Postoperative Changes in Body Composition Predict Long-Term Prognosis in Patients with Gastric Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment and Follow-Up
2.3. Measurements of BC Parameters
2.4. Cutoff Values of BC Parameter Changes
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prognosis According to BC Parameters
3.3. Prognostic Risk Scoring According to BC Changes
3.4. Prognostic Significance of BC Changes
3.5. Comparison of Cause of Death Between the BC Changes Group and the Non-Changes Group
3.6. Risk Factor Analysis for the BC Changes Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Body composition |
GC | Gastric cancer |
OS | Overall survival |
DSS | Disease-specific survival |
ADL | Activities of daily living |
BMI | Body mass index |
CT | Computed tomography |
HU | Hounsfield unit |
IQR | Interquartile range |
ROC | Receiver operating characteristic |
HR | Hazard ratio |
OR | Odds ratio |
CI | Confidence intervals |
PGE | Post-gasterctomy emaciation |
IMAC | Intramuscular adipose tissue content |
ASA-PS | American Society of Anesthesiologists physical status |
ECOG-PS | Eastern Cooperative Oncology Group performance status |
CRP | C-reactive protein |
NLR | Neutrophil-to-lymphocyte ratio |
MRI | Magnetic resonance imaging |
SMI | Smooth muscle index |
PMI | Psoas muscle index |
AMG | Albumin-myosteatosis gauge |
References
- National Cancer Center. Projected Cancer Statistics. 2023. Available online: https://ganjoho.jp/reg_stat/statistics/stat/short_pred_en.html (accessed on 15 November 2024).
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2021 (6th edition). Gastric Cancer 2023, 26, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Abdiev, S.; Kodera, Y.; Fujiwara, M.; Koike, M.; Nakayama, G.; Ohashi, N.; Tanaka, C.; Sakamoto, J.; Nakao, A. Nutritional recovery after open and laparoscopic gastrectomies. Gastric Cancer 2011, 14, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia; intramuscular fat deposition; and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.D.; Zhou, C.J.; Wang, S.L.; Mao, S.T.; Zhou, X.Y.; Lou, N.; Zhang, Z.; Yu, Z.; Shen, X.; Zhuang, C.L. Impact of different sarcopenia stages on the postoperative outcomes after radical gastrectomy for gastric cancer. Surgery 2017, 161, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Lieffers, J.R.; McCarga, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, H.S.; Beom, S.H.; Rha, S.Y.; Chung, H.C.; Kim, J.H.; Chun, Y.J.; Lee, S.W.; Choe, E.A.; Heo, S.J.; et al. Marked loss of muscle; visceral fat; or subcutaneous fat after gastrectomy predicts poor survival in advanced gastric cancer: Single-Center Study from the CLASSIC Trial. Ann. Surg. Oncol. 2018, 25, 3222–3230. [Google Scholar] [CrossRef]
- Kamarajah, S.K.; Bundred, J.; Tan, B.H. Body composition assessment and sarcopenia in patients with gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2019, 22, 10–22. [Google Scholar] [CrossRef]
- Matsui, R.; Inaki, N.; Tsuji, T. Impact of preoperative muscle quality on postoperative severe complications after radical gastrectomy for gastric cancer patients. Ann. Gastroenterol. Surg. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Cho, H.; Yoshikawa, T.; Oba, M.S.; Hirabayashi, N.; Shirai, J.; Aoyama, T.; Hayashi, T.; Yamada, T.; Oba, K.; Morita, S.; et al. Matched pair analysis to examine the effects of a planned preoperative exercise program in early gastric cancer patients with metabolic syndrome to reduce operative risk: The Adjuvant Exercise for General Elective Surgery (AEGES) study group. Ann. Surg. Oncol. 2014, 21, 2044–2450. [Google Scholar] [CrossRef]
- Juez, L.D.; Priago, P.; Cuadrado, M.; Blázquez, L.A.; Sánchez-Picot, S.; Gil, P.; Longo, F.; Galindo, J.; Fernández-Cebrián, J.M.; Botella-Carreteroet, J.I. Impact of neoadjuvant treatment on body composition in patients with locally advanced gastric cancer. Cancers 2024, 16, 2408. [Google Scholar] [CrossRef]
- Kudou, K.; Saeki, H.; Nakashima, Y.; Kimura, K.; Ando, K.; Oki, E.; Ikeda, T.; Maehara, Y. Postoperative skeletal muscle loss predicts poor prognosis of adenocarcinoma of upper stomach and esophagogastric junction. World J. Surg. 2019, 43, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Kugimiya, N.; Harada, E.; Oka, K.; Kawamura, D.; Suehiro, Y.; Takemoto, Y.; Hamano, K. Loss of skeletal muscle mass after curative gastrectomy is a poor prognostic factor. Oncol. Lett. 2018, 16, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Aoyagi, K.; Umetani, Y.; Kaku, H.; Minami, T.; Isobe, T.; Murakami, N.; Fujita, F.; Akagi, Y. Impact of skeletal muscle mass reduction on long-term survival after radical resection of gastric cancer. Anticancer Res. 2023, 43, 3779–3786. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley: New York, NY, USA, 2017; pp. 63–66. [Google Scholar]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajanet, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Wang, Z.M.; Pierson, R.M., Jr.; Heymsfield, S.B. The five-level model: A new approach to organizing body-composition research. Am. J. Clin. Nutr. 1992, 56, 19–28. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Kelley, D.E.; Thaete, F.L.; He, J.; Ross, R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J. Appl. Physiol. 2000, 89, 104–110. [Google Scholar] [CrossRef]
- Kitajima, Y.; Hyogo, H.; Sumida, Y.; Eguchi, Y.; Ono, N.; Kuwashiro, T.; Tanaka, T.; Takahashi, H.; Mizuta, T.; Ozaki, I.; et al. Japan Nonalcoholic Fatty Liver Disease Study Group (JSG-NAFLD) Severity of non-alcoholic steatohepatitis is associated with substitution of adipose tissue in skeletal muscle. J. Gastroenterol. Hepatol. 2013, 28, 1507–1514. [Google Scholar] [CrossRef]
- Ashida, R.; Yamamoto, Y.; Aramaki, T.; Sugiura, T.; Okamura, Y.; Ito, T.; Ohgi, K.; Uesaka, K. Preoperative skeletal muscle fat infiltration is a strong predictor of poorer survival in gallbladder cancer underwent surgery. Clin. Nutr. ESPEN 2022, 52, 60–67. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Molloy, G.J. Association of C-reactive protein and muscle strength in the English Longitudinal Study of Ageing. Age 2009, 1, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Srikanthan, P.; Costanzo, M.R.; Cintron, G.B.; Lopatin, M.; ADHERE Scientific Advisory Committee and Investigators. An obesity paradox in acute heart failure: Analysis of body mass index and inhospital mortality for 108;927 patients in the Acute Decompensated Heart Failure National Registry. Am. Heart J. 2007, 153, 74–81. [Google Scholar] [CrossRef]
- Cao, C.; Wang, R.; Wang, J.; Xu, Y.; Xiong, W. Body mass index and mortality in chronic obstructive pulmonary disease: A meta-analysis. PLoS ONE 2012, 7, e43892. [Google Scholar] [CrossRef]
- Naderi, N.; Kleine, C.E.; Park, C.; Hsiung, J.T.; Soohoo, M.; Tantisattamo, E.; Streja, E.; Kalantar-Zadeh, K.; Moradi, H. Obesity paradox in advanced kidney disease: From bedside to the bench. Prog. Cardiovasc. Dis. 2018, 61, 168–681. [Google Scholar] [CrossRef]
- Pepper, D.J.; Sun, J.; Welsh, J.; Cui, W.; Suffredini, A.F.; Eichacker, P.Q. Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: A systematic review and meta-analysis. Crit. Care 2016, 20, 181. [Google Scholar] [CrossRef]
- Sugisawa, N.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Terashima, M. Intra-abdominal infectious complications following gastrectomy in patients with excessive visceral fat. Gastric Cancer 2012, 15, 206–212. [Google Scholar] [CrossRef]
- Yang, S.J.; Li, H.R.; Zhang, W.H.; Liu, K.; Zhang, D.Y.; Sun, L.F.; Chen, W.L.; Zhao, L.Y.; Chen, X.Z.; Yang, K.; et al. Visceral fat area (VFA) superior to BMI for predicting postoperative complications after radical gastrectomy: A prospective cohort study. J. Gastrointest. Surg. 2020, 24, 1298–1306. [Google Scholar] [CrossRef]
- Marcus, R.L.; Addison, P.; Kidde, J.P.; Dibble, L.E.; Lastayo, P.C. Skeletal muscle fat infiltration: Impact of age; inactivity; and exercise. J. Nutr. Health Aging 2010, 14, 362–366. [Google Scholar] [CrossRef]
- Wu, D.H.; Liao, C.Y.; Wang, D.F.; Huang, L.; Li, G.; Chen, Z.J.; Wang, L.; Lin, T.S.; Lai, J.L.; Zhou, S.Q.; et al. Textbook outcomes of hepatocellular carcinoma patients with sarcopenia: A multicenter analysis. Eur. J. Surg. Oncol. 2023, 49, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.C.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; et al. Myosteatosis in the context of skeletal muscle function deficit: An interdisciplinary workshop at the National Institute on Aging. Front. Physiol. 2020, 11, 963. [Google Scholar] [CrossRef] [PubMed]
- Brooke-Cowden, G.L.; Braasch, J.W.; Gibb, S.P.; Haggitt, R.C.; McDermott, W.V. Postgastrectomy syndromes. Am. J. Surg. 1976, 131, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Ripley, R.T. Postgastrectomy syndromes and nutritional considerations following gastric surgery. Surg. Clin. N. Am. 2017, 97, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Kawabe, T.; Fujikawa, H.; Hayashi, T.; Yamada, T.; Tsuchida, K.; Yukawa, N.; Oshima, T.; Rino, Y.; Masuda, M.; et al. Loss of lean body mass as an independent risk factor for continuation of S-1 adjuvant chemotherapy for gastric cancer. Ann. Surg. Oncol. 2015, 22, 2560–2566. [Google Scholar] [CrossRef]
- Meng, Q.; Tan, S.; Jiang, Y.; Han, J.; Xi, Q.; Zhuang, Q.; Wu, G. Post-discharge oral nutritional supplements with dietary advice in patients at nutritional risk after surgery for gastric cancer: A randomized clinical trial. Clin. Nutr. 2021, 40, 40–46. [Google Scholar] [CrossRef]
- De Felice, F.; Malerba, S.; Nardone, V.; Salvestrini, V.; Calomino, N.; Testini, M.; Boccardi, V.; Desideri, I.; Gentili, C.; De Luca, R.; et al. Progress and Challenges in Integrating Nutritional Care into Oncology Practice: Results from a National Survey on Behalf of the NutriOnc Research Group. Nutrients 2025, 17, 188. [Google Scholar] [CrossRef]
- Calomino, N.; Malerba, M.; Tanzini, G. Gastrectomia totale e qualità della vita [Total gastrectomy and quality of life]. Minerva Chir. 1998, 53, 135–140. [Google Scholar]
- Marasco, G.; Serenari, M.; Renzulli, M.; Alemanni, L.V.; Rossini, B.; Pettinari, I.; Dajti, E.; Ravaioli, F.; Golfieri, R.; Cescon, M.; et al. Clinical impact of sarcopenia assessment in patients with hepatocellular carcinoma undergoing treatments. J. Gastroenterol. 2020, 55, 927–943. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kaido, T.; Hamaguchi, Y.; Okumura, S.; Taura, K.; Hatano, E.; Okajima, H.; Uemoto, S. Impact of postoperative changes in sarcopenic factors on outcomes after hepatectomy for hepatocellular carcinoma. J. Hepato-Biliary-Pancreat. Sci. 2016, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 2016, 32, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Aibiki, T.; Okudaira, T.; Toshimori, A.; Kawamura, T.; Nakahara, H.; Suga, Y.; Azemoto, N.; Miyata, H.; Miyamoto, Y.; et al. Muscle atrophy as pre-sarcopenia in Japanese patients with chronic liver disease: Computed tomography is useful for evaluation. J. Gastroenterol. 2015, 50, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Aiba, M.; Unome, S.; Miwa, T.; Hanai, T.; Sakai, H.; Shirakami, Y.; Suetsugu, A.; Shimizu, M. Psoas muscle index as an independent predictor of survival in patients with hepatocellular carcinoma receiving systemic targeted therapy. Cancers 2025, 17, 209. [Google Scholar] [CrossRef]
- Rutten, I.J.G.; Ubachs, J.; Kruitwagen, L.F.P.M.; Beets-Tan, R.G.H.; Damink, S.W.M.O.; Van Gorp, T. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 630–638. [Google Scholar] [CrossRef]
- Baracos, V.E. Psoas as a sentinel muscle for sarcopenia: A flawed premise. J. Cachexia Sarcopenia Muscle 2017, 8, 527–528. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.H.; Cho, E.S.; Lee, H.S.; Shin, S.J.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Kang, J. Albumin-myosteatosis gauge as a novel prognostic risk factor in patients with non-metastatic colorectal cancer. J. Cachexia Sarcopenia Muscle 2023, 14, 860–868. [Google Scholar] [CrossRef]
- Sahin, T.K.; Ozbay, Y.; Altunbulak, A.Y.; Altunbulak, H.I.; Onur, M.R.; Ceylan, F.; Guven, D.C.; Yalcin, S.; Dizdar, O. Albumin-myosteatosis gauge as a prognostic factor in patients with advanced pancreatic cancer undergoing first-line chemotherapy. Int. J. Clin. Oncol. 2024, 29, 822–831. [Google Scholar] [CrossRef]
Variables | |
---|---|
Median age, years | 71 [64–76] |
Sex | |
male/female | 258/108 |
BMI, kg/m2 | 22.3 [20.5–24.8] |
Charlson comorbidity index | |
0/1/2/≥3 | 265/30/58/13 |
Tumor location | |
upper/middle/lower | 82/151/133 |
Lauren classification | |
intestinal/diffuse | 199/167 |
Neoadjuvant chemotherapy | |
yes/no | 22/344 |
Surgical approach | |
laparotomy/laparoscopy | 187/179 |
Extent of gastrectomy | |
total/distal/proximal | 87/259/20 |
Extent of lymphadenectomy | |
<D2/≥D2 | 219/147 |
Pathological stage | |
I/II/III/IV | 202/77/82/5 |
Postoperative adjuvant chemotherapy | |
yes/no | 153/213 |
Preoperative body composition | |
Muscle volume, cm2/m2 | 5.05 [4.01–6.33] |
Fat volume, cm2/m2 | 85.4 [54.5–116.2] |
Muscle density, HU | 81.7 [69.5–91.8] |
Postoperative body composition change | |
Muscle volume, % | 94.2 [87.1–99.1] |
Fat volume, % | 60.6 [42.1–75.3] |
Muscle density, HU | +7.1 [+1.8–+14.2] |
Period of surgery divided by midpoint (June 2013) | |
first term/second term | 197/169 |
5y-OS | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
Prognostic Factor | n | (%) | HR [95% CI] | p-Value | Coefficient | HR [95% CI] | p-Value |
Age | |||||||
≥76 years | 104 | 60 | 2.470 (1.612–3.786) | <0.001 | 0.863 | 2.370 (1.506–3.729) | <0.001 |
<76 years | 262 | 81 | 1 | ||||
Sex | |||||||
male | 258 | 74 | 1.163 (0.715–1.889) | 0.543 | |||
female | 108 | 78 | 1 | ||||
Preoperative BMI | |||||||
<20.5 kg/m2 | 90 | 66 | 1.722 (1.099–2.696) | 0.018 | 0.466 | 1.594 (1.000–2.539) | 0.050 |
≥20.5 kg/m2 | 276 | 78 | 1 | ||||
Preoperative Alb | |||||||
<4.2 g/dL | 227 | 68 | 2.620 (1.557–4.410) | < 0.001 | 0.375 | 1.454 (0.825–2.564) | 0.195 |
≥4.2 g/dL | 139 | 87 | 1 | ||||
Preoperative TC | |||||||
<199 mg/dL | 227 | 70 | 1.887 (1.161–3.066) | 0.010 | 0.140 | 1.150 (0.683–1.937) | 0.598 |
≥199 mg/dL | 139 | 83 | 1 | ||||
Preoperative NLR | |||||||
≥2.54 | 127 | 69 | 1.531 (0.997–2.350) | 0.052 | |||
<2.54 | 239 | 79 | 1 | ||||
Charlson comorbidity index | |||||||
≥2 | 71 | 55 | 2.582 (1.654–4.031) | <0.001 | 0.587 | 1.799 (1.116–2.900) | 0.016 |
≤1 | 295 | 80 | 1 | ||||
Lauren classification | |||||||
diffuse | 167 | 73 | 1.293 (0.845–1.978) | 0.237 | |||
intestinal | 199 | 78 | 1 | ||||
Neoadjuvant chemotherapy | |||||||
yes | 22 | 76 | 1.576 (0.761–3.265) | 0.220 | |||
no | 344 | 89 | 1 | ||||
Surgical approach | |||||||
laparotomy | 187 | 66 | 2.571 (1.612–4.101) | <0.001 | 0.099 | 1.104 (0.604–2.020) | 0.748 |
laparoscopy | 179 | 85 | 1 | ||||
Extent of gastrectomy | |||||||
total | 87 | 55 | 3.030 (1.975–4.648) | <0.001 | 0.603 | 1.828 (1.136–2.942) | 0.013 |
distal/proximal | 279 | 82 | 1 | ||||
Extent of lymphadenectomy | |||||||
≥D2 | 147 | 72 | 1.275 (0.831–1.955) | 0.266 | |||
<D2 | 219 | 78 | 1 | ||||
Intraoperative blood loss | |||||||
≥1.87 g/kg | 206 | 67 | 2.742 (1.661–4.527) | <0.001 | 0.304 | 1.355 (0.718–2.556) | 0.348 |
<1.87 g/kg | 160 | 86 | 1 | ||||
Postoperative complication | |||||||
≥Grade 3 | 35 | 66 | 1.466 (0.778–2.763) | 0.236 | |||
≤Grade 2 | 331 | 76 | 1 | ||||
Pathological stage | |||||||
≥II | 164 | 64 | 2.725 (1.740–4.268) | <0.001 | 0.866 | 2.377 (1.256–4.501) | 0.008 |
I | 202 | 85 | 1 | ||||
Postoperative adjuvant chemotherapy | |||||||
yes | 153 | 70 | 1.561 (1.020–2.388) | 0.040 | −0.156 | 0.856 (0.480–1.527) | 0.598 |
no | 213 | 79 | 1 | ||||
Period of surgery | |||||||
first half | 197 | 75 | 1.053 (0.684–1.620) | 0.815 | |||
second half | 169 | 76 | 1 | ||||
BC change | |||||||
change (score ≥ 2) | 180 | 61 | 4.049 (2.452–6.687) | <0.001 | 1.127 | 3.086 (1.831–5.202) | < 0.001 |
non-change (score ≤ 1) | 186 | 89 | 1 |
Cause of Death | BC Changes Group, n (%) | BC Non-Changes Group, n (%) | p-Value |
---|---|---|---|
Main cause | 0.123 | ||
gastric cancer recurrence | 32 (50) | 12 (60) | |
malignant neoplasm of other organs | 6 (9) | 2 (10) | |
cerebrocardiovascular disease | 2 (3) | 2 (10) | |
infectious disease | 2 (3) | 2 (10) | |
PGE | 23 (35) | 2 (10) | |
Postgastrectomy emaciation | |||
yes | 23 (35) | 2 (10) | 0.029 |
no | 42 (65) | 18 (90) |
BC Change | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
Risk Factor | Yes, n (%) | No, n (%) | OR [95% CI] | p-Value | OR [95% CI] | p-Value | VIF |
Age, year | |||||||
≥70 years | 113 (63) | 87 (47) | 1.919 (1.264–2.919) | 0.002 | 1.481 (0.926–2.367) | 0.101 | 1.142 |
<70 years | 67 (37) | 99 (53) | 1 | ||||
Sex | |||||||
female | 57 (32) | 51 (27) | 1.227 (0.782–1.924) | 0.373 | |||
male | 123 (68) | 135 (73) | 1 | ||||
ASA-PS | |||||||
3 | 23 (13) | 16 (9) | 1.557 (0.793–3.054) | 0.196 | |||
≤2 | 157 (87) | 170 (91) | 1 | ||||
Preoperative BMI | |||||||
≥22.1 kg/m2 | 104 (58) | 91 (49) | 1.429 (0.946–2.158) | 0.090 | |||
<22.1 kg/m2 | 76 (42) | 95 (51) | 1 | ||||
Preoperative muscle volume | |||||||
≥5.73 cm2/m2 | 71 (39) | 65 (35) | 1.213 (0.793–1.854) | 0.373 | |||
<5.73 cm2/m2 | 109 (61) | 121 (65) | 1 | ||||
Preoperative fat volume | |||||||
≥128.5 cm2/m2 | 38 (21) | 27 (15) | 1.576 (0.916–2.712) | 0.099 | |||
<128.5 cm2/m2 | 142 (79) | 159 (85) | 1 | ||||
Preoperative muscle density | |||||||
<82.7 HU | 110 (61) | 84 (45) | 1.908 (1.259–2.893) | 0.002 | 1.882 (1.171–3.024) | 0.009 | 1.148 |
≥82.7 HU | 70 (39) | 102 (55) | 1 | ||||
Preoperative Alb | |||||||
<4.0 g/dL | 86 (48) | 77 (41) | 1.295 (0.857–1.958) | 0.220 | |||
≥4.0 g/dL | 94 (52) | 109 (59) | 1 | ||||
Preoperative TC | |||||||
<202 mg/dL | 126 (70) | 118 (63) | 1.345 (0.869–2.081) | 0.183 | |||
≥202 mg/dL | 54 (30) | 68 (37) | 1 | ||||
Preoperative CRP | |||||||
≥0.95 mg/dL | 21 (12) | 15 (8) | 1.506 (0.750–3.211) | 0.247 | |||
<0.95 mg/dL | 159 (88) | 171 (92) | 1 | ||||
Preoperative NLR | |||||||
≥2.09 | 106 (59) | 90 (48) | 1.529 (1.011–2.309) | 0.044 | 1.410 (0.903–2.201) | 0.130 | 1.023 |
<2.09 | 74 (41) | 96 (52) | 1 | ||||
Charlson comorbidity index | |||||||
≥3 | 11 (6) | 2 (1) | 5.988 (1.308–27.048) | 0.009 | 6.452 (1.346–30.939) | 0.020 | 1.010 |
≤2 | 169 (94) | 184 (99) | 1 | ||||
Lauren classification | |||||||
diffuse | 86 (48) | 81 (44) | 1.186 (0.786–1.790) | 0.417 | |||
intestinal | 94 (52) | 105 (56) | 1 | ||||
Neoadjuvant chemotherapy | |||||||
yes | 12 (7) | 10 (5) | 1.257 (0.529–2.987) | 0.604 | |||
no | 168 (93) | 176 (95) | 1 | ||||
Surgical approach | |||||||
laparotomy | 97 (54) | 90 (48) | 1.247 (0.827–1.879) | 0.292 | |||
laparoscopy | 83 (46) | 96 (52) | 1 | ||||
Extent of gastrectomy | |||||||
total | 62 (34) | 25 (13) | 3.384 (2.009–5.700) | < 0.001 | 3.315 (1.842–5.966) | < 0.001 | 1.227 |
distal/proximal | 118 (66) | 161 (87) | 1 | ||||
Extent of lymphadenectomy | |||||||
≥D2 | 76 (42) | 71 (38) | 1.184 (0.779–1.798) | 0.429 | |||
<D2 | 104 (58) | 115 (62) | 1 | ||||
Intraoperative blood loss | |||||||
≥4.01 g/kg | 86 (48) | 57 (31) | 2.017 (1.350–3.175) | < 0.001 | 1.239 (0.745–2.061) | 0.410 | 1.308 |
<4.01 g/kg | 94 (52) | 129 (69) | 1 | ||||
Postoperative complication | |||||||
≥Grade 2 | 65 (36) | 56 (30) | 1.312 (0.848–2.030) | 0.222 | |||
≤Grade 1 | 115 (64) | 130 (70) | 1 | ||||
Pathological stage | |||||||
>II | 92 (51) | 72 (39) | 1.655 (1.093–2.507) | 0.017 | 1.249 (0.781–1.997) | 0.354 | 1.141 |
I | 88 (49) | 114 (61) | 1 | ||||
Postoperative adjuvant chemotherapy | |||||||
yes | 80 (44) | 73 (39) | 1.238 (0.817–1.877) | 0.314 | |||
no | 100 (56) | 113 (61) | 1 | ||||
Period of surgery | |||||||
first term | 100 (56) | 97 (52) | 1.147 (0.760–1.730) | 0.514 | |||
second term | 80 (44) | 89 (48) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuto, K.; Nabeya, Y.; Mori, M.; Yamazaki, M.; Kosugi, C.; Narushima, K.; Usui, A.; Nojima, H.; Shimizu, H.; Koda, K. Postoperative Changes in Body Composition Predict Long-Term Prognosis in Patients with Gastric Cancer. Cancers 2025, 17, 738. https://doi.org/10.3390/cancers17050738
Shuto K, Nabeya Y, Mori M, Yamazaki M, Kosugi C, Narushima K, Usui A, Nojima H, Shimizu H, Koda K. Postoperative Changes in Body Composition Predict Long-Term Prognosis in Patients with Gastric Cancer. Cancers. 2025; 17(5):738. https://doi.org/10.3390/cancers17050738
Chicago/Turabian StyleShuto, Kiyohiko, Yoshihiro Nabeya, Mikito Mori, Masato Yamazaki, Chihiro Kosugi, Kazuo Narushima, Akihiro Usui, Hiroyuki Nojima, Hiroaki Shimizu, and Keiji Koda. 2025. "Postoperative Changes in Body Composition Predict Long-Term Prognosis in Patients with Gastric Cancer" Cancers 17, no. 5: 738. https://doi.org/10.3390/cancers17050738
APA StyleShuto, K., Nabeya, Y., Mori, M., Yamazaki, M., Kosugi, C., Narushima, K., Usui, A., Nojima, H., Shimizu, H., & Koda, K. (2025). Postoperative Changes in Body Composition Predict Long-Term Prognosis in Patients with Gastric Cancer. Cancers, 17(5), 738. https://doi.org/10.3390/cancers17050738