Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities
Simple Summary
Abstract
1. Introduction
2. The Pineal Gland
3. Tumors of the Pineal Gland
4. Pineoblastoma
5. Metastatic Pineoblastoma
6. Current Treatment of Pineoblastoma and Ongoing Clinical Trials
7. Molecular Classification of Pineoblastoma
8. Xenograft Models of Pineoblastoma
9. Subtype-Specific Mouse Models for Pineoblastoma
9.1. RB1-Deficient Pineoblastoma
9.2. DICER1-Deficient Pineoblastoma
9.3. DROSHA-Deficient Pineoblastoma
9.4. cMYC-Driven Pineoblastoma
9.5. Cyclin D1-Driven Pineoblastoma
10. Pineoblastoma Cell of Origin
11. Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncol. 2020, 22, iv1–iv96. [Google Scholar] [CrossRef]
- Greppin, K.; Cioffi, G.; Waite, K.A.; Ostrom, Q.T.; Landi, D.; Takaoka, K.; Kruchko, C.; Barnholtz-Sloan, J.S. Epidemiology of pineoblastoma in the United States, 2000–2017. Neuro-Oncol. Pract 2022, 9, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Shen, N.; Wang, C. Prognosis of pineal region tumors in children: A population-based study. World Neurosurg. 2024, 194, 123479. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.C.; Rutkowski, M.J.; Parsa, A.T. Contemporary management of pineoblastoma. Neurosurg. Clin. N. Am. 2011, 22, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Mynarek, M.; Pizer, B.; Dufour, C.; van Vuurden, D.; Garami, M.; Massimino, M.; Fangusaro, J.; Davidson, T.; Gil-da-Costa, M.J.; Sterba, J.; et al. Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: Analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data. Neuro-Oncol. 2017, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.A.; Venable, G.T.; Orr, B.A.; Choudhri, A.F.; Boop, F.A.; Gajjar, A.J.; Klimo, P., Jr. Pineoblastoma-The Experience at St. Jude Children’s Research Hospital. Neurosurgery 2017, 81, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.; Sughrue, M.E.; Rutkowski, M.J.; Kane, A.J.; Aranda, D.; McClinton, L.; McClinton, L.; Barani, I.J.; Parsa, A.T. The long-term postsurgical prognosis of patients with pineoblastoma. Cancer 2012, 118, 173–179. [Google Scholar] [CrossRef]
- Ganguly, S.; Coon, S.L.; Klein, D.C. Control of melatonin synthesis in the mammalian pineal gland: The critical role of serotonin acetylation. Cell Tissue Res. 2002, 309, 127–137. [Google Scholar] [CrossRef]
- Beersma, D.G.; Gordijn, M.C. Circadian control of the sleep-wake cycle. Physiol. Behav. 2007, 90, 190–195. [Google Scholar] [CrossRef]
- Ocmen, E.; Erdost, H.A.; Duru, L.S.; Akan, P.; Cimrin, D.; Gokmen, A.N. Effect of day/night administration of three different inhalational anesthetics on melatonin levels in rats. Kaohsiung J. Med. Sci. 2016, 32, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Sapède, D.; Cau, E. The pineal gland from development to function. Curr. Top. Dev. Biol. 2013, 106, 171–215. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, M.; Crunfli, F.; Fernandes, G.; Rossi Junior, W.; Esteves, A. Morphologic analysis of mice’s pineal gland. J. Morphol. Sci. 2011, 28, 157–160. [Google Scholar]
- Møller, M.; Baeres, F.M. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002, 309, 139–150. [Google Scholar] [CrossRef]
- Mays, J.C.; Kelly, M.C.; Coon, S.L.; Holtzclaw, L.; Rath, M.F.; Kelley, M.W.; Klein, D.C. Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS ONE 2018, 13, e0205883. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Grodzki, C.; Sugden, D.; Møller, M.; Odom, S.; Gaildrat, P.; Gery, I.; Siraganian, R.P.; Rivera, J.; Klein, D.C. Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor alpha-subunit expression in the mammalian pinealocyte: A neuroendocrine/immune response link? J. Biol. Chem. 2007, 282, 32758–32764. [Google Scholar] [CrossRef] [PubMed]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed]
- Konovalov, A.N.; Pitskhelauri, D.I. Principles of treatment of the pineal region tumors. Surg. Neurol. 2003, 59, 250–268. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, M.; Sultan, I.; Abuirmileh, N.; Jaradat, I.; Qaddoumi, I. Pineal gland tumors: Experience from the SEER database. J. Neuro-Oncol. 2009, 94, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Echevarría, M.E.; Fangusaro, J.; Goldman, S. Pediatric central nervous system germ cell tumors: A review. Oncologist 2008, 13, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Favero, G.; Bonomini, F.; Rezzani, R. Pineal Gland Tumors: A Review. Cancers 2021, 13, 1547. [Google Scholar] [CrossRef] [PubMed]
- Borit, A.; Blackwood, W.; Mair, W.G. The separation of pineocytoma from pineoblastoma. Cancer 1980, 45, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Fèvre-Montange, M.; Hasselblatt, M.; Figarella-Branger, D.; Chauveinc, L.; Champier, J.; Saint-Pierre, G.; Taillandier, L.; Coulon, A.; Paulus, W.; Fauchon, F.; et al. Prognosis and histopathologic features in papillary tumors of the pineal region: A retrospective multicenter study of 31 cases. J. Neuropathol. Exp. Neurol. 2006, 65, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Hasselblatt, M.; Blümcke, I.; Jeibmann, A.; Rickert, C.H.; Jouvet, A.; van de Nes, J.A.; Kuchelmeister, K.; Brunn, A.; Fevre-Montange, M.; Paulus, W. Immunohistochemical profile and chromosomal imbalances in papillary tumours of the pineal region. Neuropathol. Appl. Neurobiol. 2006, 32, 278–283. [Google Scholar] [CrossRef]
- Roncaroli, F.; Scheithauer, B.W. Papillary tumor of the pineal region and spindle cell oncocytoma of the pituitary: New tumor entities in the 2007 WHO Classification. Brain Pathol. 2007, 17, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Nitta, J.; Tada, T.; Kyoshima, K.; Goto, T.; Ishii, K.; Hongo, K.; Kobayashi, S. Atypical pleomorphic astrocytoma in the pineal gland: Case report. Neurosurgery 2001, 49, 1458–1460; discussion 1451–1460. [Google Scholar] [CrossRef]
- Moon, K.S.; Jung, S.; Jung, T.Y.; Kim, I.Y.; Lee, M.C.; Lee, K.H. Primary glioblastoma in the pineal region: A case report and review of the literature. J. Med. Case Rep. 2008, 2, 288. [Google Scholar] [CrossRef]
- Faillot, T.; Sichez, J.P.; Capelle, L.; Kujas, M.; Fohanno, D. Ganglioglioma of the pineal region: Case report and review of the literature. Surg. Neurol. 1998, 49, 104–107; discussion 107–108. [Google Scholar] [CrossRef]
- Lamis, F.C.; de Paiva Neto, M.A.; Stavale, J.N.; Cavalheiro, S. Low-Grade Oligodendroglioma of the Pineal Region: Case Report. J. Neurol. Surg. Rep. 2015, 76, e55–e58. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, H.; Qiao, Q.; Zhang, J.S.; Wang, Y.M.; Fu, X.; Li, Q. Malignant solitary fibrous tumor arising from the pineal region: Case study and literature review. Neuropathology 2010, 30, 294–298. [Google Scholar] [CrossRef]
- Azimi, P.; Mohmmadi, H.R.; Refiezadeh, M. Primary pineal melanoma presenting with leptomeningeal spreading in a 22-year-old woman: A case report. J. Med. Case Rep. 2012, 6, 165. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, V.; Rodríguez, F.; Palma, F.; Zuccaro, G. Pinealoblastomas in children. Childs Nerv. Syst. 2006, 22, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Bouffet, E.; Hawkins, C.E.; Squire, J.A.; Huang, A. Molecular genetics of supratentorial primitive neuroectodermal tumors and pineoblastoma. Neurosurg. Focus 2005, 19, E3. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, C.; von Bueren, A.O.; von Hoff, K.; Gerber, N.U.; Ottensmeier, H.; Deinlein, F.; Benesch, M.; Kwiecien, R.; Pietsch, T.; Warmuth-Metz, M.; et al. Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro-Oncol. 2013, 15, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Villà, S.; Miller, R.C.; Krengli, M.; Abusaris, H.; Baumert, B.G.; Servagi-Vernat, S.; Igdem, S.; Lucas, A.; Boluda, S.; Mirimanoff, R.O. Primary pineal tumors: Outcome and prognostic factors--a study from the Rare Cancer Network (RCN). Clin. Transl. Oncol. 2012, 14, 827–834. [Google Scholar] [CrossRef]
- Dimaras, H.; Heon, E.; Doyle, J.; Strahlendorf, C.; Paton, K.E.; Halliday, W.; Babyn, P.; Gallie, B.L.; Chan, H.S. Multifaceted chemotherapy for trilateral retinoblastoma. Arch. Ophthalmol. 2011, 129, 362–365. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.C.; Kors, W.A.; Moll, A.C.; de Graaf, P.; Castelijns, J.A.; Jansen, R.W.; Gallie, B.; Soliman, S.E.; Shaikh, F.; Dimaras, H.; et al. Screening for Pineal Trilateral Retinoblastoma Revisited: A Meta-analysis. Ophthalmology 2020, 127, 601–607. [Google Scholar] [CrossRef]
- Dai, S.; Dimaras, H.; Heon, E.; Budning, A.; Doyle, J.; Halliday, W.; Drake, J.; Gallie, B.L.; Chan, H.S. Trilateral retinoblastoma with pituitary-hypothalamic dysfunction. Ophthalmic Genet. 2008, 29, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Horinova, V.; Drabova, K.; Noskova, H.; Bajciova, V.; Soukalova, J.; Cerna, L.; Hurkova, V.; Slaby, O.; Sterba, J. DICER1 Syndrome. Klin. Onkol. 2019, 32, 123–127. [Google Scholar] [CrossRef] [PubMed]
- van Engelen, K.; Villani, A.; Wasserman, J.D.; Aronoff, L.; Greer, M.C.; Tijerin Bueno, M.; Gallinger, B.; Kim, R.H.; Grant, R.; Meyn, M.S.; et al. DICER1 syndrome: Approach to testing and management at a large pediatric tertiary care center. Pediatr. Blood Cancer 2018, 65, e26720. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.; Sood, S.; Kupsky, W.J.; Altinok, D.; Miller, S.; Roy, S.; Bhambhani, K. Pineal Parenchymal Tumor of Intermediate Differentiation and DICER1 Syndrome: A Case Report. J. Pediatr. Hematol. Oncol. 2023, 45, e406–e409. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Priest, J.R.; Duchaine, T.F. DICER1: Mutations, microRNAs and mechanisms. Nat. Rev. Cancer 2014, 14, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Snuderl, M.; Kannan, K.; Pfaff, E.; Wang, S.; Stafford, J.M.; Serrano, J.; Heguy, A.; Ray, K.; Faustin, A.; Aminova, O.; et al. Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat. Commun. 2018, 9, 2868. [Google Scholar] [CrossRef]
- Pfaff, E.; Aichmuller, C.; Sill, M.; Stichel, D.; Snuderl, M.; Karajannis, M.A.; Schuhmann, M.U.; Schittenhelm, J.; Hasselblatt, M.; Thomas, C.; et al. Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathol. 2020, 139, 243–257. [Google Scholar] [CrossRef]
- Li, B.K.; Vasiljevic, A.; Dufour, C.; Yao, F.; Ho, B.L.B.; Lu, M.; Hwang, E.I.; Gururangan, S.; Hansford, J.R.; Fouladi, M.; et al. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: A Rare Brain Tumor Consortium registry study. Acta Neuropathol. 2020, 139, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.P.Y.; Li, B.K.; Pfaff, E.; Gudenas, B.; Vasiljevic, A.; Orr, B.A.; Dufour, C.; Snuderl, M.; Karajannis, M.A.; Rosenblum, M.K.; et al. Clinical and molecular heterogeneity of pineal parenchymal tumors: A consensus study. Acta Neuropathol. 2021, 141, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Rushlow, D.E.; Mol, B.M.; Kennett, J.Y.; Yee, S.; Pajovic, S.; Theriault, B.L.; Prigoda-Lee, N.L.; Spencer, C.; Dimaras, H.; Corson, T.W.; et al. Characterisation of retinoblastomas without RB1 mutations: Genomic, gene expression, and clinical studies. Lancet Oncol. 2013, 14, 327–334. [Google Scholar] [CrossRef]
- Malynn, B.A.; de Alboran, I.M.; O’Hagan, R.C.; Bronson, R.; Davidson, L.; DePinho, R.A.; Alt, F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000, 14, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.Y.; Moriarity, B.S.; Gong, W.; Akiyama, R.; Tiwari, A.; Kawakami, H.; Ronning, P.; Reuland, B.; Guenther, K.; Beadnell, T.C.; et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 2014, 512, 82–86. [Google Scholar] [CrossRef]
- Weber, A.; Starke, S.; Bergmann, E.; Christiansen, H. The coamplification pattern of the MYCN amplicon is an invariable attribute of most MYCN-amplified human neuroblastomas. Clin. Cancer Res. 2006, 12, 7316–7321. [Google Scholar] [CrossRef] [PubMed]
- Westermann, F.; Muth, D.; Benner, A.; Bauer, T.; Henrich, K.O.; Oberthuer, A.; Brors, B.; Beissbarth, T.; Vandesompele, J.; Pattyn, F.; et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 2008, 9, R150. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Lillis-Hearne, P.K.; Larson, D.A.; Wara, W.M.; Bollen, A.W.; Prados, M.D. Pineoblastoma in adults. Neurosurgery 1995, 37, 383–390; discussion 390–391. [Google Scholar] [CrossRef]
- Deng, X.; Yang, Z.; Zhang, X.; Lin, D.; Xu, X.; Lu, X.; Chen, S.; Lin, J. Prognosis of Pediatric Patients with Pineoblastoma: A SEER Analysis 1990–2013. World Neurosurg. 2018, 118, e871–e879. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, F.; Deng, F.; Gagen, R. WHO Classification of CNS Tumors; WHO: Geneva, Switzerland, 2023. [CrossRef]
- Fèvre-Montange, M.; Vasiljevic, A.; Frappaz, D.; Champier, J.; Szathmari, A.; Aubriot Lorton, M.H.; Chapon, F.; Coulon, A.; Quintin Roué, I.; Delisle, M.B.; et al. Utility of Ki67 immunostaining in the grading of pineal parenchymal tumours: A multicentre study. Neuropathol. Appl. Neurobiol. 2012, 38, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Tsumanuma, I.; Tanaka, R.; Washiyama, K. Clinicopathological study of pineal parenchymal tumors: Correlation between histopathological features, proliferative potential, and prognosis. Brain Tumor Pathol. 1999, 16, 61–68. [Google Scholar] [CrossRef]
- Jouvet, A.; Saint-Pierre, G.; Fauchon, F.; Privat, K.; Bouffet, E.; Ruchoux, M.M.; Chauveinc, L.; Fèvre-Montange, M. Pineal parenchymal tumors: A correlation of histological features with prognosis in 66 cases. Brain Pathol. 2000, 10, 49–60. [Google Scholar] [CrossRef]
- Fevre-Montange, M.; Vasiljevic, A.; Champier, J.; Jouvet, A. Histopathology of tumors of the pineal region. Future Oncol. 2010, 6, 791–809. [Google Scholar] [CrossRef]
- Zacksenhaus, E.; Egan, S.E. Progression to Metastasis of Solid Cancer. Cancers 2021, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Ju, Y.; Ali, A.; Chung, P.E.D.; Skowron, P.; Wang, D.Y.; Shrestha, M.; Li, H.; Liu, J.C.; Vorobieva, I.; et al. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat. Commun. 2023, 14, 4313. [Google Scholar] [CrossRef]
- Lee, J.Y.; Wakabayashi, T.; Yoshida, J. Management and survival of pineoblastoma: An analysis of 34 adults from the brain tumor registry of Japan. Neurol. Med. Chir. 2005, 45, 132–141; discussion 141–142. [Google Scholar] [CrossRef] [PubMed]
- Horiba, A.; Hayashi, M.; Tamura, N.; Chiba, K.; Aihara, Y.; Kawamata, T. Gamma Knife treatment of malignant infantile brain tumors-Case report. J. Radiosurg. SBRT 2018, 5, 249–253. [Google Scholar] [PubMed]
- Garzia, L.; Kijima, N.; Morrissy, A.S.; De Antonellis, P.; Guerreiro-Stucklin, A.; Holgado, B.L.; Wu, X.; Wang, X.; Parsons, M.; Zayne, K.; et al. A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell 2018, 172, 1050–1062.e14. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Q.; Lu, Z.; Wang, L.; Ding, L.; Xia, L.; Zhang, H.; Wang, M.; Chen, Y.; Li, G. Role of the nervous system in cancers: A review. Cell Death Discov. 2021, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Magnon, C.; Hondermarck, H. The neural addiction of cancer. Nat. Rev. Cancer 2023, 23, 317–334. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Korber, C.; Kardorff, M.; Ratliff, M.; Xie, R.; et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Venkataramani, V.; Yang, Y.; Schubert, M.C.; Reyhan, E.; Tetzlaff, S.K.; Wissmann, N.; Botz, M.; Soyka, S.J.; Beretta, C.A.; Pramatarov, R.L.; et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 2022, 185, 2899–2917.e31. [Google Scholar] [CrossRef] [PubMed]
- Padmanaban, V.; Keller, I.; Seltzer, E.S.; Ostendorf, B.N.; Kerner, Z.; Tavazoie, S.F. Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis. Nature 2024, 633, 207–215. [Google Scholar] [CrossRef]
- Liu, A.P.Y.; Li, B.K.; Vasiljevic, A.; Dewan, M.C.; Tamrazi, B.; Ertl-Wagner, B.; Hansford, J.R.; Pfaff, E.; Mynarek, M.; Ng, H.K.; et al. SNO-EANO-EURACAN consensus on management of pineal parenchymal tumors. Neuro-Oncol. 2024, 26, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Afif, A.; M’Baye, M.; Mertens, P. Anatomy of the pineal region applied to its surgical approach. Neurochirurgie 2015, 61, 70–76. [Google Scholar] [CrossRef]
- Major, N.; Patel, N.A.; Bennett, J.; Novakovic, E.; Poloni, D.; Abraham, M.; Brown, N.J.; Gendreau, J.L.; Sahyouni, R.; Loya, J. The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J. Pers. Med. 2022, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Lourenco, C.; Cruickshank, J.; Palomero, L.; van Leeuwen, J.E.; Tong, A.H.Y.; Chan, K.; El Ghamrasni, S.; Pujana, M.A.; Cescon, D.W.; et al. Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality. Cancer Res. 2023, 83, 4015–4029. [Google Scholar] [CrossRef]
- Liu, J.C.; Granieri, L.; Shrestha, M.; Wang, D.Y.; Vorobieva, I.; Rubie, E.A.; Jones, R.; Ju, Y.; Pellecchia, G.; Jiang, Z.; et al. Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Rep. 2018, 23, 112–126. [Google Scholar] [CrossRef]
- Knudsen, E.S.; Zacksenhaus, E. The vulnerability of RB loss in breast cancer: Targeting a void in cell cycle control. Oncotarget 2018, 9, 30940–30941. [Google Scholar] [CrossRef] [PubMed]
- Brabetz, S.; Leary, S.E.S.; Gröbner, S.N.; Nakamoto, M.W.; Şeker-Cin, H.; Girard, E.J.; Cole, B.; Strand, A.D.; Bloom, K.L.; Hovestadt, V.; et al. A biobank of patient-derived pediatric brain tumor models. Nat. Med. 2018, 24, 1752–1761. [Google Scholar] [CrossRef]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA methylation-based classification of central nervous system tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016, 164, 1060–1072. [Google Scholar] [CrossRef]
- de Jong, M.C.; Kors, W.A.; de Graaf, P.; Castelijns, J.A.; Kivelä, T.; Moll, A.C. Trilateral retinoblastoma: A systematic review and meta-analysis. Lancet Oncol. 2014, 15, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- de Kock, L.; Sabbaghian, N.; Druker, H.; Weber, E.; Hamel, N.; Miller, S.; Choong, C.S.; Gottardo, N.G.; Kees, U.R.; Rednam, S.P.; et al. Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol. 2014, 128, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, I.A.; Stewart, D.R.; Schultz, K.A.P.; Field, A.P.; Hill, D.A.; Dehner, L.P. DICER1 tumor predisposition syndrome: An evolving story initiated with the pleuropulmonary blastoma. Mod. Pathol. 2022, 35, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Gupta, A.; Krawczyk, J.; Gupta, S. The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat. Res. Commun. 2022, 33, 100647. [Google Scholar] [CrossRef] [PubMed]
- de Kock, L.; Rivera, B.; Foulkes, W.D. Pineoblastoma is uniquely tolerant of mutually exclusive loss of DICER1, DROSHA or DGCR8. Acta Neuropathol. 2020, 139, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.J.; Lin, Y.C.; Chen, J.; Kuo, H.H.; Chen, Y.Y.; Diccianni, M.B.; London, W.B.; Chang, C.H.; Yu, A.L. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010, 70, 7841–7850. [Google Scholar] [CrossRef]
- Macias, S.; Plass, M.; Stajuda, A.; Michlewski, G.; Eyras, E.; Caceres, J.F. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat. Struct. Mol. Biol. 2012, 19, 760–766. [Google Scholar] [CrossRef]
- Corson, T.W.; Gallie, B.L. One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 2007, 46, 617–634. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Xi, Y.; Gao, M.; Tran, M.; Aziz, K.E.; Qin, J.; Li, W.; Chen, J. FOXR2 Interacts with MYC to Promote Its Transcriptional Activities and Tumorigenesis. Cell Rep. 2016, 16, 487–497. [Google Scholar] [CrossRef]
- Poh, B.; Koso, H.; Momota, H.; Komori, T.; Suzuki, Y.; Yoshida, N.; Ino, Y.; Todo, T.; Watanabe, S. Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background. Neuro-Oncol. 2019, 21, 993–1004. [Google Scholar] [CrossRef]
- Eberhart, C.G. A fox with many faces: FOXR2 and embryonal brain tumors. Neuro-Oncol. 2019, 21, 963–964. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Hoffner, F.; van Rijn, S.; Toprak, U.H.; Mauermann, M.; Rosemann, F.; Heit-Mondrzyk, A.; Hubner, J.M.; Camgoz, A.; Hartlieb, S.; Pfister, S.M.; et al. FOXR2 Stabilizes MYCN Protein and Identifies Non-MYCN-Amplified Neuroblastoma Patients with Unfavorable Outcome. J. Clin. Oncol. 2021, 39, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Canadian Cancer Society. Radiation Therapy for Childhood Brain & Spinal Cord Tumours. Available online: https://cancer.ca/en/cancer-information/cancer-types/brain-and-spinal-cord-childhood/treatment/radiation-therapy (accessed on 16 February 2025).
- Morrissy, A.S.; Garzia, L.; Shih, D.J.; Zuyderduyn, S.; Huang, X.; Skowron, P.; Remke, M.; Cavalli, F.M.; Ramaswamy, V.; Lindsay, P.E.; et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 2016, 529, 351–357. [Google Scholar] [CrossRef]
- Jang, A.; Kendi, A.T.; Johnson, G.B.; Halfdanarson, T.R.; Sartor, O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int. J. Mol. Sci. 2023, 24, 11626. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Gaikwad, U.; Krishnan, G.; Rajendran, A.; Patil, S.; Subramaniam, P.; Krishna, U.; Wakde, M.G.; Chilukuri, S.; Jalali, R. Successful Implementation of Image-Guided Pencil-Beam Scanning Proton Therapy in Medulloblastomas. Diagnostics 2023, 13, 3378. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.; Shim, J.K.; Kim, D.S.; Lee, J.H.; Choi, J.; Park, J.; Shin, K.J.; Kim, S.H.; Kim, P.; Huh, Y.M.; et al. Isolation and characterization of tumorspheres from a recurrent pineoblastoma patient: Feasibility of a patient-derived xenograft. Int. J. Oncol. 2016, 49, 569–578. [Google Scholar] [CrossRef]
- Chung, P.E.D.; Gendoo, D.M.A.; Ghanbari-Azarnier, R.; Liu, J.C.; Jiang, Z.; Tsui, J.; Wang, D.Y.; Xiao, X.; Li, B.; Dubuc, A.; et al. Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nat. Commun. 2020, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Fraire, C.R.; Desai, K.; Obalapuram, U.A.; Mendyka, L.K.; Rajaram, V.; Sebastian, T.; Wang, Y.; Onel, K.; Lee, J.; Skapek, S.X.; et al. An imbalance between proliferation and differentiation underlies the development of 1 microRNA-defective pineoblastoma. bioRxiv 2024. [Google Scholar] [CrossRef]
- Son, J.H.; Chung, J.H.; Huh, S.O.; Park, D.H.; Peng, C.; Rosenblum, M.G.; Chung, Y.I.; Joh, T.H. Immortalization of neuroendocrine pinealocytes from transgenic mice by targeted tumorigenesis using the tryptophan hydroxylase promoter. Brain Res. Mol. Brain Res. 1996, 37, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.O.; Remington, L.; Albert, D.M.; Mukai, S.; Bronson, R.T.; Jacks, T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat. Genet. 1994, 7, 480–484. [Google Scholar] [CrossRef]
- Vooijs, M.; te Riele, H.; van der Valk, M.; Berns, A. Tumor formation in mice with somatic inactivation of the retinoblastoma gene in interphotoreceptor retinol binding protein-expressing cells. Oncogene 2002, 21, 4635–4645. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.U.; Wall, R.J.; St-Onge, L.; Gruss, P.; Wynshaw-Boris, A.; Garrett, L.; Li, M.; Furth, P.A.; Hennighausen, L. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 1997, 25, 4323–4330. [Google Scholar] [CrossRef] [PubMed]
- Saab, R.; Rodriguez-Galindo, C.; Matmati, K.; Rehg, J.E.; Baumer, S.H.; Khoury, J.D.; Billups, C.; Neale, G.; Helton, K.J.; Skapek, S.X. p18Ink4c and p53 Act as tumor suppressors in cyclin D1-driven primitive neuroectodermal tumor. Cancer Res. 2009, 69, 440–448. [Google Scholar] [CrossRef]
- Bubnic, S.J.; Nagy, A.; Keating, A. Donor hematopoietic cells from transgenic mice that express GFP are immunogenic in immunocompetent recipients. Hematology 2005, 10, 289–295. [Google Scholar] [CrossRef]
- Ansari, A.M.; Ahmed, A.K.; Matsangos, A.E.; Lay, F.; Born, L.J.; Marti, G.; Harmon, J.W.; Sun, Z. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments. Stem Cell Rev. Rep. 2016, 12, 553–559. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; McMillan, E.A.; Balaji, U.; Baek, G.; Lin, W.C.; Mansour, J.; Mollaee, M.; Wagner, K.U.; Koduru, P.; Yopp, A.; et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015, 6, 6744. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Zhang, Z.; Benelli, M.; Karthaus, W.R.; Hoover, E.; Chen, C.C.; Wongvipat, J.; Ku, S.Y.; Gao, D.; Cao, Z.; et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017, 355, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Robinson, T.J.; Liu, J.C.; Shrestha, M.; Voisin, V.; Ju, Y.; Chung, P.E.; Pellecchia, G.; Fell, V.L.; Bae, S.; et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J. Clin. Investig. 2016, 126, 3739–3757. [Google Scholar] [CrossRef] [PubMed]
- Flesken-Nikitin, A.; Hwang, C.I.; Cheng, C.Y.; Michurina, T.V.; Enikolopov, G.; Nikitin, A.Y. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 2013, 495, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Flesken-Nikitin, A.; Corney, D.C.; Wang, W.; Goodrich, D.W.; Roy-Burman, P.; Nikitin, A.Y. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 2006, 66, 7889–7898. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, I.; Huillard, E. In vivo models of brain tumors: Roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell. Mol. Life Sci. 2014, 71, 4007–4026. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Livne-bar, I.; Vanderluit, J.L.; Slack, R.S.; Agochiya, M.; Bremner, R. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 2004, 5, 539–551. [Google Scholar] [CrossRef]
- MacPherson, D.; Sage, J.; Kim, T.; Ho, D.; McLaughlin, M.E.; Jacks, T. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev. 2004, 18, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.; Jada, S.R.; Quah, B.L.; Quah, T.C.; Lai, P.S. High incidence of allelic loss at 16q12.2 region spanning RBL2/p130 gene in retinoblastoma. Cancer Biol. Ther. 2009, 8, 714–717. [Google Scholar] [CrossRef]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- El-Hachem, N.; Gendoo, D.M.A.; Ghoraie, L.S.; Safikhani, Z.; Smirnov, P.; Chung, C.; Deng, K.; Fang, A.; Birkwood, E.; Ho, C.; et al. Integrative Cancer Pharmacogenomics to Infer Large-Scale Drug Taxonomy. Cancer Res. 2017, 77, 3057–3069. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, P.; Safikhani, Z.; El-Hachem, N.; Wang, D.; She, A.; Olsen, C.; Freeman, M.; Selby, H.; Gendoo, D.M.; Grossmann, P.; et al. PharmacoGx: An R package for analysis of large pharmacogenomic datasets. Bioinformatics 2016, 32, 1244–1246. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, A.K.; Chung, S.J.; Brough, R.; Vail, P.; Franco, J.; Lord, C.J.; Knudsen, E.S. Targeting the Vulnerability of RB Tumor Suppressor Loss in Triple-Negative Breast Cancer. Cell Rep. 2018, 22, 1185–1199. [Google Scholar] [CrossRef]
- Gong, X.; Du, J.; Parsons, S.H.; Merzoug, F.F.; Webster, Y.; Iversen, P.W.; Chio, L.C.; Van Horn, R.D.; Lin, X.; Blosser, W.; et al. Aurora A Kinase Inhibition Is Synthetic Lethal with Loss of the RB1 Tumor Suppressor Gene. Cancer Discov. 2019, 9, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Wang, D.Y.; Ben-David, Y.; Zacksenhaus, E. CDK4/6 inhibitors and the pRB-E2F1 axis suppress PVR and PD-L1 expression in triple-negative breast cancer. Oncogenesis 2023, 12, 29. [Google Scholar] [CrossRef]
- Zacksenhaus, E.; Shrestha, M.; Liu, J.C.; Vorobieva, I.; Chung, P.E.D.; Ju, Y.; Nir, U.; Jiang, Z. Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends Cancer 2017, 3, 768–779. [Google Scholar] [CrossRef]
- Robinson, T.J.; Liu, J.C.; Vizeacoumar, F.; Sun, T.; Maclean, N.; Egan, S.E.; Schimmer, A.D.; Datti, A.; Zacksenhaus, E. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS ONE 2013, 8, e78641. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.E.D.; Zacksenhaus, E. Methylation data of mouse Rb-deficient pineoblastoma. Data Brief 2020, 32, 106229. [Google Scholar] [CrossRef]
- Guan, J.; Borenas, M.; Xiong, J.; Lai, W.Y.; Palmer, R.H.; Hallberg, B. IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers 2023, 15, 4252. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.; Kim, J.; Song, C.; Wills, M.; Abdulkadir, S.A. Transgenic mice for Cre-inducible overexpression of the oncogenes c-MYC and Pim-1 in multiple tissues. Genesis 2006, 44, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Eltoum, I.E.; Roh, M.; Wang, J.; Abdulkadir, S.A. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet. 2009, 5, e1000542. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.; Leone, G.; DeGregori, J.; Nevins, J.R. Ras enhances Myc protein stability. Mol. Cell 1999, 3, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.; Nuckolls, F.; Haura, E.; Taya, Y.; Tamai, K.; Nevins, J.R. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000, 14, 2501–2514. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Long, L.M.; Yang, N.; Zhang, Q.Q.; Ji, W.J.; Zhao, J.H.; Qin, Z.H.; Wang, Z.; Chen, G.; Liang, Z.Q. NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol. Sin. 2013, 34, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Liu, K.W.; Wang, J.; Garancher, A.; Tao, R.; Esparza, L.A.; Maier, D.L.; Udaka, Y.T.; Murad, N.; Morrissy, S.; et al. HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma. Cancer Cell 2016, 29, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Edwards, H.; Caldwell, J.T.; Buck, S.A.; Qing, W.Y.; Taub, J.W.; Ge, Y.; Wang, Z. Panobinostat synergistically enhances the cytotoxic effects of cisplatin, doxorubicin or etoposide on high-risk neuroblastoma cells. PLoS ONE 2013, 8, e76662. [Google Scholar] [CrossRef] [PubMed]
- Phi, J.H.; Choi, S.A.; Kwak, P.A.; Lee, J.Y.; Wang, K.C.; Hwang, D.W.; Kim, S.K. Panobinostat, a histone deacetylase inhibitor, suppresses leptomeningeal seeding in a medulloblastoma animal model. Oncotarget 2017, 8, 56747–56757. [Google Scholar] [CrossRef]
- Puissant, A.; Frumm, S.M.; Alexe, G.; Bassil, C.F.; Qi, J.; Chanthery, Y.H.; Nekritz, E.A.; Zeid, R.; Gustafson, W.C.; Greninger, P.; et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013, 3, 308–323. [Google Scholar] [CrossRef]
- Wen, N.; Guo, B.; Zheng, H.; Xu, L.; Liang, H.; Wang, Q.; Wang, D.; Chen, X.; Zhang, S.; Li, Y.; et al. Bromodomain inhibitor jq1 induces cell cycle arrest and apoptosis of glioma stem cells through the VEGF/PI3K/AKT signaling pathway. Int. J. Oncol. 2019, 55, 879–895. [Google Scholar] [CrossRef]
- Bandopadhayay, P.; Bergthold, G.; Nguyen, B.; Schubert, S.; Gholamin, S.; Tang, Y.; Bolin, S.; Schumacher, S.E.; Zeid, R.; Masoud, S.; et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res. 2014, 20, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Chipumuro, E.; Marco, E.; Christensen, C.L.; Kwiatkowski, N.; Zhang, T.; Hatheway, C.M.; Abraham, B.J.; Sharma, B.; Yeung, C.; Altabef, A.; et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014, 159, 1126–1139. [Google Scholar] [CrossRef] [PubMed]
- Pott, S.; Lieb, J.D. What are super-enhancers? Nat. Genet. 2015, 47, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Hazan, I.; Monin, J.; Bouwman, B.A.M.; Crosetto, N.; Aqeilan, R.I. Activation of Oncogenic Super-Enhancers Is Coupled with DNA Repair by RAD51. Cell Rep. 2019, 29, 560–572.e4. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, C.; Resetca, D.; Redel, C.; Lin, P.; MacDonald, A.S.; Ciaccio, R.; Kenney, T.M.G.; Wei, Y.; Andrews, D.W.; Sunnerhagen, M.; et al. MYC protein interactors in gene transcription and cancer. Nat. Rev. Cancer 2021, 21, 579–591. [Google Scholar] [CrossRef]
- Hart, J.R.; Garner, A.L.; Yu, J.; Ito, Y.; Sun, M.; Ueno, L.; Rhee, J.K.; Baksh, M.M.; Stefan, E.; Hartl, M.; et al. Inhibitor of MYC identified in a Krohnke pyridine library. Proc. Natl. Acad. Sci. USA 2014, 111, 12556–12561. [Google Scholar] [CrossRef] [PubMed]
- Castell, A.; Yan, Q.; Fawkner, K.; Hydbring, P.; Zhang, F.; Verschut, V.; Franco, M.; Zakaria, S.M.; Bazzar, W.; Goodwin, J.; et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci. Rep. 2018, 8, 10064. [Google Scholar] [CrossRef]
- Han, H.; Jain, A.D.; Truica, M.I.; Izquierdo-Ferrer, J.; Anker, J.F.; Lysy, B.; Sagar, V.; Luan, Y.; Chalmers, Z.R.; Unno, K.; et al. Small-Molecule MYC Inhibitors Suppress Tumor Growth and Enhance Immunotherapy. Cancer Cell 2019, 36, 483–497.e15. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.G.; Parker, J.B.; Sagar, V.; Truica, M.I.; Soni, P.N.; Han, H.; Schiltz, G.E.; Abdulkadir, S.A.; Chakravarti, D. A MYC inhibitor selectively alters the MYC and MAX cistromes and modulates the epigenomic landscape to regulate target gene expression. Sci. Adv. 2022, 8, eabh3635. [Google Scholar] [CrossRef] [PubMed]
- Bhin, J.; Yemelyanenko, J.; Chao, X.; Klarenbeek, S.; Opdam, M.; Malka, Y.; Hoekman, L.; Kruger, D.; Bleijerveld, O.; Brambillasca, C.S.; et al. MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer. J. Exp. Med. 2023, 220, e20211743. [Google Scholar] [CrossRef] [PubMed]
- Stine, Z.E.; Walton, Z.E.; Altman, B.J.; Hsieh, A.L.; Dang, C.V. MYC, Metabolism, and Cancer. Cancer Discov. 2015, 5, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, T.; Wu, Z.; Zhu, D.; Gu, H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov. 2023, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, S.; Balasubramanian, B.; Thuwajit, C.; Meller, J.; Tohtong, R.; Chutipongtanate, S. Targeting MYC at the intersection between cancer metabolism and oncoimmunology. Front. Immunol. 2024, 15, 1324045. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, H.; Schroer, S.A.; Voisin, V.; Ju, Y.; Pacal, M.; Erdmann, N.; Shi, W.; Chung, P.E.D.; Deng, T.; et al. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J. 2022, 41, e106825. [Google Scholar] [CrossRef] [PubMed]
- Idriss, S.; Hallal, M.; El-Kurdi, A.; Zalzali, H.; El-Rassi, I.; Ehli, E.A.; Davis, C.M.; Chung, P.E.D.; Gendoo, D.M.A.; Zacksenhaus, E.; et al. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res. 2023, 33, 269–282. [Google Scholar] [CrossRef]
- Holland, P.; Knaevelsrud, H.; Soreng, K.; Mathai, B.J.; Lystad, A.H.; Pankiv, S.; Bjorndal, G.T.; Schultz, S.W.; Lobert, V.H.; Chan, R.B.; et al. HS1BP3 negatively regulates autophagy by modulation of phosphatidic acid levels. Nat. Commun. 2016, 7, 13889. [Google Scholar] [CrossRef]
- Sheng, H.; Li, H.; Zeng, H.; Zhang, B.; Lu, Y.; Liu, X.; Xu, Z.; Zhang, J.; Zhang, L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024, 43, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, A.; Saulnier, O.; Chen, C.; Haldipur, P.; Orisme, W.; Delaidelli, A.; Shin, S.; Millman, J.; Bryant, A.; Abeysundara, N.; et al. Early rhombic lip Protogenin(+ve) stem cells in a human-specific neurovascular niche initiate and maintain group 3 medulloblastoma. Cell 2024, 187, 4733–4750.e26. [Google Scholar] [CrossRef] [PubMed]
- Dimaras, H.; Khetan, V.; Halliday, W.; Orlic, M.; Prigoda, N.L.; Piovesan, B.; Marrano, P.; Corson, T.W.; Eagle, R.C., Jr.; Squire, J.A.; et al. Loss of RB1 induces non-proliferative retinoma; increasing genomic instability correlates with progression to retinoblastoma. Hum. Mol. Genet. 2008, 17, 1363–1372. [Google Scholar] [CrossRef]
NCT Number | Study Status | Interventions | Sponsor | Age |
---|---|---|---|---|
NCT01063114 | ACTIVE_NOT_RECRUITING | RAD: proton beam radiation | Massachusetts General Hospital | CHILD, ADULT |
NCT00867178 | COMPLETED | RAD: 3-D conformal radiation Therapy vorinostat and isotretinoin; vincristine; cisplatin; cyclophosphamide; etoposide | National Cancer Institute (NCI) | CHILD |
NCT06193759 | RECRUITING | BIO: Multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) against personalized tumor-specific antigens (TSA) | Children’s National Research Institute | CHILD |
NCT03638167 | ACTIVE_NOT_RECRUITING | BIO: EGFR806-specific chimeric antigen receptor (CAR) T cell | Seattle Children’s Hospital | CHILD, ADULT |
NCT03500991 | ACTIVE_NOT_RECRUITING | BIO: HER2-specific chimeric antigen receptor (CAR) T cell | Seattle Children’s Hospital | CHILD, ADULT |
NCT04185038 | RECRUITING | BIOL: SCRI-CARB7H3(s); B7H3-specific chimeric antigen receptor (CAR) T cell | Seattle Children’s Hospital | CHILD, ADULT |
NCT03382158 | RECRUITING | International PPB/DICER1 Registry | Children’s Hospitals & Clinics of Minnesota | CHILD, ADULT |
NCT05934630 | ACTIVE_NOT_RECRUITING | Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors | Pediatric Brain Tumor Consortium | CHILD, ADULT |
NCT05064306 | AVAILABLE | DRUG: 131I-omburtamab | Memorial Sloan Kettering Cancer Center | CHILD, ADULT |
NCT00602667 | ACTIVE_NOT_RECRUITING | DRUG: Induction Chemotherapy: Low-Risk Therapy: High-Risk Therapy: Intermediate-Risk Therapy | St. Jude Children’s Research Hospital | CHILD |
NCT06357377 | NOT_YET_RECRUITING | DRUG: NEO100 | Neonc Technologies, Inc. | CHILD, ADULT |
NCT02574728 | RECRUITING | DRUG: Sirolimus: Celecoxib: Etoposide: Cyclophosphamide | Emory University | CHILD, ADULT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Allkanjari, M.S.; Chung, P.E.D.; Tran, H.; Ghanbari-Azarnier, R.; Wang, D.-Y.; Lin, D.J.; Min, J.Y.; Ben-David, Y.; Zacksenhaus, E. Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities. Cancers 2025, 17, 720. https://doi.org/10.3390/cancers17050720
Jiang Z, Allkanjari MS, Chung PED, Tran H, Ghanbari-Azarnier R, Wang D-Y, Lin DJ, Min JY, Ben-David Y, Zacksenhaus E. Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities. Cancers. 2025; 17(5):720. https://doi.org/10.3390/cancers17050720
Chicago/Turabian StyleJiang, Zhe, Michelle S. Allkanjari, Philip E. D. Chung, Hanna Tran, Ronak Ghanbari-Azarnier, Dong-Yu Wang, Daniel J. Lin, Jung Yeon Min, Yaacov Ben-David, and Eldad Zacksenhaus. 2025. "Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities" Cancers 17, no. 5: 720. https://doi.org/10.3390/cancers17050720
APA StyleJiang, Z., Allkanjari, M. S., Chung, P. E. D., Tran, H., Ghanbari-Azarnier, R., Wang, D.-Y., Lin, D. J., Min, J. Y., Ben-David, Y., & Zacksenhaus, E. (2025). Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities. Cancers, 17(5), 720. https://doi.org/10.3390/cancers17050720