Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care
Simple Summary
Abstract
1. Introduction
2. Search Strategy and Inclusion Criteria
3. The Expanding Role of AI in Liver Diseases
4. LLMs and MASLD: From Patient Counseling to Histopathological Analysis
5. AI in Histological Evaluation of MASH: From Biopsy Analysis to Digital Pathology
6. AI and Radiological Diagnosis of Steatosis: Advancing Non-Invasive Detection
7. Machine Learning in MASLD: Predictive Modeling and Risk Stratification
8. AI and Drug Development for MASLD
9. Limitations and Ethical Concerns in AI-Driven MASLD Management
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Lee, H.A.; Kim, E.-J.; Kim, H.Y.; Kim, H.C.; Ahn, S.H.; Lee, H.; Kim, S.U. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease. Gut 2023, 73, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global epidemiology of cirrhosis—Aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef]
- Burra, P.; Germani, G.; Adam, R.; Karam, V.; Marzano, A.; Lampertico, P.; Salizzoni, M.; Filipponi, F.; Klempnauer, J.L.; Castaing, D.; et al. Liver transplantation for HBV-related cirrhosis in Europe: An ELTR study on evolution and outcomes. J. Hepatol. 2013, 58, 287–296. [Google Scholar] [CrossRef]
- Belli, L.S.; Perricone, G.; Adam, R.; Cortesi, P.A.; Strazzabosco, M.; Facchetti, R.; Karam, V.; Salizzoni, M.; Andujar, R.L.; Fondevila, C.; et al. Impact of DAAs on liver transplantation: Major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J. Hepatol. 2018, 69, 810–817. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Kalligeros, M.; Vassilopoulos, A.; Vassilopoulos, S.; Victor, D.W.; Mylonakis, E.; Noureddin, M. Prevalence of Steatotic Liver Disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017–2020. Clin. Gastroenterol. Hepatol. 2024, 22, 1330–1332.e4. [Google Scholar] [CrossRef]
- Beam, A.L.; Drazen, J.M.; Kohane, I.S.; Leong, T.-Y.; Manrai, A.K.; Rubin, E.J. Artificial Intelligence in Medicine. N. Engl. J. Med. 2023, 388, 1220–1221. [Google Scholar] [CrossRef]
- DiGiorgio, A.M.; Ehrenfeld, J.M. Artificial Intelligence in Medicine & ChatGPT: De-Tether the Physician. J. Med. Syst. 2023, 47, 32. [Google Scholar] [PubMed]
- Dinani, A.M.; Kowdley, K.V.; Noureddin, M. Application of Artificial Intelligence for Diagnosis and Risk Stratification in NAFLD and NASH: The State of the Art. Hepatology 2021, 74, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Kalapala, R.; Rughwani, H.; Reddy, D.N. Artificial Intelligence in Hepatology- Ready for the Primetime. J. Clin. Exp. Hepatol. 2023, 13, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Kresevic, S.; Pugliese, N.; You, K.; Shung, D.L. Optimizing large language models in digestive disease: Strategies and challenges to improve clinical outcomes. Liver Int. 2024, 44, 2114–2124. [Google Scholar] [CrossRef]
- Komesaroff, P.A.; Felman, E.R. How to make sense of the ethical issues raised by artificial intelligence in medicine. Intern. Med. J. 2023, 53, 1304–1305. [Google Scholar] [CrossRef]
- Nolan, P. Artificial intelligence in medicine—Is too much transparency a good thing? Med. Leg. J. 2023, 91, 193–197. [Google Scholar] [CrossRef]
- Varghese, J.; Chapiro, J. ChatGPT: The transformative influence of generative AI on science and healthcare. J. Hepatol. 2024, 80, 977–980. [Google Scholar] [CrossRef]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- De Chiara, F.; Ferret-Miñana, A.; Ramón-Azcón, J. The synergy between organ-on-a-chip and artificial intelligence for the study of nafld: From basic science to clinical research. Biomedicines 2021, 9, 248. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhang, J.; Zhang, S.; Jiao, J. Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD): A systematic review. Rev. Endocr. Metab. Disord. 2022, 23, 387–400. [Google Scholar] [CrossRef]
- Lu, F.; Meng, Y.; Song, X.; Li, X.; Liu, Z.; Gu, C.; Zheng, X.; Jing, Y.; Cai, W.; Pinyopornpanish, K.; et al. Artificial Intelligence in Liver Diseases: Recent Advances. Adv. Ther. 2024, 41, 967–990. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Hompesch, M.; Petitjean, M.; Serdjebi, C.; Iyer, J.S.; Parwani, A.V.; Tai, D.; Bugianesi, E.; Cusi, K.; Friedman, S.L.; et al. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: Current status and future directions. J. Hepatol. 2024, 80, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.; Polverini, D.; Lombardi, R.; Pennisi, G.; Ravaioli, F.; Armandi, A.; Buzzetti, E.; Dalbeni, A.; Liguori, A.; Mantovani, A.; et al. Evaluation of ChatGPT as a Counselling Tool for Italian-Speaking MASLD Patients: Assessment of Accuracy, Completeness and Comprehensibility. J. Pers. Med. 2024, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.; Wong, V.W.-S.; Schattenberg, J.M.; Romero-Gomez, M.; Sebastiani, G.; Aghemo, A.; Castera, L.; Hassan, C.; Manousou, P.; Miele, L.; et al. Accuracy, Reliability, and Comprehensibility of ChatGPT-Generated Medical Responses for Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2024, 22, 886–889.e5. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Sheng, B.; Tham, Y.C.; Ji, H. Preliminary fatty liver disease grading using general-purpose online large language models: ChatGPT-4 or Bard? J. Hepatol. 2024, 80, e279–e281. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Mu, Z.; Ren, L.; Chen, Y.; Liu, H.; Xu, L.; Wang, Y.; Wang, Y.; Cheng, S.; et al. Letter 2 regarding “Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma”. Clin. Mol. Hepatol. 2024, 30, 113–117. [Google Scholar] [CrossRef]
- Daza, J.; Bezerra, L.S.; Santamaría, L.; Rueda-Esteban, R.; Bantel, H.; Girala, M.; Ebert, M.; Van Bömmel, F.; Geier, A.; Aldana, A.G.; et al. Evaluation of four chatbots in autoimmune liver disease: A comparative analysis. Ann. Hepatol. 2024, 30, 101537. [Google Scholar] [CrossRef]
- Colapietro, F.; Piovani, D.; Pugliese, N.; Aghemo, A.; Ronca, V.; Lleo, A. Is ChatGPT a reliable tool in Autoimmune Hepatitis? Am. J. Gastroenterol. 2024. [CrossRef]
- Yeo, Y.H.; Samaan, J.S.; Ng, W.H.; Ting, P.-S.; Trivedi, H.; Vipani, A.; Ayoub, W.; Yang, J.D.; Liran, O.; Spiegel, B.; et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin. Mol. Hepatol. 2023, 29, 721–732. [Google Scholar] [CrossRef]
- Cao, J.J.; Kwon, D.H.; Ghaziani, T.T.; Kwo, P.; Tse, G.; Kesselman, A.; Kamaya, A.; Tse, J.R. Large language models’ responses to liver cancer surveillance, diagnosis, and management questions: Accuracy, reliability, readability. Abdom. Radiol. 2024, 49, 4286–4294. [Google Scholar] [CrossRef]
- Walker, H.L.; Ghani, S.; Kuemmerli, C.; Nebiker, C.A.; Müller, B.P.; Raptis, D.A.; Staubli, S.M. Reliability of Medical Information Provided by ChatGPT: Assessment Against Clinical Guidelines and Patient Information Quality Instrument. J. Med. Internet Res. 2023, 25, e47479. [Google Scholar] [CrossRef]
- Decharatanachart, P.; Chaiteerakij, R.; Tiyarattanachai, T.; Treeprasertsuk, S. Application of artificial intelligence in chronic liver diseases: A systematic review and meta-analysis. BMC Gastroenterol. 2021, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Reiniš, J.; Petrenko, O.; Simbrunner, B.; Hofer, B.S.; Schepis, F.; Scoppettuolo, M.; Saltini, D.; Indulti, F.; Guasconi, T.; Albillos, A.; et al. Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis. J. Hepatol. 2023, 78, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Ercan, C.; Kordy, K.; Knuuttila, A.; Zhou, X.; Kumar, D.; Koponen, V.; Mesenbrink, P.; Eppenberger-Castori, S.; Amini, P.; Pedrosa, M.C.; et al. A deep-learning-based model for assessment of autoimmune hepatitis from histology: AI(H). Virchows. Arch. 2024, 485, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Xiong, T.; Peng, J.; Xu, L.; Liao, M.; Zhang, Z.; Wu, Z.; Yuan, K.; Zeng, Y. Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Ann. Surg. Oncol. 2020, 27, 2359–2369. [Google Scholar] [CrossRef]
- Saito, A.; Toyoda, H.; Kobayashi, M.; Koiwa, Y.; Fujii, H.; Fujita, K.; Maeda, A.; Kaneoka, Y.; Hazama, S.; Nagano, H.; et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning. Mod. Pathol. 2021, 34, 417–425. [Google Scholar] [CrossRef]
- Ahmed, N.; Kumari, A.; Murty, R.S. FibroScan’s evolution: A critical 20-year review. J. Ultrasound 2024, 1–10. [Google Scholar] [CrossRef]
- Lee, P.; Bubeck, S.; Petro, J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N. Engl. J. Med. 2023, 388, 1233–1239. [Google Scholar] [CrossRef]
- Alqahtani, S.A.; AlAhmed, R.S.; AlOmaim, W.S.; Alghamdi, S.; Al-Hamoudi, W.; Bzeizi, K.I.; Albenmousa, A.; Aghemo, A.; Pugliese, N.; Hassan, C.; et al. Assessment of ChatGPT-generated medical Arabic responses for patients with metabolic dysfunction-associated steatotic liver disease. PLoS ONE 2025, 20, e0317929. [Google Scholar] [CrossRef]
- Takahashi, Y.; Dungubat, E.; Kusano, H.; Fukusato, T. Artificial intelligence and deep learning: New tools for histopathological diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Comput. Struct. Biotechnol. J. 2023, 21, 2495–2501. [Google Scholar] [CrossRef]
- Vanderbeck, S.; Bockhorst, J.; Komorowski, R.; Kleiner, D.E.; Gawrieh, S. Automatic classification of white regions in liver biopsies by supervised machine learning. Hum. Pathol. 2014, 45, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Munsterman, I.D.; van Erp, M.; Weijers, G.; Bronkhorst, C.; de Korte, C.L.; Drenth, J.P.H.; van der Laak, J.A.W.M.; Tjwa, E.T.T.L. A Novel Automatic Digital Algorithm that Accurately Quantifies Steatosis in NAFLD on Histopathological Whole-Slide Images. Cytom. Part B Clin. Cytom. 2019, 96, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Gawrieh, S.; Sethunath, D.; Cummings, O.W.; Kleiner, D.E.; Vuppalanchi, R.; Chalasani, N.; Tuceryan, M. Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD. Ann. Diagn. Pathol. 2020, 47, 151518. [Google Scholar] [CrossRef] [PubMed]
- Ramot, Y.; Zandani, G.; Madar, Z.; Deshmukh, S.; Nyska, A. Utilization of a Deep Learning Algorithm for Microscope-Based Fatty Vacuole Quantification in a Fatty Liver Model in Mice. Toxicol. Pathol. 2020, 48, 702–707. [Google Scholar] [CrossRef]
- Soon, G.; Wee, A. Updates in the quantitative assessment of liver fibrosis for nonalcoholic fatty liver disease: Histological per-spective. Clin. Mol. Hepatol. 2020, 27, 44–57. [Google Scholar] [CrossRef]
- Brunt, E.M.; Clouston, A.D.; Goodman, Z.; Guy, C.; Kleiner, D.E.; Lackner, C.; Tiniakos, D.G.; Wee, A.; Yeh, M.; Leow, W.Q.; et al. Complexity of ballooned hepatocyte feature recognition: Defining a training atlas for artificial intelligence-based imaging in NAFLD. J. Hepatol. 2022, 76, 1030–1041. [Google Scholar] [CrossRef]
- Naoumov, N.V.; Brees, D.; Loeffler, J.; Chng, E.; Ren, Y.; Lopez, P.; Tai, D.; Lamle, S.; Sanyal, A.J. Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J. Hepatol. 2022, 77, 1399–1409. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, G.L.-H.; He, F.-P.; Sun, J.; Chan, A.W.-H.; Yang, J.; Shu, S.S.-T.; Liang, X.; Tse, Y.K.; Fan, X.-T.; et al. Quantifying and monitoring fibrosis in non-alcoholic fatty liver disease using dual-photon microscopy. Gut 2020, 69, 1116–1126. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Tai, D.C.; Wang, S.; Cheng, C.L.; Peng, Q.; Yan, J.; Chen, Y.; Sun, J.; Liang, X.; et al. qFibrosis: A fully-quantitative innovative method incorporating histological features to facilitate accurate fibrosis scoring in animal model and chronic hepatitis B patients. J. Hepatol. 2014, 61, 260–269. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, Y. Artificial Intelligence in NAFLD: Will Liver Biopsy Still Be Necessary in the Future? Healthcare 2023, 11, 117. [Google Scholar] [CrossRef]
- Gabeta, S.; Rigopoulou, E.I.; Dalekos, G.N. Artificial intelligence supported ultrasonography: Can it be the solution for early and accurate diagnosis of steatotic liver disease? Eur. J. Intern. Med. 2024, 125, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Santoro, S.; Khalil, M.; Abdallah, H.; Farella, I.; Noto, A.; Dipalo, G.M.; Villani, P.; Bonfrate, L.; Di Ciaula, A.; Portincasa, P. Early and accurate diagnosis of steatotic liver by artificial intelligence (AI)-supported ultrasonography. Eur. J. Intern. Med. 2024, 125, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Starekova, J.; Hernando, D.; Pickhardt, P.J.; Reeder, S.B. Quantification of liver fat content with CT and MRI: State of the art. Radiology 2021, 301, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, W.; Wang, P.; Huang, Y.; Li, J.; Li, P. Deep Learning With Ultrasound Images Enhance the Diagnosis of Nonalcoholic Fatty Liver. Ultrasound Med. Biol. 2024, 50, 1724–1730. [Google Scholar] [CrossRef]
- Cao, W.; An, X.; Cong, L.; Lyu, C.; Zhou, Q.; Guo, R. Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease. J. Ultrasound Med. 2020, 39, 51–59. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, M.-G.; Oh, S.; Kim, Y.; Jung, G.; Lee, H.-J.; Kim, S.-Y.; Bae, H.-M. Application of Quantitative Ultrasonography and Artificial Intelligence for Assessing Severity of Fatty Liver: A Pilot Study. Diagnostics 2024, 14, 1237. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Park, S.H.; Hahn, L.; Lee, S.-G.; Bae, K.T.; Yu, E.S. Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: Implications for the investigation of the natural history of incidental steatosis. Eur. Radiol. 2012, 22, 1075–1082. [Google Scholar] [CrossRef]
- Reeder, S.B.; Hu, H.H.; Sirlin, C.B. Proton density fat-fraction: A standardized mr-based biomarker of tissue fat concentration. J. Magn. Reson. Imaging 2012, 36, 1011–1014. [Google Scholar] [CrossRef]
- Kim, B.; Kim, S.Y.; Kim, K.W.; Jang, H.Y.; Jang, J.K.; Song, G.W.; Lee, S.G. MRI in donor candidates for living donor liver transplant: Technical and practical considerations. J. Magn. Reson. Imaging 2018, 48, 1453–1467. [Google Scholar] [CrossRef]
- Yokoo, T.; Serai, S.D.; Pirasteh, A.; Bashir, M.R.; Hamilton, G.; Hernando, D.; Hu, H.H.; Hetterich, H.; Kühn, J.-P.; Kukuk, G.M.; et al. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta-analysis. Radiology 2018, 286, 486–498. [Google Scholar] [CrossRef]
- Fialoke, S.; Malarstig, A.; Miller, M.R.; Dumitriu, A. Application of Machine Learning Methods to Predict Non-Alcoholic Steatohepatitis (NASH) in Non-Alcoholic Fatty Liver (NAFL) Patients. AMIA Annu. Symp. Proc. 2018, 2018, 430–439. [Google Scholar] [PubMed]
- Schattenberg, J.M.; Balp, M.-M.; Reinhart, B.; Tietz, A.; Regnier, S.A.; Capkun, G.; Ye, Q.; Loeffler, J.; Pedrosa, M.C.; Docherty, M. NASHmap: Clinical utility of a machine learning model to identify patients at risk of NASH in real-world settings. Sci. Rep. 2023, 13, 5573. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Alurwar, A.; Ly, C.; Piao, C.; Donde, R.; Wang, C.J.; Meyers, F.J. A Machine Learning Model to Predict Risk for Hepatocellular Carcinoma in Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. Gastro Hep Adv. 2024, 3, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Milošević, N.; Milanović, M.; Stojanoska, M.M.; Tipmanee, V.; Smyrnioudis, I.; Dedoussis, G.V.; Milić, N. Triterpenoids from Chios Mastiha Resin Against MASLD—A Molecular Docking Survey. Curr. Issues Mol. Biol. 2025, 47, 51. [Google Scholar] [CrossRef]
- Xia, J.; Wang, Z.; Huan, Y.; Xue, W.; Wang, X.; Wang, Y.-X.; Liu, Z.-M.; Hsieh, J.-H.; Zhang, L.-R.; Wu, S.; et al. Pose Filter-Based Ensemble Learning Enables Discovery of Orally Active, Nonsteroidal Farnesoid X Receptor Agonists. J. Chem. Inf. Model. 2020, 60, 1202–1214. [Google Scholar] [CrossRef]
- Velliou, R.I.; Giannousi, E.; Ralliou, C.; Kassi, E.; Chatzigeorgiou, A. Ex Vivo Tools and Models in MASLD Research. Cells. 2024, 13, 1827. [Google Scholar] [CrossRef]
- Chu, A.; Nguyen, D.; Talathi, S.S.; Wilson, A.C.; Ye, C.; Smith, W.L.; Kaplan, A.D.; Duoss, E.B.; Stolaroff, J.K.; Giera, B. Automated detection and sorting of microencapsulation: Via machine learning. Lab Chip 2019, 19, 1808–1817. [Google Scholar] [CrossRef]
- Bhat, M.; Rabindranath, M.; Chara, B.S.; Simonetto, D.A. Artificial intelligence, machine learning, and deep learning in liver transplantation. J. Hepatol. 2023, 78, 1216–1233. [Google Scholar] [CrossRef]
- Howell, M.D.; Corrado, G.S.; Desalvo, K.B. Three Epochs of Artificial Intelligence in Health Care. JAMA 2024, 331, 242–244. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Giuffrè, M.; Shung, D.L. Scrutinizing ChatGPT Applications in Gastroenterology: A Call for Methodological Rigor to Define Accuracy and Preserve Privacy. Clin. Gastroenterol. Hepatol. 2024, 22, 2156–2157. [Google Scholar] [CrossRef] [PubMed]
- Kresevic, S.; Giuffrè, M.; Ajcevic, M.; Accardo, A.; Crocè, L.S.; Shung, D.L. Optimization of hepatological clinical guidelines interpretation by large language models: A retrieval augmented generation-based framework. NPJ Digit. Med. 2024, 7. [Google Scholar] [CrossRef] [PubMed]
Authors | Year of Publication | Topic | Chatbot/LLM | Scoring System | Items | Results | Notes |
---|---|---|---|---|---|---|---|
MASLD | |||||||
Pugliese et al. [23] | 2024 | LLM as a couseling tool for MASLD patients | ChatGPT-3.5 (OpenAI) | Likert scale | Accuracy (six-point scale) Completeness (three-point scale) Comprehensibility (three-point scale) | Median scores Accuracy 4.57 ± 0.42 Completeness 2.14 ± 0.31 Comprehensibility 2.91 ± 0.07 | Evaluation of responses by 13 experts |
Pugliese et al. [24] | 2024 | LLM as a couseling tool for MASLD patients | ChatGPT-3.5 (OpenAI) | Likert scale | Accuracy (six-point scale) Completeness (three-point scale) Comprehensibility (three-point scale) | Median scores Accuracy 4.84 ± 0.74 Completeness 2.08 ± 0.51 Comprehensibility 2.86 ± 0.14 | Evaluation of responses by three experts |
Zhang et al. [25] | 2024 | LLM for histological grading of MASH | ChatGPT-4 (OpenAI) | - | Identification of MASH and fibrosis | ChatGPT-4: 87.5% accuracy | Evaluation of responses by two experts |
Bard (Google) | Bard: 38.3% accuracy | ||||||
Zhang et al. [26] | 2023 | LLM as a couseling tool for MASLD patients | ChatGPT-3.5 (OpenAI) | - | Appropriateness * | ChatGPT-3.5: 80% appropriateness | Evaluation of responses by three experts |
ChatGPT-4 (OpenAI) | ChatGPT-4: 96.7% appropriateness | ||||||
Bard (Google) | Bard: 90% appropriateness | ||||||
Llama2 (Meta) | Llama 2: 90% appropriateness | ||||||
Claude2 (Anthropic) | Claude2: 80% appropriateness | ||||||
Other liver diseases | |||||||
Daza et al. [27] | 2024 | LLM as a couseling tool for AILD patients | ChatGPT-3.5 (OpenAI) | Likert scale | Quality of answers | ChatGPT-3.5: mean score 7.17 (SD = 1.89) | Evaluation of responses by 10 experts |
Claude (Anthropic) | Claude: mean score 7.37 (SD = 1.91) | ||||||
Copilot (Microsoft) | Copilot: mean score 6.63 (SD = 2.10) | ||||||
Bard (Google) | Bard: mean score 6.52 (SD = 2.27) | ||||||
Colapietro et al. [28] | 2024 | LLM as a couseling tool for AIH patients | ChatGPT-4 | Likert scale | Accuracy (6 points scale) Safety (5 points scale) Completeness (3 points scale) Comprehensibility (3 points scale) | Median scores Accuracy 5 (IQR 4–6) Safety 4 (IQR 4–5) Completeness 2 (2–2) Comprehensibility 3 (2–3) | Evaluation of responses by 11 experts |
Yeo et al. [29] | 2024 | Evaluation of LLM responses to common questions on cirrhosis and HCC | ChatGPT-3.5 (OpenAI) | Four grades: comprehensive, correct but inadequate, mixed correct and incorrect/outdated data, completely incorrect | - | Cirrhosis: Comprehensive: 49.45% Correct but inadequate: 30.77% Mixed with correct and incorrect/outdated data: 19.78% Completely incorrect: 0% HCC: Comprehensive: 41.1% Correct but inadequate: 32.87% Mixed correct and incorrect/outdated data: 19.18% Completely incorrect: 6.85% | Evaluation of responses by three experts |
Cao et al. [30] | 2024 | Evaluation of LLM responses to common questions on HCC | ChatGPT-3.5 (OpenAI) | Three grades: accurate, inadequate, inaccurate § Flesch Reading Ease Score and Flesch-Kincaid Grade Level for readability | Accuracy Reliability Readability | ChatGPT-3.5: 45% accuracy; 30% accuracy and reliability | Evaluation of responses by six experts |
Gemini (Google) | Gemini: 60% accuracy; 40% accuracy and reliability | ||||||
Bing (Microsoft) | Bing: 30% accuracy, 15% accuracy and reliability | ||||||
Walker et al. [31] | 2023 | Evaluation of LLM responses to common questions on cirrhosis, HCC, pancreatic disorders | ChatGPT-4 (OpenAI) | Modified EQIP tool (max score: 36 points) | Three sections: Content (18 points) Identification (6 points) Structure data (12 points) | Content: 10 (IQR 9.5–12.5) Identification: 1 (IQR 1–1) Structure data: 4 (IQR 4–5) | Evaluation of responses by two experts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, N.; Bertazzoni, A.; Hassan, C.; Schattenberg, J.M.; Aghemo, A. Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care. Cancers 2025, 17, 722. https://doi.org/10.3390/cancers17050722
Pugliese N, Bertazzoni A, Hassan C, Schattenberg JM, Aghemo A. Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care. Cancers. 2025; 17(5):722. https://doi.org/10.3390/cancers17050722
Chicago/Turabian StylePugliese, Nicola, Arianna Bertazzoni, Cesare Hassan, Jörn M. Schattenberg, and Alessio Aghemo. 2025. "Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care" Cancers 17, no. 5: 722. https://doi.org/10.3390/cancers17050722
APA StylePugliese, N., Bertazzoni, A., Hassan, C., Schattenberg, J. M., & Aghemo, A. (2025). Revolutionizing MASLD: How Artificial Intelligence Is Shaping the Future of Liver Care. Cancers, 17(5), 722. https://doi.org/10.3390/cancers17050722