | none | recruiting | [84] |
Palliative–1L | |||||
NCT04524871 [MORPHEUS-LIVER] | 1/2 | tiragolumab (anti-TIGIT) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ORR 42.5% | [85] |
NCT05904886 [IMBRAVE 152] | 3 | placebo | recruiting | [86] | |
NCT03680508 | 2 | cobolimab (anti-TIM3) + dostarlimab (anti-PD-1) | none | ORR 46.0% | [87] |
NCT04050462 | 2 | BMS986253 (anti-IL8 mAb) or cabiralizumab (anti-CSF1R mAb) + nivolumab (anti-PD-1) | nivolumab | ongoing | [88] |
NCT04524871 [MORPHEUS-LIVER] | 1b/2 | ADG-126 (masked anti-CTLA4) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ongoing | [77] |
NCT04524871 [MORPHEUS-LIVER] | 1/2 | tobemstomig (PD-1/LAG3 bsAb) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ongoing | [77] |
NCT04524871 [MORPHEUS-LIVER] | 1/2 | IO-108 (anti-LILRB2) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ongoing | [77] |
NCT04212221 | 1/2 | tebotelimab (PD-1/LAG-3 bsAb) | none | ORR 13.3% | [89] |
Palliative–2L | |||||
NCT05724563 | 2 | domvanalimab (anti-TIGIT) + zimberelimab (anti-PD-1) | none | ORR 17.2% | [90] |
NCT04212221 | 1/2 | tebotelimab (PD-1/LAG3 bsAb) | none | ORR 3.3% | [89] |
ICI-targeted therapy combinations Neoadjuvant | |||||
NCT04521153 | 2/3 | camrelizumab (anti-PD-1) + apatinib (anti-VEGFR2) | none | MPR 46% | [91] |
NCT04954339 [DYNAMIC] | 2 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | recruiting | [92] |
NCT05389527 [Neo-LEAP-HCC] | 2 | pembrolizumab (anti-PD-1) + lenvatinib (TKI) | none | MPR 38% | [93] |
NCT04615143 | 2 | tislelizumab (anti-PD-1) +/− lenvatinib (TKI) | none | ongoing | [94] |
NCT03299946 | 1b | cabozantinib (TKI) + nivolumab (anti-PD-1) | none | MPR 42% | [95] |
Adjuvant | |||||
NCT04102098 [IMBRAVE 050] | 3 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | surveillance | RFS 33.2 mo (36.0 mo with surveillance) | [96] |
NCT06059885 | 2 | tislelizumab (anti-PD-1) + TKI | surveillance | recruiting | [97] |
Palliative–1L | |||||
NCT04524871 [MORPHEUS-LIVER] | 1/2 | TPST1120 (PPARα inhibitor) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ORR 30.0% | [49] |
NCT06680258 | 3 | placebo | recruiting | [98] | |
NCT03519997 | 2 | bavituximab (anti-phosphatidylserine mAb) + pembrolizumab (anti-PD-1) | none | ORR 32.1% | [99] |
NCT04172571 | 2 | anlotinib (TKI) + penpulimab (anti-PD-1) | none | ORR 31.0% | [100] |
ChiCTR1900028295 | 2 | anlotinib (TKI) + toripalimab (anti-PD-1) | none | ORR 29.0% | [101] |
NCT04194801 | 1b/2 | fisgatinib (FGFR4 inhibitor) + CS1001 (anti-PD-L1) | none | ORR 50.0% | [102] |
NCT04444167 | 1b/2 | cadonilimab (PD-1/CTLA4 bsAb) + lenvatinib (TKI) | none | ORR 35.7% | [103] |
NCT03893695 | 1b/2 | ascrinvacumab (anti-ALK1) + nivolumab (anti-PD-1) | none | ORR 30.0% | [67] |
NCT02675946 [KEYNOTE 596] | 1 | CGX1321 (PORCN inhibitor) + pembrolizumab (anti-PD-1) | none | ongoing | [104] |
NCT03833700 | 1 | E7386 (CBP–β catenin interaction inhibitor) | none | ongoing | [105] |
NCT05022927 | 1 | ERY974 (GPC3/CD3 bsAb) + atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | none | ongoing | [106] |
-- | 1-ready | BC2027 (GPC3 ADC) | none | pending | [107] |
-- | IND-enabling | ZW251 (GPC3 ADC) | none | pending | [108] |
Palliative–2L | |||||
NCT06361758 | 2 | cadonilimab (PD-1/CTLA4 bsAb) + lenvatinib (TKI) | none | ongoing | [109] |
NCT04725474 [GDFATHER] | 1/2a | visugromab (anti-GD15) + nivolumab (anti-PD-1) | none | ORR 18.8% | [78] |
NCT05091346 | 1b/2 | E7386 (CBP–β catenin interaction inhibitor) + pembrolizumab (anti-PD-1) +/− lenvatinib (TKI) | none | ongoing | [110] |
not registered in U.S./EU | 1/2 | NY-303 (GPC3/NKp46) | none | ongoing | [111] |
ICI-Locoregional Therapy combinations Neoadjuvant | |||||
NCT05250843 | 2/3 | lenvatinib (TKI) + sintilimab (anti-PD-1) + TACE/HAI | none | recruiting | [112] |
NCT05171335 | 2 | lenvatinib (TKI) + TACE | none | recruiting | [113] |
NCT05042336 | 1b/2 | camrelizumab (anti-PD-1) + lenvatinib (TKI) + TACE | none | MPR 44% | [114] |
Palliative | |||||
NCT03778957 [EMERALD-1] | 3 | durvalumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) + TACE | TACE | ORR 43.6% | [115] |
NCT04246177 [LEAP-012] | 3 | pembrolizumab (anti-PD-1) + lenvatinib (TKI) + TACE | TACE | ORR 46.8% | [116] |
NCT06371157 | 3 | cadonilimab (PD-1/CTLA4 bsAb) + lenvatinib (TKI) + TACE | TACE | ongoing | [117] |
NCT04340193 [CHECKMATE 74W] | 3 | nivolumab (anti-PD-1) +/− ipilimumab (anti-CTLA4) + TACE | TACE | ongoing | [118] |
NCT04559607 | 3 | camrelizumab (anti-PD-1) + apatinib (anti-VEGFR2) + TACE | TACE | ongoing | [119] |
NCT04712643 [TALENTACE] | 3 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) + TACE | TACE | ongoing | [120] |
NCT04268888 [TACE-3] | 2/3 | nivolumab (anti-PD-1) + TACE | TACE | recruiting | [121] |
NCT03572582 [IMMUTACE] | 2 | nivolumab (anti-PD-1) + TACE | TACE | ORR 71.4% | [122] |
NCT06040099 [EMERALD Y90] | 2 | durvalumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) + TARE | TARE | recruiting | [123] |
NCT04541173 | 2 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) + TARE | TARE | terminated due to slow recruitment | [124] |
NCT04522544 | 2 | durvalumab (anti-PD-L1) + tremelimumab (anti-CTLA4) + Y90 SIRT or TACE | Y90 SIRT TACE | recruiting | [125] |
NCT04663035 | 2 | tislelizumab (anti-PD-1) + ablation | ablation | recruiting | [126] |
NCT04150744 | 2 | carrizumab (anti-PD-1) + ablation | ablation | recruiting | [127] |
Vaccines/adoptive cell therapy Palliative–2L HCC | |||||
NCT04251117 | 1/2 | GNOS-PV02 (personalized therapeutic cancer vaccine) + pembrolizumab (anti-PD-1) | none | ORR 30.6% | [128] |
NCT02541370 | 2 | CD133 auto CAR-T | none | ORR 4.8% | [129] |
NCT02395250 NCT03146234 | 1 | GPC3 auto CAR-T | none | ORR 15.0% | [130] |
NCT05155189 | 1 | C-CAR031 (GPC3 armored auto CAR-T) | none | ORR 50.0% | [131] |
NCT06478693 | 1 | MT-303 (GPC3-FcA-LNP CAR) | none | ongoing | [132] |
-- | IND-ready | in vivo GPC3 CAR-macrophage | none | recruiting | [133] |
4.1.2. Tumor Microenvironment Modulation
4.1.3. Wnt/β-Catenin Inhibition
4.1.4. Slowing Angiogenesis
4.1.5. GPC3 Targeting
4.1.6. Utilizing Locoregional Therapy
4.2. Vaccines/Adoptive Cell Therapy
4.3. Novel Timing–Moving Immunotherapy to the Perioperative Setting
5. Summary and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVDoa2100070. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.Y.; Ren, Z.; et al. LBA34 Primary results from the phase III LEAP-002 study: Lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 2022, 33, S1401. [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Qin, S.; Chan, S.L.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; Chen, Z.; Jia, W.; Jin, Y.; Guo, Y.; et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet 2023, 402, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, X.; Chen, L.; Guo, H.; Lv, F.; Jia, K.; Yv, K.; Wang, F.; Li, C.; Qian, J.; et al. Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. BMC Cancer 2010, 10, 529. [Google Scholar] [CrossRef] [PubMed]
- Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H. Bevacizumab. Oncologist 2010, 15, 819–825. [Google Scholar] [CrossRef]
- Galle, P.; Decaens, T.; Kudo, M.; Qin, S.; Fonseca, L.; Sangro, B.; Karachiwala, H.; Park, J.-W.; Gane, E.; Pinter, M.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): First results from CheckMate 9DW. J. Clin. Oncol. 2024, 42, LBA4008. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shklovskaya, E.; Lee, J.H.; Pedersen, B.; Stewart, A.; Ming, Z.; Irvine, M.; Shivalingam, B.; Saw, R.P.M.; Menzies, A.M.; et al. The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma. Nat Commun. 2023, 14, 1516. [Google Scholar] [CrossRef]
- Zhou, X.; Ni, Y.; Liang, X.; Lin, Y.; An, B.; He, X.; Zhao, X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front. Immunol. 2022, 13, 915094. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, J.; Ishino, T.; Togashi, Y. Mechanisms of resistance to immune checkpoint inhibitors. Cancer Sci. 2022, 113, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Berland, L.; Gabr, Z.; Chang, M.; Ilié, M.; Hofman, V.; Rignol, G.; Ghiringhelli, F.; Mograbi, B.; Rashidian, M.; Hofman, P. Further knowledge and developments in resistance mechanisms to immune checkpoint inhibitors. Front. Immunol. 2024, 15, 1384121. [Google Scholar] [CrossRef]
- Manfredi, G.F.; Celsa, C.; John, C.; Jones, C.; Acuti, N.; Scheiner, B.; Fulgenzi, C.A.M.; Korolewicz, J.; Pinter, M.; Gennari, A.; et al. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2023, 10, 1955–1971. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.J.; Lee, Y.H.; Pan, L.; Lai, L.; Chua, C.; Wasser, M.; Lim, T.K.H.; Yeong, J.; Toh, H.C.; Lee, S.Y.; et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019, 68, 916–927. [Google Scholar] [CrossRef]
- Dudek, M.; Pfister, D.; Donakonda, S.; Filpe, P.; Schneider, A.; Laschinger, M.; Hartmann, D.; Hüser, N.; Meiser, P.; Bayerl, F.; et al. Auto-aggressive CXCR6(+) CD8 T cells cause liver immune pathology in NASH. Nature 2021, 592, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef]
- Argentiero, A.; Delvecchio, A.; Fasano, R.; Andriano, A.; Caradonna, I.C.; Memeo, R.; Desantis, V. The Complexity of the Tumor Microenvironment in Hepatocellular Carcinoma and Emerging Therapeutic Developments. J. Clin. Med. 2023, 12, 7469. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Fang, L.; Zhao, J.; Niu, Z.; Chen, H.; Cao, G. Tumor Microenvironment Composition and Related Therapy in Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2023, 10, 2083–2099. [Google Scholar] [CrossRef]
- Casari, M.; Siegl, D.; Deppermann, C.; Schuppan, D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front. Immunol. 2023, 14, 1277808. [Google Scholar] [CrossRef]
- Shen, K.Y.; Zhu, Y.; Xie, S.Z.; Qin, L.X. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: Current status and prospectives. J. Hematol. Oncol. 2024, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, A.; Quan, C.; Pan, Y.; Zhang, H.; Li, Y.; Gao, C.; Lu, H.; Wang, X.; Cao, P.; et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 2022, 13, 4594. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.W.; Tsui, Y.M.; Chan, L.K.; Sze, K.M.; Zhang, X.; Cheu, J.W.; Chiu, Y.T.; Lee, J.M.; Chan, A.C.; Cheung, E.T.; et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat. Commun. 2021, 12, 3684. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, G.V.N.; Chen, C.C.; Chiu, Y.C.; Tsai, H.W.; Chiu, H.C.; Chen, Y.L.; Tsai, P.J.; Kuo, W.T.; Tsao, N.; Lin, Y.S.; et al. Autophagy Drives Galectin-1 Secretion from Tumor-Associated Macrophages Facilitating Hepatocellular Carcinoma Progression. Front. Cell Dev. Biol. 2021, 9, 741820. [Google Scholar] [CrossRef] [PubMed]
- Viitala, M.; Virtakoivu, R.; Tadayon, S.; Rannikko, J.; Jalkanen, S.; Hollmén, M. Immunotherapeutic Blockade of Macrophage Clever-1 Reactivates the CD8(+) T-cell Response against Immunosuppressive Tumors. Clin. Cancer Res. 2019, 25, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.M.; Jing, Y.Y.; Yu, G.F.; Kou, X.R.; Ye, F.; Gao, L.; Li, R.; Zhao, Q.D.; Yang, Y.; Lu, Z.H.; et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2014, 352, 160–168. [Google Scholar] [CrossRef]
- Yeung, O.W.; Lo, C.M.; Ling, C.C.; Qi, X.; Geng, W.; Li, C.X.; Ng, K.T.; Forbes, S.J.; Guan, X.Y.; Poon, R.T.; et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 2015, 62, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Zhang, X.; Wan, X.; Zheng, X.; Wang, H.; Zhao, J.; Wang, H.Q.; Yang, W. The chemokine CCL20 can assist AFP in serological diagnosis of hepatocellular carcinoma. Heliyon 2024, 10, e26774. [Google Scholar] [CrossRef]
- Wei, R.; Zhu, W.W.; Yu, G.Y.; Wang, X.; Gao, C.; Zhou, X.; Lin, Z.F.; Shao, W.Q.; Wang, S.H.; Lu, M.; et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int. J. Cancer 2021, 148, 1233–1244. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, T.; Liang, H.; Deng, M. Myeloid checkpoints for cancer immunotherapy. Chin. J. Cancer Res. 2022, 34, 460–482. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Smyth, M.J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol. Immunol. 2020, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, J.; Han, J.; Zhang, Y.; Gu, A.; Song, F.; Duan, J.; Yin, D.; Wang, L.; Yi, Y. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol. Immunol. 2021, 136, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, X.; Xu, H.; Sha, Z.; Gao, A.; Sun, Y.; Li, J.; Xu, L. Expression of leukocyte immunoglobulin-like receptor B2 in hepatocellular carcinoma and its clinical significance. J. Cancer Res. Ther. 2018, 14, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Schoenberg, M.B.; Li, X.; Han, Y.; Hao, J.; Miksch, R.C.; Koch, D.; Börner, N.; Beger, N.T.; Bucher, J.N.; Schiergens, T.S.; et al. The predictive value of tumor infiltrating leukocytes in Hepatocellular Carcinoma: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2021, 47, 2561–2570. [Google Scholar] [CrossRef]
- Suthen, S.; Lim, C.J.; Nguyen, P.H.D.; Dutertre, C.A.; Lai, H.L.H.; Wasser, M.; Chua, C.; Lim, T.K.H.; Leow, W.Q.; Loh, T.J.; et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 2022, 76, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Gao, P.; Ding, J. Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett. 2023, 555, 216038. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.N.; Zhao, J.W. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J. Hepatocell. Carcinoma 2024, 11, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, L.; Li, W.; Xu, C.; Zhang, J.; Wang, D.; Dou, K.; Zhuang, R.; Jin, B.; Zhang, W.; et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J. Immunother. Cancer 2021, 9, e002787. [Google Scholar] [CrossRef]
- Roy, A.M.; Iyer, R.; Chakraborty, S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep. Med. 2023, 4, 101170. [Google Scholar] [CrossRef]
- Tang, H.; You, T.; Sun, Z.; Bai, C.; Wang, Y. Extracellular Matrix-Based Gene Expression Signature Defines Two Prognostic Subtypes of Hepatocellular Carcinoma with Different Immune Microenvironment Characteristics. Front. Mol. Biosci. 2022, 9, 839806. [Google Scholar] [CrossRef] [PubMed]
- Kesh, K.; Gupta, V.K.; Durden, B.; Garrido, V.; Mateo-Victoriano, B.; Lavania, S.P.; Banerjee, S. Therapy Resistance, Cancer Stem Cells and ECM in Cancer: The Matrix Reloaded. Cancers 2020, 12, 3067. [Google Scholar] [CrossRef]
- Bao, M.H.; Wong, C.C. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021, 10, 1715. [Google Scholar] [CrossRef]
- Gao, H.; Hao, Y.; Zhou, X.; Li, H.; Liu, F.; Zhu, H.; Song, X.; Niu, Z.; Ni, Q.; Chen, M.S.; et al. Prognostic value of glucose transporter 3 expression in hepatocellular carcinoma. Oncol. Lett. 2020, 19, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.K.; Tse, A.P.; Xu, I.M.; Di Cui, J.; Lai, R.K.; Li, L.L.; Koh, H.Y.; Tsang, F.H.; Wei, L.L.; Wong, C.M.; et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 2017, 8, 517. [Google Scholar] [CrossRef]
- Yarchoan, M.; Powderly, J.D.; Bastos, B.R.; Karasic, T.B.; Crysler, O.V.; Munster, P.N.; McKean, M.A.; Emens, L.A.; Saenger, Y.M.; Ged, Y.; et al. First-in-human Phase I Trial of TPST-1120, an Inhibitor of PPARα, as Monotherapy or in Combination with Nivolumab, in Patients with Advanced Solid Tumors. Cancer Res. Commun. 2024, 4, 1100–1110. [Google Scholar] [CrossRef]
- Therapeutics, T. Corporate Presentation. Available online: https://ir.tempesttx.com/static-files/a856a73e-9832-4eb9-91bf-340ee77ecd3a (accessed on 19 September 2024).
- Xiong, Z.; Chan, S.L.; Zhou, J.; Vong, J.S.L.; Kwong, T.T.; Zeng, X.; Wu, H.; Cao, J.; Tu, Y.; Feng, Y.; et al. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut 2023, 72, 1758–1773. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.; Klempner, S.J.; Ali, S.M.; Madison, R.; Ross, J.S.; Severson, E.A.; Fabrizio, D.; Goodman, A.; Kurzrock, R.; Suh, J.; et al. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget 2019, 10, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021, 21, 298–312. [Google Scholar] [CrossRef]
- Dong, L.Q.; Peng, L.H.; Ma, L.J.; Liu, D.B.; Zhang, S.; Luo, S.Z.; Rao, J.H.; Zhu, H.W.; Yang, S.X.; Xi, S.J.; et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. J. Hepatol. 2020, 72, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Bassaganyas, L.; Pinyol, R.; Esteban-Fabró, R.; Torrens, L.; Torrecilla, S.; Willoughby, C.E.; Franch-Expósito, S.; Vila-Casadesús, M.; Salaverria, I.; Montal, R.; et al. Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clin. Cancer Res. 2020, 26, 6350–6361. [Google Scholar] [CrossRef] [PubMed]
- Tauber, C.; Schultheiss, M.; Luca, R.; Buettner, N.; Llewellyn-Lacey, S.; Emmerich, F.; Zehe, S.; Price, D.A.; Neumann-Haefelin, C.; Schmitt-Graeff, A.; et al. Inefficient induction of circulating TAA-specific CD8+ T-cell responses in hepatocellular carcinoma. Oncotarget 2019, 10, 5194–5206. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, L.; Zhong, Y.; Zhou, K.; Hou, Y.; Wang, Z.; Zhang, Z.; Xie, J.; Wang, C.; Chen, D.; et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 2021, 184, 404–421.e416. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Zhao, X.; Xie, X.Z.; Zhao, J.G.; Deng, T.; Chen, Z.Y.; Chen, H.B.; Tong, Y.F.; Yang, Z.; et al. A positive feedback loop between Periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation. J. Exp. Clin. Cancer Res. 2021, 40, 218. [Google Scholar] [CrossRef] [PubMed]
- Muliawan, G.K.; Lee, T.K. The roles of cancer stem cell-derived secretory factors in shaping the immunosuppressive tumor microenvironment in hepatocellular carcinoma. Front. Immunol. 2024, 15, 1400112. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Long, X.; Zhang, L.; Ye, Y.; Guo, J.; Liu, P.; Zhang, R.; Ning, J.; Yu, W.; Wei, F.; et al. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. OncoImmunology 2018, 7, e1440166. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhao, Z.; Song, J.; Lan, X.; Lu, S.; Chen, M.; Wang, Z.; Chen, W.; Fan, X.; Wu, F.; et al. Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Exp. Cell Res. 2017, 351, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cui, T.; Wei, F.; Zhou, Z.; Sun, Y.; Gao, C.; Xu, X.; Zhang, H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: Pathogenic role and therapeutic target. Front. Oncol. 2024, 14, 1367364. [Google Scholar] [CrossRef] [PubMed]
- Pinyol, R.; Sia, D.; Llovet, J.M. Immune Exclusion-Wnt/CTNNB1 Class Predicts Resistance to Immunotherapies in HCC. Clin. Cancer Res. 2019, 25, 2021–2023. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Galarreta, M.; Bresnahan, E.; Molina-Sánchez, P.; Lindblad, K.E.; Maier, B.; Sia, D.; Puigvehi, M.; Miguela, V.; Casanova-Acebes, M.; Dhainaut, M.; et al. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov. 2019, 9, 1124–1141. [Google Scholar] [CrossRef]
- Pandit, H.; Li, Y.; Li, X.; Zhang, W.; Li, S.; Martin, R.C.G. Enrichment of cancer stem cells via β-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer 2018, 18, 783. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Chang, Y.F.; Yen, C.J.; Xu, Y.W.; Dong, M.; Tong, Y.Z. Combination of GT90001 and nivolumab in patients with advanced hepatocellular carcinoma: A multicenter, single-arm, phase 1b/2 study. BMC Med. 2023, 21, 395. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hernandez, M.O.; Zhao, Y.; Mehta, M.; Tran, B.; Kelly, M.; Rae, Z.; Hernandez, J.M.; Davis, J.L.; Martin, S.P.; et al. Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell 2019, 36, 418–430.e416. [Google Scholar] [CrossRef] [PubMed]
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-angiogenic agents—Overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef]
- Kim, R.D.; Sarker, D.; Meyer, T.; Yau, T.; Macarulla, T.; Park, J.W.; Choo, S.P.; Hollebecque, A.; Sung, M.W.; Lim, H.Y.; et al. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov. 2019, 9, 1696–1707. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhang, T.; Xia, L. FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers 2021, 13, 1360. [Google Scholar] [CrossRef] [PubMed]
- Gauglhofer, C.; Paur, J.; Schrottmaier, W.C.; Wingelhofer, B.; Huber, D.; Naegelen, I.; Pirker, C.; Mohr, T.; Heinzle, C.; Holzmann, K.; et al. Fibroblast growth factor receptor 4: A putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis 2014, 35, 2331–2338. [Google Scholar] [CrossRef]
- Kang, H.J.; Haq, F.; Sung, C.O.; Choi, J.; Hong, S.M.; Eo, S.H.; Jeong, H.J.; Shin, J.; Shim, J.H.; Lee, H.C.; et al. Characterization of Hepatocellular Carcinoma Patients with FGF19 Amplification Assessed by Fluorescence in situ Hybridization: A Large Cohort Study. Liver Cancer 2019, 8, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Devan, A.R.; Nair, B.; Pradeep, G.K.; Alexander, R.; Vinod, B.S.; Nath, L.R.; Calina, D.; Sharifi-Rad, J. The role of glypican-3 in hepatocellular carcinoma: Insights into diagnosis and therapeutic potential. Eur. J. Med. Res. 2024, 29, 490. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, X.; Lei, Y.; Wang, G.; Liu, M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 824208. [Google Scholar] [CrossRef]
- Li, D.; Kim, S.Y.; Kim, H.K.; Sharma, S.; Shin, S.; Lee, J.; Im, S.-A.; Chung, L.; Li, Y.; Xiao, P.; et al. 744 Phase 1b/2, multicenter dose escalation and expansion study of muzastotug (ADG126, a masked anti-CTLA-4 SAFEbody®) in combination with pembrolizumab in advanced/metastatic MSS CRC. J. ImmunoTherapy Cancer 2024, 12, A847. [Google Scholar] [CrossRef]
- Roche, H.-L. A Study Evaluating the Efficacy and Safety of Multiple Immunotherapy-Based Treatment Combinations in Patients with Advanced Liver Cancers (Morpheus-Liver). Available online: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2020-07043 (accessed on 19 September 2024).
- Bermejo, I.M.; de Miguel, M.J.; de Velasco, G.; Garralda, E.; Martin-Liberal, J.; Joerger, M.; Alonso, G.; Goebeler, M.-E.; Schuler, M.H.; König, D.; et al. Effects of neutralization of tumor-derived immunosuppressant GDF-15 on anti-PD-1 activity in anti-PD-(L)1 relapsed/refractory non-squamous NSCLC, urothelial, and hepatocellular cancer. J. Clin. Oncol. 2024, 42, 2513. [Google Scholar] [CrossRef]
- Ling, T.; Zhang, J.; Ding, F.; Ma, L. Role of growth differentiation factor 15 in cancer cachexia (Review). Oncol. Lett. 2023, 26, 462. [Google Scholar] [CrossRef]
- Groarke, J.D.; Crawford, J.; Collins, S.M.; Lubaczewski, S.; Roeland, E.J.; Naito, T.; Hendifar, A.E.; Fallon, M.; Takayama, K.; Asmis, T.; et al. Ponsegromab for the Treatment of Cancer Cachexia. N. Engl. J. Med. 2024, 391, 2291–2303. [Google Scholar] [CrossRef] [PubMed]
- University Health Network Toronto. Durvalumab and Tremelimumab in Resectable HCC (NEOTOMA). Available online: https://clinicaltrials.gov/study/NCT05440864 (accessed on 8 December 2024).
- D’Alessio, A.; Pai, M.; Spalding, D.; Goldin, R.D.; Scheiner, B.; Korolewicz, J.; Fulgenzi, C.A.M.; Ward, C.; Yip, V.; Slater, S.; et al. Neoadjuvant immunotherapy with ipilimumab plus nivolumab and radiologically and pathologically quantifiable responses through modulation of the tumour microenvironment in resectable hepatocellular carcinoma. J. Clin. Oncol. 2023, 41, 4129. [Google Scholar] [CrossRef]
- Hoffmann-La Roche. A Study Evaluating the Efficacy and Safety of Neoadjuvant Immunotherapy Combinations in Patients with Surgically Resectable Hepatocellular Carcinoma. Available online: https://clinicaltrials.gov/study/NCT05908786?term=NCT05908786&rank=1 (accessed on 8 December 2024).
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. Feasibility and Efficacy of Perioperative Nivolumab with or Without Relatlimab for Patients with Potentially Resectable Hepatocellular Carcinoma (HCC). Available online: https://clinicaltrials.gov/study/NCT04658147?term=NCT04658147&rank=1 (accessed on 8 December 2024).
- Finn, R.; Ryoo, B.-Y.; Hsu, C.-H.; Li, D.; Burgoyne, A.; Cotter, C.; Badhrinarayanan, S.; Wang, Y.; Yin, A.; Edubilli, T.; et al. Results from the MORPHEUS-liver study: Phase Ib/II randomized evaluation of tiragolumab (tira) in combination with atezolizumab (atezo) and bevacizumab (bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (uHCC). J. Clin. Oncol. 2023, 41, 4010. [Google Scholar] [CrossRef]
- Badhrinarayanan, S.; Cotter, C.; Zhu, H.; Lin, Y.C.; Kudo, M.; Li, D. IMbrave152/SKYSCRAPER-14: A Phase III study of atezolizumab, bevacizumab and tiragolumab in advanced hepatocellular carcinoma. Future Oncol. 2024, 20, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Acoba, J.; Young, R.; Fukaya, E. Phase II study of cobolimab in combination with dostarlimab for the treatment of advanced hepatocellular carcinoma. J. Clin. Oncol. 2023, 41, 580. [Google Scholar] [CrossRef]
- Welling, T.; Beri, N.; Siolas, D.; Cohen, D.; Becker, D.; Zhong, H.; Wu, J.; Oberstein, P.; Karasic, T. A phase II, randomized, controlled trial of nivolumab in combination with BMS-986253 or cabiralizumab in advanced hepatocellular carcinoma (HCC) patients. J. Clin. Oncol. 2020, 38, TPS598. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, Y.; Bai, Y.; Ying, J.; Meng, Z.; Chen, Z.; Gu, S.; Zhang, J.; Liang, J.; Hou, X.; et al. Tebotelimab, a PD-1/LAG-3 bispecific antibody, in patients with advanced hepatocellular carcinoma who had failed prior targeted therapy and/or immunotherapy: An open-label, single-arm, phase 1/2 dose-escalation and expansion study. J. Clin. Oncol. 2023, 41, 578. [Google Scholar] [CrossRef]
- Hsieh, D.; Kainthla, R.; Kline, H.; Siglinsky, E.; Ahn, C.; Zhu, H. 603 Dual TIGIT and PD-1 blockade with domvanalimab plus zimberelimab in hepatocellular carcinoma refractory to anti-PD-1 therapies. J. ImmunoTherapy Cancer 2024, 11, A694. [Google Scholar]
- Zhou, J.; Fan, J.; Gu, F.-M.; Li, T.; Bai, D.-S.; Sun, H.-C.; Wang, Z.; Qiu, S.-J.; Ye, Q.-H.; Shi, Y.-H.; et al. A phase II/III study of camrelizumab plus apatinib as perioperative treatment of resectable hepatocellular carcinoma at intermediate-high risk of recurrence: Primary results of major pathologic response from phase II stage. J. Clin. Oncol. 2023, 41, 4126. [Google Scholar] [CrossRef]
- Kim, T.W. DYNAmic Immune Microenvironment of HCC Treated with AtezolIzumab Plus BevaCizumab (DYNAMIC). Available online: https://clinicaltrials.gov/study/NCT04954339?term=NCT04954339&rank=1 (accessed on 8 December 2024).
- Sun, H.-C.; Zhu, X.-D.; Wang, K.; Yang, N.; Chen, Y.-J.; Kuang, M.; Xue, H.; Yang, Y.-C.; Ye, F.; Shen, S.-L.; et al. Perioperative pembrolizumab and lenvatinib for resectable hepatocellular carcinoma: A single-arm, multi-center, phase II trial (NeoLEAP-HCC). J. Clin. Oncol. 2024, 42, 4120. [Google Scholar] [CrossRef]
- Ming, K.; Xie, W.; Chen, J.; Chen, S.; Wang, Y.; Shen, S.; Peng, S. Neo-adjuvant tislelizumab combined with lenvatinib treatment for resectable, recurrent hepatocellular carcinoma. J. Clin. Oncol. 2024, 42, 517. [Google Scholar] [CrossRef]
- Ho, W.J.; Zhu, Q.; Durham, J.; Popovic, A.; Xavier, S.; Leatherman, J.; Mohan, A.; Mo, G.; Zhang, S.; Gross, N.; et al. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. Nat. Cancer 2021, 2, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Yopp, A.; Kudo, M.; Chen, M.; Cheng, A.L.; Kaseb, A.O.; Lee, H.C.; Qin, S.; Cha, E.; Hack, S.P.; Lian, Q.; et al. LBA39 Updated efficacy and safety data from IMbrave050: Phase III study of adjuvant atezolizumab (atezo) + bevacizumab (bev) vs active surveillance in patients (pts) with resected or ablated high-risk hepatocellular carcinoma (HCC). Ann. Oncol. 2024, 35, S1230. [Google Scholar] [CrossRef]
- Pan, S.; Wang, S.; Tian, J.; Shen, Y.; Yang, L.; Liu, X.; Yu, Y.; Wang, Y.; Qiu, Q.; Luan, J.; et al. Tislelizumab plus tyrosine kinase inhibitor versus active surveillance in patients with ablated high-risk hepatocellular carcinoma: An open-label, parallel controlled, prospective cohort study. J. Clin. Oncol. 2024, 42, e16238. [Google Scholar] [CrossRef]
- Tempest Therapeutics. A Study of TPST-1120 With Atezolizumab Plus Bevacizumab in Patients With Unresectable or Metastatic HCC Not Previously Treated With Systemic Therapy. Available online: https://clinicaltrials.gov/study/NCT06680258?term=NCT06680258&rank=1 (accessed on 8 December 2024).
- Hsiehchen, D.; Beg, M.S.; Kainthla, R.; Lohrey, J.; Kazmi, S.M.; Khosama, L.; Maxwell, M.C.; Kline, H.; Katz, C.; Hassan, A.; et al. The phosphatidylserine targeting antibody bavituximab plus pembrolizumab in unresectable hepatocellular carcinoma: A phase 2 trial. Nat. Commun. 2024, 15, 2178. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Ye, S.; Hu, C.; Shen, L.; Qin, Q.; Bai, Y.; Yang, S.; Bai, C.; Zang, A.; Jiao, S.; et al. Clinical Activity and Safety of Penpulimab (Anti-PD-1) With Anlotinib as First-Line Therapy for Unresectable Hepatocellular Carcinoma: An Open-Label, Multicenter, Phase Ib/II Trial (AK105-203). Front. Oncol. 2021, 11, 684867. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zeng, Z.M.; Zhuo, M.Y.; Luo, J.R.; Zhuang, X.H.; Xu, J.N.; Zeng, J.; Ma, J.; Lin, H.F. Anlotinib Combined with Toripalimab as First-Line Therapy for Unresectable Hepatocellular Carcinoma: A Prospective, Multicenter, Phase II Study. Oncologist 2023, 28, e1239–e1247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhu, S.; Xu, C.; Liu, B.; Shen, J. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Investig. New Drugs 2023, 41, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Han, C.; Ye, S.; Li, J.; Shao, G.; Bai, Y.; Xu, A.; Sun, M.; Wang, W.; Wu, J.; et al. The efficacy and safety of cadonilimab combined with lenvatinib for first-line treatment of advanced hepatocellular carcinoma (COMPASSION-08): A phase Ib/II single-arm clinical trial. Front. Immunol. 2023, 14, 1238667. [Google Scholar] [CrossRef]
- Giannakis, M.; Le, D.; Pishvaian, M.; Weinberg, B.; Papadopoulos, K.; Shen, L.; Gong, J.; Li, J.; Strickler, J.; Zhou, A.; et al. Phase 1 study of WNT pathway Porcupine inhibitor CGX1321 and phase 1b study of CGX1321 + pembrolizumab (pembro) in patients (pts) with advanced gastrointestinal (GI) tumors. J. Clin. Oncol. 2023, 41, 3514. [Google Scholar] [CrossRef]
- Kondo, S.; Kawazoe, A.; Iwasa, S.; Yamamoto, N.; Ueda, Y.; Nagao, S.; Kimura, T.; Suzuki, I.; Hayata, N.; Tamai, T.; et al. A phase 1 study of E7386, a CREB-binding protein (CBP)/β-catenin interaction inhibitor, in patients (pts) with advanced solid tumors including colorectal cancer: Updated dose-escalation part. J. Clin. Oncol. 2023, 41, 106. [Google Scholar] [CrossRef]
- Komatsu, S.I.; Kayukawa, Y.; Miyazaki, Y.; Kaneko, A.; Ikegami, H.; Ishiguro, T.; Nakamura, M.; Frings, W.; Ono, N.; Sakata, K.; et al. Determination of starting dose of the T cell-redirecting bispecific antibody ERY974 targeting glypican-3 in first-in-human clinical trial. Sci. Rep. 2022, 12, 12312. [Google Scholar] [CrossRef]
- Pharma, B. BioCity Announces FDA Clearance of the Investigational New Drug Application for its First-In-Class Antibody Drug Conjugate Targeting Glypican 3. 2024. Available online: https://www.prnewswire.com/news-releases/biocity-announces-fda-clearance-of-the-investigational-new-drug-application-for-its-first-in-class-antibody-drug-conjugate-targeting-glypican-3-302111894.html (accessed on 16 November 2024).
- Madera, L.; Rojas, A.H.; Colombo, R.; Wu, A.; Piscitelli, C.L.; Urosev, D.; Bissessur, A.; Cheng, C.W.; Duan, R.; Kim, C.; et al. Abstract 2658: ZW251, a novel glypican-3-targeting antibody drug conjugate bearing a topoisomerase 1 inhibitor payload. Cancer Res. 2023, 83, 2658. [Google Scholar] [CrossRef]
- Shanghai Zhongshan Hospital. Second-line Treatment with CAdonilimab and LEnvatinib for Unresectable HCC. Available online: https://clinicaltrials.gov/study/NCT06361758?term=NCT06361758&rank=1 (accessed on 8 December 2024).
- Yoshino, T.; Ikeda, M.; Finn, R.S.; Evans, T.R.J.; Weng, L.; Saito, K.; Mody, K.; Tamai, T.; Paoletti, C.; Iwasa, S. Abstract CT523: An open-label, multicenter, phase 1b/2 Study of E7386 (Wnt/β-catenin pathway inhibitor) + pembrolizumab in patients with pretreated advanced solid tumors. Cancer Res. 2022, 82, CT523. [Google Scholar] [CrossRef]
- Khairnar, V.; Li, W.; Rath, A.; Kadouche, J.; Chiche, D.; Teper, D.; Mandelboim, O.; Arulanandam, T. 1074 Reversal of resistance to PD-1 checkpoint blockade in hepatocellular carcinoma by NY-303, a GPC3 NK cell engager, inhibiting Wnt-GPC3-beta catenin signaling. J. ImmunoTherapy Cancer 2024, 11, A1195. [Google Scholar]
- Third Affiliated Hospital. TACE/HAIC Combined with Lenvatinib and Sintilimab in Neoadjuvant Therapy for Intermediate-stage HCC. Available online: https://clinicaltrials.gov/study/NCT05250843?term=NCT05250843&rank=1 (accessed on 8 December 2024).
- Abdelrahim, M.; Esmail, A.; Saharia, A.; Kodali, S.; Victor, D.; Heyne, K.; Ghobrial, R. P-161 Trial in progress: Neoadjuvant combination therapy of lenvatinib plus transcatheter arterial chemoembolization (TACE) for transplant-eligible patients with large hepatocellular carcinoma. Ann. Oncol. 2022, 33, S307. [Google Scholar] [CrossRef]
- Liao, M.; Yang, Y.; Jiang, H.; Huang, J.; Liu, C.; Yang, Y.; Xie, K.; Luo, X.; Zhou, J.; Wang, X.; et al. 966P Borderline resectable hepatocellular carcinoma: Definitions, efficacy and safety results from a prospective phase Ib/II study evaluating camrelizumab plus lenvatinib combined with TACE as preoperative therapy (BRHCC). Ann. Oncol. 2024, 35, S664–S665. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Erinjeri, J.; Qin, S.; Ren, Z.; Chan, S.; Arai, Y.; Heo, J.; Mai, A.; Escobar, J.; et al. EMERALD-1: A phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. J. Clin. Oncol. 2024, 42, LBA432. [Google Scholar] [CrossRef]
- Llovet, J.M.; Finn, R.S.; Ren, Z.; Guo, Y.; Han, G.; Lin, H.; Zheng, J.; Ogasawara, S.; Li, H.; Kim, J.H.; et al. LBA3—Transarterial chemoembolization (TACE) with or without lenvatinib (len) + pembrolizumab (pembro) for intermediate-stage hepatocellular carcinoma (HCC): Phase III LEAP-012 study. Ann. Oncol. 2024, 35, S1229. [Google Scholar] [CrossRef]
- Akeso. A Study of AK104+Lenvatinib in Combination with Transarterial Chemoembolization (TACE) Versus TACE in Participants With Incurable/Non-metastatic Hepatocellular Carcinoma. Available online: https://clinicaltrials.gov/study/NCT06371157?term=NCT06371157&rank=1 (accessed on 8 December 2024).
- Sangro, B.; Harding, J.J.; Johnson, M.; Palmer, D.H.; Edeline, J.; Abou-Alfa, G.K.; Cheng, A.-L.; Decaens, T.; El-Khoueiry, A.B.; Finn, R.S.; et al. A phase III, double-blind, randomized study of nivolumab (NIVO) and ipilimumab (IPI), nivo monotherapy or placebo plus transarterial chemoembolization (TACE) in patients with intermediate-stage hepatocellular carcinoma (HCC). J. Clin. Oncol. 2021, 39, TPS349. [Google Scholar] [CrossRef]
- Zhongda Hospital. TACE Combined with Camrelizumab and Apatinib in Intermediate and Advanced Hepatocellular Carcinoma. Available online: https://clinicaltrials.gov/study/NCT04559607?term=NCT04559607&rank=1 (accessed on 8 December 2024).
- Kudo, M.; Guo, Y.; Hua, Y.; Zhao, M.; Xing, W.; Zhang, Y.; Liu, R.; Ren, Z.; Gu, S.; Lin, Z.; et al. TALENTACE: A phase III, open-label, randomized study of on-demand transarterial chemoembolization combined with atezolizumab + bevacizumab or on-demand transarterial chemoembolization alone in patients with untreated hepatocellular carcinoma. J. Clin. Oncol. 2022, 40, TPS487. [Google Scholar] [CrossRef]
- NHS Foundation Trust. Nivolumab in Combination With TACE/TAE for Patients with Intermediate Stage HCC (TACE-3). Available online: https://clinicaltrials.gov/study/NCT04268888 (accessed on 8 December 2024).
- Saborowski, A.; Waldschmidt, D.; Hinrichs, J.; Ettrich, T.J.; Martens, U.M.; Mekolli, A.; De Toni, E.N.; Berg, T.; Geibler, M.; Hausner, G.; et al. IMMUTACE: A biomarker-orientated phase II, single-arm, open-label AIO study of transarterial chemoembolization (TACE) in combination with nivolumab performed for intermediate-stage hepatocellular carcinoma (HCC.; AIO-HEP-0217)—Updated efficacy results. J. Clin. Oncol. 2022, 40, 4116. [Google Scholar] [CrossRef]
- Iyer, R.; Noonan, A.; Spieler, B.; White, S.; Kulik, L.; Underwood, D.; Heilbron, E.; Nguyen, B.; Wetherill, G.; Salem, R. EMERALD-Y90: A Phase 2 Study to Evaluate Transarterial Radioembolization Followed by Durvalumab and Bevacizumab for the Treatment of Unresectable Hepatocellular Carcinoma Eligible for Embolization. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, e487. [Google Scholar] [CrossRef]
- He, A.R.; Kim, A.Y.; Toskich, B.M.; Mody, K.; Kim, K.; Stein, S.; Goyal, L.; Abrams, T.A.; Brown, D.; Goff, L.W.; et al. A phase II study of atezolizumab (ATEZO) and bevacizumab (Bev) in combination with Y90 TARE in patients (Pts) with hepatocellular carcinoma (HCC). J. Clin. Oncol. 2021, 39, TPS358. [Google Scholar] [CrossRef]
- Institut für Klinische Krebsforschung IKF GmbH at Krankenhaus Nordwest. Durvalumab and Tremelimumab in Combination with Either Y-90 SIRT or DEB-TACE for Intermediate Stage HCC. Available online: https://clinicaltrials.gov/study/NCT04522544?term=NCT04522544&rank=1 (accessed on 8 December 2024).
- Zhao, M. Ablation Plus Tislelizumab Versus Ablation Alone for Intrahepatic Recurrent Early Stage HCC. Available online: https://clinicaltrials.gov/study/NCT04663035?term=NCT04663035&rank=1 (accessed on 8 December 2024).
- Second Affiliated Hospital, School of Medicine, Zhejiang University. RFA Plus Carrizumab vs Carrizumab Alone for HCC. Available online: https://clinicaltrials.gov/study/NCT04150744?term=NCT04150744&rank=1 (accessed on 8 December 2024).
- Yarchoan, M.; Gane, E.J.; Marron, T.U.; Perales-Linares, R.; Yan, J.; Cooch, N.; Shu, D.H.; Fertig, E.J.; Kagohara, L.T.; Bartha, G.; et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: A phase 1/2 trial. Nat. Med. 2024, 30, 1044–1053. [Google Scholar] [CrossRef]
- Dai, H.; Tong, C.; Shi, D.; Chen, M.; Guo, Y.; Chen, D.; Han, X.; Wang, H.; Wang, Y.; Shen, P. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: A single-arm, open-label, phase II trial. Oncoimmunology 2020, 9, 1846926. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Shi, Y.; Kaseb, A.O.; Qi, X.; Zhang, Y.; Chi, J.; Lu, Q.; Gao, H.; Jiang, H.; Wang, H.; et al. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin. Cancer Res. 2020, 26, 3979–3989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, Q.; Cao, W.; Wang, H.; Xu, X.; Huang, J.; Zou, A.; Zhu, J.; Wan, H.; Yao, Y.; et al. Phase I study of C-CAR031, a GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with advanced hepatocellular carcinoma (HCC). J. Clin. Oncol. 2024, 42, 4019. [Google Scholar] [CrossRef]
- Therapeutics, M. A Study of MT-303 in Adults with Advanced or Metastatic GPC3-Expressing Cancers, Including HCC. Available online: https://clinicaltrials.gov/study/NCT06478693?term=NCT06478693&rank=1 (accessed on 8 December 2024).
- Bagashev, A.; Pappa, V.; Bona, A.; Ross, K.; Huang, S.; Slovik, K.; Ohtani, Y.; Pierini, S.; Johnson, R.B.; Khatri, V.; et al. 329 Pre-clinical efficacy of a novel anti-GPC3 in vivo CAR-M for hepatocellular carcinoma. J. ImmunoTherapy Cancer 2024, 12, A381. [Google Scholar] [CrossRef]
- Taylor, M.H.; Patel, M.R.; Powderly, J.D.; Woodard, P.; Chung, L.; Tian, H.; Hong, X.; Hong, K.; Valencia, D.; Huang, T.; et al. Abstract CT040: A first-in-human phase 1 trial of IO-108, an antagonist antibody targeting LILRB2 (ILT4), as monotherapy and in combination with pembrolizumab in adult patients with advanced relapsed or refractory solid tumors: Dose escalation study. Cancer Res. 2023, 83, CT040. [Google Scholar] [CrossRef]
- Xu, J.; Su, Z.; Cheng, X.; Hu, S.; Wang, W.; Zou, T.; Zhou, X.; Song, Z.; Xia, Y.; Gao, Y.; et al. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int. 2022, 22, 115. [Google Scholar] [CrossRef]
- Weng, J.; Liu, S.; Zhou, Q.; Xu, W.; Xu, M.; Gao, D.; Shen, Y.; Yi, Y.; Shi, Y.; Dong, Q.; et al. Intratumoral PPT1-positive macrophages determine immunosuppressive contexture and immunotherapy response in hepatocellular carcinoma. J. Immunother. Cancer 2023, 11, e006655. [Google Scholar] [CrossRef]
- Bestion, E.; Rachid, M.; Tijeras-Raballand, A.; Roth, G.; Decaens, T.; Ansaldi, C.; Mezouar, S.; Raymond, E.; Halfon, P. Ezurpimtrostat, A Palmitoyl-Protein Thioesterase-1 Inhibitor, Combined with PD-1 Inhibition Provides CD8(+) Lymphocyte Repopulation in Hepatocellular Carcinoma. Target. Oncol. 2024, 19, 95–106. [Google Scholar] [CrossRef]
- Harding, J.J.; Awada, A.; Roth, G.; Decaens, T.; Merle, P.; Kotecki, N.; Dreyer, C.; Ansaldi, C.; Rachid, M.; Mezouar, S.; et al. First-In-Human Effects of PPT1 Inhibition Using the Oral Treatment with GNS561/Ezurpimtrostat in Patients with Primary and Secondary Liver Cancers. Liver Cancer 2022, 11, 268–277. [Google Scholar] [CrossRef]
- Gong, J.; Nguyen, V.; Yin, S.; Archer, R.; Hutchins, J.; Freimark, B. Abstract 4978: Targeting of phosphatidylserine by monoclonal antibodies enhances activity of immune checkpoint inhibitors in tumors. Cancer Res. 2014, 74, 4978. [Google Scholar] [CrossRef]
- Whiting, C.; Stock, N.; Messmer, D.; Olafson, T.; Metzger, D.; Enstrom, A.; McDevitt, J.; Spaner, D.; Prasit, P.; Panigrahy, D. Blockade of the PPARα metabolic checkpoint with TPST-1120 suppresses tumor growth and stimulates anti-tumor immunity. In Proceedings of the American Association for Cancer Research Annual Meeting, Atlanta, GA, USA, 29 March–3 April 2019. [Google Scholar]
- Myojin, Y.; McCallen, J.D.; Ma, C.; Bauer, K.C.; Ruf, B.; Benmebarek, M.-R.; Green, B.L.; Wabitsch, S.; McVey, J.C.; Fu, C.; et al. Adenosine A2a receptor inhibition increases the anti-tumor efficacy of anti-PD1 treatment in murine hepatobiliary cancers. JHEP Rep. 2024, 6, 100959. [Google Scholar] [CrossRef] [PubMed]
- Allard, B.; Jacoberger-Foissac, C.; Cousineau, I.; Bareche, Y.; Buisseret, L.; Chrobak, P.; Allard, D.; Pommey, S.; Ah-Pine, F.; Duquenne, S.; et al. Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma. Cell Rep. Med. 2023, 4, 101188. [Google Scholar] [CrossRef]
- Yamada, K.; Hori, Y.; Inoue, S.; Yamamoto, Y.; Iso, K.; Kamiyama, H.; Yamaguchi, A.; Kimura, T.; Uesugi, M.; Ito, J.; et al. E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling. Cancer Res. 2021, 81, 1052–1062. [Google Scholar] [CrossRef]
- Madan, B.; Ke, Z.; Harmston, N.; Ho, S.Y.; Frois, A.O.; Alam, J.; Jeyaraj, D.A.; Pendharkar, V.; Ghosh, K.; Virshup, I.H.; et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 2016, 35, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Do, R.K.; Yaqubie, A.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; Lahn, M.; Benhadji, K.A.; Kelley, R.K.; Abou-Alfa, G.K. Phase 1b study of galunisertib and ramucirumab in patients with advanced hepatocellular carcinoma. Cancer Med. 2021, 10, 3059–3067. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, A.; Zhang, W.; Jiang, Z.; Chen, B.; Zhao, J.; Li, Z.; Wang, L.; Bi, X.; Zhao, H.; et al. Anlotinib in the treatment of advanced hepatocellular carcinoma: An open-label phase II study (ALTER-0802 study). Hepatol. Int. 2021, 15, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Frentzas, S.; Austria Mislang, A.R.; Lemech, C.; Nagrial, A.; Underhill, C.; Wang, W.; Wang, Z.M.; Li, B.; Xia, Y.; Coward, J.I.G. Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2024, 12, e008037. [Google Scholar] [CrossRef]
- Akeso. A Study of AK112 in Patients With Unresectable Hepatocellular Carcinoma (HCC). Available online: https://clinicaltrials.gov/study/NCT05432492?term=NCT05432492&rank=1 (accessed on 8 December 2024).
- Liu, J.; Bai, Y.; Liu, X.; Zhou, B.; Sun, P.; Wang, Y.; Ju, S.; Zhou, C.; Wang, C.; Yao, W.; et al. Enhanced efficacy of combined VEGFR peptide-drug conjugate and anti-PD-1 antibody in treating hepatocellular carcinoma. Sci. Rep. 2024, 14, 21728. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Puig, O.; Daniele, B.; Kudo, M.; Merle, P.; Park, J.W.; Ross, P.; Peron, J.M.; Ebert, O.; Chan, S.; et al. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J. Hepatol. 2016, 65, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, X.; Huang, N.; Lang, Q.L.; He, Q.L.; Jian-Hua, W.; Liang-Peng, G. A novel targeted GPC3/CD3 bispecific antibody for the treatment hepatocellular carcinoma. Cancer Biol. Ther. 2020, 21, 597–603. [Google Scholar] [CrossRef]
- Yong Hong, J.; Ryoo, B.Y.; Chenard-Poirier, M.; Almhanna, K.; Lim, D.W.T.; Samol, J.; Abbadessa, G.; Meng, R.; Masciari, S.; Kefsi, A.; et al. 1046P Phase I/II open-label study on an anti-GPC3 T cell engager, SAR444200, in patients with advanced solid tumors: Preliminary dose escalation results. Ann. Oncol. 2023, 34, S634. [Google Scholar] [CrossRef]
- Du, K.; Li, Y.; Liu, J.; Chen, W.; Wei, Z.; Luo, Y.; Liu, H.; Qi, Y.; Wang, F.; Sui, J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol. Ther. 2021, 29, 1572–1584. [Google Scholar] [CrossRef]
- Arulanandam, A.; Lin, L.; Chang, H.M.; Cerutti, M.; Choblet, S.; Gao, P.; Rath, A.; Bensussan, A.; Kadouche, J.; Teper, D.; et al. Derivation and Preclinical Characterization of CYT-303, a Novel NKp46-NK Cell Engager Targeting GPC3. Cells 2023, 12, 996. [Google Scholar] [CrossRef] [PubMed]
- Conilh, L.; Sadilkova, L.; Viricel, W.; Dumontet, C. Payload diversification: A key step in the development of antibody-drug conjugates. J. Hematol. Oncol. 2023, 16, 3. [Google Scholar] [CrossRef]
- Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; et al. Preclinical Development of MGC018, a Duocarmycin-based Antibody-drug Conjugate Targeting B7-H3 for Solid Cancer. Mol. Cancer Ther. 2020, 19, 2235–2244. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Pan, G.; Ni, J.; Xie, F.; Jiang, B.; Wei, L.; Gao, J.; Zhou, W. Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomedicine 2018, 14, 1949–1961. [Google Scholar] [CrossRef]
- Ma, Z.; He, H.; Sun, F.; Xu, Y.; Huang, X.; Ma, Y.; Zhao, H.; Wang, Y.; Wang, M.; Zhang, J. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J. Cancer Res. Clin. Oncol. 2017, 143, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Urban, D.J.; Nani, R.R.; Zhang, Y.F.; Li, N.; Fu, H.; Shah, H.; Gorka, A.P.; Guha, R.; Chen, L.; et al. Glypican-3-Specific Antibody Drug Conjugates Targeting Hepatocellular Carcinoma. Hepatology 2019, 70, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Xiaochen, M.; Xiangyang, S.; Fubo, X.; Wencheng, J.; Qingliang, W.; Yang, X.; Caixia, L.; Kai, Z. The influence of transarterial chemoembolization on serum levels of soluble programed cell death ligand-1 in advanced hepatocellular carcinoma patients. Asia Pac. J. Clin. Oncol. 2022, 18, e515–e523. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Vogel, A.; Madoff, D.C.; Finn, R.S.; Ogasawara, S.; Ren, Z.; Mody, K.; Li, J.J.; Siegel, A.B.; Dubrovsky, L.; et al. Randomized Phase 3 LEAP-012 Study: Transarterial Chemoembolization with or Without Lenvatinib Plus Pembrolizumab for Intermediate-Stage Hepatocellular Carcinoma Not Amenable to Curative Treatment. Cardiovasc. Interv. Radiol. 2022, 45, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Tojjari, A.; Saeed, A.; Singh, M.; Cavalcante, L.; Sahin, I.H. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines 2023, 11, 1357. [Google Scholar] [CrossRef]
- Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M.; et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: Immunologic evidence and potential for improving overall survival. Clin. Cancer Res. 2012, 18, 3686–3696. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, J.; Zhou, T.; Li, Y.; Cheng, X.; Chen, Z.; Chen, J.; Zheng, W.V. Bispecific GPC3/PD-1 CAR-T cells for the treatment of HCC. Int. J. Oncol. 2023, 62, 53. [Google Scholar] [CrossRef]
- Argueta, S.; Melber, F.K.; Gorgievski, M.; D’Alessandro, J.; Cochran, E.; Grudzien-Nogalska, E.; Abune, Y.; Diwangi, N.; Hofmeister, R.; Ding, J. 1125 Preclinical development of MT-303, a novel LNP-formulated GPC3-specific CAR mRNA, for in vivo programming of monocytes to treat hepatocellular carcinoma. J. ImmunoTherapy Cancer 2024, 12, A1247. [Google Scholar] [CrossRef]
- Llovet, J.M.; Pinyol, R.; Yarchoan, M.; Singal, A.G.; Marron, T.U.; Schwartz, M.; Pikarsky, E.; Kudo, M.; Finn, R.S. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2024, 21, 294–311. [Google Scholar] [CrossRef]
- D’Alessio, A.; Stefanini, B.; Blanter, J.; Adegbite, B.; Crowley, F.; Yip, V.; Slater, S.; Fulgenzi, C.A.M.; Celsa, C.; Manfredi, G.F.; et al. Pathological response following neoadjuvant immune checkpoint inhibitors in patients with hepatocellular carcinoma: A cross-trial, patient-level analysis. Lancet Oncol. 2024, 25, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, M.; Fang, M.; Vong, T.; Zorzi, J.; Griffith, P.; Anders, R.A.; Oshima, K.; Kim, A.K.; Laurin, J.; Lafaro, K.J.; et al. Impact of Neoadjuvant Immunotherapy on Recurrence-Free Survival in Patients with High-Risk Localized HCC. Cancer Res. Commun. 2024, 4, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, M.; Cheng, A.L.; Kaseb, A.O.; Kudo, M.; Lee, H.C.; Yopp, A.C.; Zhou, J.; Wang, L.; Wen, X.; et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1835–1847. [Google Scholar] [CrossRef]
- Singal, A.G.; Yarchoan, M.; Yopp, A.; Sapisochin, G.; Pinato, D.J.; Pillai, A. Neoadjuvant and adjuvant systemic therapy in HCC: Current status and the future. Hepatol. Commun. 2024, 8, e0430. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Deng, Y.; Zhao, C.; Huang, Z.; Zhang, W.; Yang, Y.; Bai, Y.; Tu, J.; Li, B.; Wu, W.; et al. Nomogram for tumour response based on prospective cohorts of hepatocellular carcinoma patients receiving immunotherapy combined with targeted therapy: Development and validation. Ann. Transl. Med. 2023, 11, 199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, H.; Zheng, R.; Sun, Y.; Xie, X.; Lu, M.D.; Liu, B.; Huang, G. Development and Assessment of Nomogram Based on AFP Response for Patients with Unresectable Hepatocellular Carcinoma Treated with Immune Checkpoint Inhibitors. Cancers 2023, 15, 5131. [Google Scholar] [CrossRef]
- Brown, T.J.; Gimotty, P.A.; Mamtani, R.; Karasic, T.B.; Yang, Y.X. Classification and Regression Trees to Predict for Survival for Patients with Hepatocellular Carcinoma Treated with Atezolizumab and Bevacizumab. JCO Clin. Cancer Inf. 2024, 8, e2300220. [Google Scholar] [CrossRef]
- Wu, Y.L.; Cappuyns, S.; Loh, A.; Sun, S.; Lewis, S.; Sung, M.W.; Schwartz, M.; Llovet, J.M.; Cohen, D.J. Impact of underlying liver disease on unresectable hepatocellular carcinoma treated with immune checkpoint inhibitors. BJC Rep. 2024, 2, 8. [Google Scholar] [CrossRef] [PubMed]
NCT # [Acronym] | Year | Study Drug (MOA) | Control | N | mPFS (mo) (Study vs. Control) | mOS (mo) (Study vs. Control) | Ref |
---|---|---|---|---|---|---|---|
NCT03434379 [IMBRAVE 150] | 2020 | atezolizumab (anti-PD-L1) + bevacizumab (anti-VEGF-A) | sorafenib | 501 | 6.8 vs. 4.3 | 19.2 vs. 13.4 | [1] |
NCT03298451 [HIMALAYA] | 2022 | tremelimumab (anti-CTLA4) + durvalumab (anti-PD-L1) [STRIDE] | sorafenib alone | 1171 | 3.8 vs. 4.1 | 16.4 vs. 13.8 | [3] |
NCT03755791 [COSMIC 312] | 2022 | cabozantinib (TKI) + atezolizumab (anti-PD-L1) | sorafenib alone | 837 | 6.8 vs. 4.2 | 16.5 vs. 15.5 | [7] |
NCT03764293 [CARES 310] | 2023 | camrelizumab (anti-PD-1) + rivoceranib (anti-VEGFR2) | sorafenib | 543 | 5.6 vs. 3.7 | 22.1 vs. 15.2 | [8] |
NCT03713593 [LEAP 002] | 2023 | lenvatinib (TKI) + pembrolizumab (anti-PD-1) | lenvatinib + placebo | 794 | 8.2 vs. 8.0 | 21.2 vs. 19.0 | [6] |
NCT04039607 [CHECKMATE 9DW] | 2024 | nivolumab (anti-PD-1) + ipilimumab (anti-CTLA4) | lenvatinib or sorafenib | 668 | 9.1 vs. 9.2 | 23.7 vs. 20.6 | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eghbali, S.; Heumann, T.R. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers 2025, 17, 236. https://doi.org/10.3390/cancers17020236
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers. 2025; 17(2):236. https://doi.org/10.3390/cancers17020236
Chicago/Turabian StyleEghbali, Shabnam, and Thatcher Ross Heumann. 2025. "Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches" Cancers 17, no. 2: 236. https://doi.org/10.3390/cancers17020236
APA StyleEghbali, S., & Heumann, T. R. (2025). Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers, 17(2), 236. https://doi.org/10.3390/cancers17020236