Advances in Surgery and Sustainability: The Use of AI Systems and Reusable Devices in Laparoscopic Colorectal Surgery
Simple Summary
Abstract
1. Introduction
2. Chapter I: Challenges in Achieving Sustainability in Surgery
2.1. Securing the Surgical Workforce
2.2. Optimizing Resource Recovery and Controlling Healthcare Costs
2.3. Interdependency of Challenges
3. Chapter II: Improving Surgical Precision and Educational Support Using AI Technology
4. Chapter III: Sustainable Surgery Through the Use of Environmentally and Economically Considerate Reusable Devices
5. Discussion
5.1. Expanding Applications of Surgical AI
5.2. Expanding Applications of Reusable Energy Devices
5.3. Global Relevance and Accessibility
6. Conclusions
- Expansion of AI capabilities: Developing algorithms capable of recognizing a wider range of anatomical structures and surgical scenarios will enhance the utility of AI systems across different disciplines.
- Enhancement of reusable device infrastructure: Investing in research and development for advanced sterilization methods and durable materials will facilitate the broader adoption of reusable devices.
- Policy and collaboration: Policymakers should establish incentives for hospitals to adopt sustainable practices, including subsidies for initial investments in reusable technologies and AI systems.
- Education and training: Incorporating AI-assisted training modules into surgical education curricula will ensure that the next generation of surgeons are well versed in sustainable practices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinji, S.; Yamada, T.; Matsuda, A.; Sonoda, H.; Ohta, R.; Iwai, T.; Takeda, K.; Yonaga, K.; Masuda, Y.; Yoshida, H. Recent Advances in the Treatment of Colorectal Cancer: A Review. J. Nippon Med. Sch. 2022, 89, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, A.E. Evolution of laparoscopy in colorectal surgery: An evidence-based review. World J. Gastroenterol. 2014, 20, 4926–4933. [Google Scholar] [CrossRef]
- Shabbir, A.; Dargan, D. Advancement and benefit of energy sealing in minimally invasive surgery. Asian J. Endosc. Surg. 2014, 7, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Targarona, E.M.; Balague, C.; Marin, J.; Neto, R.B.; Martinez, C.; Garriga, J.; Trias, M. Energy Sources for Laparoscopic Colectomy: A Prospective Randomized Comparison of Conventional Electrosurgery, Bipolar Computer-Controlled Electrosurgery and Ultrasonic Dissection. Operative Outcome and Costs Analysis. Surg. Innov. 2005, 12, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Businger, A.; Villiger, P.; Sommer, C.; Furrer, M. Arguments for and Against a Career in Surgery. Ann. Surg. 2010, 252, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Cofer, J.B.; Burns, R.P. The Developing Crisis in the National General Surgery Workforce. J. Am. Coll. Surg. 2008, 206, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Numata, Y.; Matsumoto, M. Labor shortage of physicians in rural areas and surgical specialties caused by Work Style Reform Policies of the Japanese government: A quantitative simulation analysis. J. Rural Med. 2024, 19, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Campion, N.; Thiel, C.L.; Woods, N.C.; Swanzy, L.; Landis, A.E.; Bilec, M.M. Sustainable healthcare and environmental life-cycle impacts of disposable supplies: A focus on disposable custom packs. J. Clean. Prod. 2015, 94, 46–55. [Google Scholar] [CrossRef]
- Zygourakis, C.C.; Yoon, S.; Valencia, V.; Boscardin, C.; Moriates, C.; Gonzales, R.; Lawton, M.T. Operating room waste: Disposable supply utilization in neurosurgical procedures. J. Neurosurg. 2017, 126, 620–625. [Google Scholar] [CrossRef]
- Adler, S.; Scherrer, M.; Rückauer, K.D.; Daschner, F.D. Comparison of economic and environmental impacts between disposable and reusable instruments used for laparoscopic cholecystectomy. Surg. Endosc. 2004, 19, 268–272. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the Sustainable Development Goals Relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef]
- Thompson, M.J.; Lynge, D.C.; Larson, E.H.; Tachawachira, P.; Hart, L.G. Characterizing the General Surgery Workforce in Rural America. Arch. Surg. 2005, 140, 74–79. [Google Scholar] [CrossRef]
- Mahoney, S.T.; Strassle, P.D.; Schroen, A.T.; Agans, R.P.; Turner, P.L.; Meyer, A.A.; Freischlag, J.A.; Brownstein, M.R. Survey of the US Surgeon Workforce: Practice Characteristics, Job Satisfaction, and Reasons for Leaving Surgery. J. Am. Coll. Surg. 2020, 230, 283–293.e1. [Google Scholar] [CrossRef]
- Scheffer, M.C.; Guilloux, A.G.; Matijasevich, A.; Massenburg, B.B.; Saluja, S.; Alonso, N. The state of the surgical workforce in Brazil. Surgery 2016, 161, 556–561. [Google Scholar] [CrossRef]
- Hudkins, J.R.; Helmer, S.D.; Smith, R.S. General surgery resident practice plans: A workforce for the future? Am. J. Surg. 2009, 198, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Goldin, S.B.; Wahi, M.M.; Farooq, O.S.; Borgman, H.A.; Carpenter, H.L.; Wiegand, L.R.; Nixon, L.L.; Paidas, C.; Rosemurgy, A.S.; Karl, R.C. Student Quality-of-Life Declines During Third Year Surgical Clerkship. J. Surg. Res. 2007, 143, 151–157. [Google Scholar] [CrossRef]
- Campbell, D.A., Jr.; Sonnad, S.S.; Eckhauser, F.E.; Campbell, K.K.; Greenfield, L.J. Burnout among American surgeons. Surgery 2001, 130, 696–705. [Google Scholar] [CrossRef]
- Federspiel, F.; Mukhopadhyay, S.; Milsom, P.; Scott, J.W.; Riesel, J.N.; Meara, J.G. Global surgical and anaesthetic task shifting: A systematic literature review and survey. Lancet 2015, 385, S46. [Google Scholar] [CrossRef]
- Fulton, B.D.; Scheffler, R.M.; Sparkes, S.P.; Auh, E.Y.; Vujicic, M.; Soucat, A. Health workforce skill mix and task shifting in low income countries: A review of recent evidence. Hum. Resour. Health 2011, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Issst, P.; Unger, S.R.; Landis, A.E. Comparing the financial impacts of single-use versus reprocessed medical devices. Proc. ISSST 2014. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Lucas, T.C. Challenges and limitations of validation of the single use medical devices: A review article. Online Braz. J. Nurs. 2008, 7, 11. [Google Scholar] [CrossRef]
- Da Silva, M.V.; Ribeiro, A.D.F.; Pinto, T.D.J.A. Safety evaluation of single-use medical devices after submission to simulated reutilization cycles. J. AOAC Int. 2005, 88, 823–829. [Google Scholar]
- Joseph, B.; James, J.; Kalarikkal, N.; Thomas, S. Recycling of Medical Plastics. Adv. Ind. Eng. Polym. Res. 2021, 4, 199–208. [Google Scholar] [CrossRef]
- Golder, W. Aufbereitung und Wiederverwendung medizinischer Einmalprodukte in der Radiologie. Rofo-Fortschritte Auf Dem Geb. Rontgenstrahlen Bild. Verfahr. 2003, 175, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Gadi, N.; Acharya, A.; Beatty, J.W.; Darzi, A.; Purkayastha, S. Interventions for sustainable surgery: A systematic review. Int. J. Surg. 2023, 109, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Friedericy, H.J.; van Egmond, C.W.; Vogtländer, J.G.; van der Eijk, A.C.; Jansen, F.W. Reducing the Environmental Impact of Sterilization Packaging for Surgical Instruments in the Operating Room: A Comparative Life Cycle Assessment of Disposable versus Reusable Systems. Sustainability 2021, 14, 430. [Google Scholar] [CrossRef]
- Polignano, F.M.; Quyn, A.J.; de Figueiredo, R.S.M.; Henderson, N.A.; Kulli, C.; Tait, I.S. Laparoscopic versus open liver segmentectomy: Prospective, case-matched, intention-to-treat analysis of clinical outcomes and cost effectiveness. Surg. Endosc. 2008, 22, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ying, H.; Wang, H.; Xu, H.; Liu, M.; Zhou, H.; Ge, H.; Jiang, W.; Feng, L.; Liu, H.; et al. Enhanced recovery care versus traditional care after laparoscopic liver resections: A randomized controlled trial. Surg. Endosc. 2017, 32, 2746–2757. [Google Scholar] [CrossRef]
- Heald, R.J. The ‘Holy Plane’ of Rectal Surgery. J. R. Soc. Med. 1988, 81, 503–508. [Google Scholar] [CrossRef]
- West, N.P.; Sutton, K.M.; Ingeholm, P.; Hagemann-Madsen, R.H.; Hohenberger, W.; Quirke, P. Improving the Quality of Colon Cancer Surgery Through a Surgical Education Program. Dis. Colon Rectum 2010, 53, 1594–1603. [Google Scholar] [CrossRef]
- Alsowaina, K.N.; Atashzar, S.F.; Pur, D.R.; Eagleson, R.; Patel, R.V.; Elnahas, A.I.; Hawel, J.D.; Alkhamesi, N.A.; Schlachta, C.M. Video Context Improves Performance in Identifying Operative Planes on Static Surgical Images. J. Surg. Educ. 2021, 79, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Sadideen, H.; Kneebone, R. Practical skills teaching in contemporary surgical education: How can educational theory be applied to promote effective learning? Am. J. Surg. 2012, 204, 396–401. [Google Scholar] [CrossRef]
- Vaporciyan, A.A. Teaching and Learning Surgical Skill. Ann. Thorac. Surg. 2016, 101, 12–14. [Google Scholar] [CrossRef]
- Madani, A.; Namazi, B.; Altieri, M.S.; Hashimoto, D.A.; Rivera, A.M.; Pucher, P.H.; Navarrete-Welton, A.; Sankaranarayanan, G.; Brunt, L.M.; Okrainec, A.M.; et al. Artificial Intelligence for Intraoperative Guidance. Ann. Surg. 2020, 276, 363–369. [Google Scholar] [CrossRef]
- Igaki, T.; Kitaguchi, D.; Matsuzaki, H.; Nakajima, K.; Kojima, S.; Hasegawa, H.; Takeshita, N.; Kinugasa, Y.; Ito, M. Automatic Surgical Skill Assessment System Based on Concordance of Standardized Surgical Field Development Using Artificial Intelligence. JAMA Surg. 2023, 158, e231131. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Goto, K.; Imaizumi, Y.; Nakabayashi, Y. Laparoscopic Colorectal Surgery with Anatomical Recognition with Artificial Intelligence Assistance for Nerves and Dissection Layers. Ann. Surg. Oncol. 2023, 31, 1690–1691. [Google Scholar] [CrossRef] [PubMed]
- Mita, K.; Kobayashi, N.; Takahashi, K.; Sakai, T.; Shimaguchi, M.; Kouno, M.; Toyota, N.; Hatano, M.; Toyota, T.; Sasaki, J. Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair. Hernia 2024, 29, 52. [Google Scholar] [CrossRef]
- Nakamura, T.; Kurahashi, Y.; Ishida, Y.; Shinohara, H. The potential of AI-assisted gastrectomy with dual highlighting of pancreas and connective tissue. Surg. Oncol. 2024, 58, 102171. [Google Scholar] [CrossRef]
- Campagnacci, R.; de Sanctis, A.; Baldarelli, M.; Rimini, M.; Lezoche, G.; Guerrieri, M. Electrothermal bipolar vessel sealing device vs. ultrasonic coagulating shears in laparoscopic colectomies: A comparative study. Surg. Endosc. 2007, 21, 1526–1531. [Google Scholar] [CrossRef]
- Samulak, D.; Wilczak, M.; Michalska, M.M.; Pięta, B. Vaginal hysterectomy with bipolar coagulation forceps (BiClamp) as an alternative to the conventional technique. Arch. Gynecol. Obstet. 2010, 284, 145–149. [Google Scholar] [CrossRef]
- Sakuragi, T.; Ohteki, H. The utility of BiClamp® for intraoperative air leakage control in video-assisted thoracic surgery for pulmonary lobectomy. Gen. Thorac. Cardiovasc. Surg. 2012, 60, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, M.; Shimizu, T.; Ueda, J.; Kawashima, M.; Irie, T.; Haruna, T.; Ohno, T.; Kawano, Y.; Mizuguchi, Y.; Matsushita, A.; et al. Safety and Feasibility of Laparoscopic Liver Resection with the Clamp-Crush Method Using the BiSect. J. Nippon Med. Sch. 2024, 91, 108–113. [Google Scholar] [CrossRef]
- Sakuragi, T.; Okazaki, Y.; Mitsuoka, M.; Yamasaki, F.; Masuda, M.; Mori, D.; Satoh, T.; Itoh, T. The utility of a reusable bipolar sealing instrument, BiClamp®, for pulmonary resection. Eur. J. Cardio-Thorac. Surg. 2008, 34, 505–509. [Google Scholar] [CrossRef]
- Uchiyama, H.; Morita, K.; Itoh, S.; Takenaka, K.; Maehara, Y. BiClamp-Fracture Method in Pure Laparoscopic Hepatectomy. Surg. Laparosc. Endosc. Percutaneous Tech. 2015, 25, e113–e116. [Google Scholar] [CrossRef] [PubMed]
- Siu, J.; Hill, A.G.; MacCormick, A.D. Systematic review of reusable versus disposable laparoscopic instruments: Costs and safety. ANZ J. Surg. 2016, 87, 28–33. [Google Scholar] [CrossRef]
- Eussen, M.M.; Moossdorff, M.; Wellens, L.M.; de Reuver, P.R.; Stobernack, T.; Bijlmakers, L.; Kimman, M.L.; Bouvy, N.D. Beyond single-use: A systematic review of environmental, economic, and clinical impacts of endoscopic surgical instrumentation. Int. J. Surg. 2024, 110, 8136–8150. [Google Scholar] [CrossRef] [PubMed]
- Boberg, L.; Singh, J.; Montgomery, A.; Bentzer, P. Environmental impact of single-use, reusable, and mixed trocar systems used for laparoscopic cholecystectomies. PLoS ONE 2022, 17, e0271601. [Google Scholar] [CrossRef]
- Apelgren, K.N.; Blank, M.L.; Slomski, C.A.; Hadjis, N.S. Reusable instruments are more cost-effective than disposable instruments for laparoscopic cholecystectomy. Surg. Endosc. 1994, 8, 32–34. [Google Scholar] [CrossRef]
- Hasanov, M.; Denschlag, D.; Seemann, E.; Gitsch, G.; Woll, J.; Klar, M. Bipolar vessel-sealing devices in laparoscopic hysterectomies: A multicenter randomized controlled clinical trial. Arch. Gynecol. Obstet. 2017, 297, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Kollmar, O.; Neunhoeffer, E.; Schilling, M.K.; Menger, M.D.; Pistorius, G. Differential Response of Arteries and Veins to Bipolar Vessel Sealing: Evaluation of a Novel Reusable Device. J. Laparoendosc. Adv. Surg. Tech. 2006, 16, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Iwai, T.; Shinji, S.; Yamada, T.; Yoshida, H. Economic and ecological laparoscopic-assisted colectomy using reusable energy devices: A technical note with video vignette. Asian J. Surg. 2024, 48, 411–412. [Google Scholar] [CrossRef]
- Poulin, P.; Austen, L.; Kortbeek, J.B.; Lafrenière, R. New Technologies and Surgical Innovation. Surg. Innov. 2011, 19, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Friese, C.R.; Lake, E.T.; Aiken, L.H.; Silber, J.H.; Sochalski, J. Hospital Nurse Practice Environments and Outcomes for Surgical Oncology Patients. Health Serv. Res. 2008, 43, 1145–1163. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.H.P.; Clarke, S.P.P.; Sloane, D.M.; Lake, E.T.; Cheney, T. Effects of Hospital Care Environment on Patient Mortality and Nurse Outcomes. JONA J. Nurs. Adm. 2008, 38, 223–229. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R.M. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Bellos, T.; Manolitsis, I.; Katsimperis, S.; Juliebø-Jones, P.; Feretzakis, G.; Mitsogiannis, I.; Varkarakis, I.; Somani, B.K.; Tzelves, L. Artificial Intelligence in Urologic Robotic Oncologic Surgery: A Narrative Review. Cancers 2024, 16, 1775. [Google Scholar] [CrossRef]
- Zhu, Q.; Ruan, J.; Zhang, L.; Jiang, W.; Liu, H.; Shi, G. The study of laparoscopic electrosurgical instruments on thermal effect of uterine tissues. Arch. Gynecol. Obstet. 2012, 285, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Labib, P.; Ford, B.; Winfield, M.; Douie, W.; Kanwar, A.; Sanders, G. Revising a laparoscopic appendicectomy set to reduce reliance on disposable surgical instruments: Supporting the transition to sustainable surgical practice. Ind. Mark. Manag. 2024, 106, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Lau, H. Endoscopic extraperitoneal inguinal hernioplasty: Disposable and reusable instruments. Surg. Technol. Int. 2006, 15, 109–115. [Google Scholar] [PubMed]
- Yakubu, K.; Abimbola, S.; Durbach, A.; Balane, C.; Peiris, D.; Joshi, R.; Smith, C. Utility of the Right to Health for Addressing Skilled Health Worker Shortages in Low- and Middle-Income Countries. Int. J. Health Policy Manag. 2022, 11, 2404–2414. [Google Scholar] [CrossRef] [PubMed]
Total | RE-LAC Group | SUD-LAC Group | ||
---|---|---|---|---|
n = 52 | n = 17 | n = 35 | ||
Patient | Age (y/0) | 66 (57.5–76.25) | 67 (61.0–79) | 69 (55–74) |
Sex [Male:Female] | 29:23 | 8:9 | 21:14 | |
Primary tumor | pT [T1b:T2:T3:T4a] | 2:15:25:9 | 0:5:9:3 | 2:10:16:6 |
pN [N0:N1:N2:N3] | 31:18:3:0 | 9:7:1:0 | 22:11:2:0 | |
Neoadjuvant chemotherapy before colectomy [yes] (%) | 13.40% | 11.7% | 14.30% | |
OP | Operative time (min) | 189 (163–210) | 190 (179–209) | 176.5 (156–209) |
Total blood loss (mL) | 0 (0–10) | 0 (0–14.5) | 0 (0–8.75) | |
median (interquartile range) | median (interquartile range) | median (interquartile range) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwai, T.; Shinji, S.; Yamada, T.; Uehara, K.; Matsuda, A.; Yokoyama, Y.; Takahashi, G.; Miyasaka, T.; Matsui, T.; Yoshida, H. Advances in Surgery and Sustainability: The Use of AI Systems and Reusable Devices in Laparoscopic Colorectal Surgery. Cancers 2025, 17, 761. https://doi.org/10.3390/cancers17050761
Iwai T, Shinji S, Yamada T, Uehara K, Matsuda A, Yokoyama Y, Takahashi G, Miyasaka T, Matsui T, Yoshida H. Advances in Surgery and Sustainability: The Use of AI Systems and Reusable Devices in Laparoscopic Colorectal Surgery. Cancers. 2025; 17(5):761. https://doi.org/10.3390/cancers17050761
Chicago/Turabian StyleIwai, Takuma, Seiichi Shinji, Takeshi Yamada, Kay Uehara, Akihisa Matsuda, Yasuyuki Yokoyama, Goro Takahashi, Toshimitsu Miyasaka, Takanori Matsui, and Hiroshi Yoshida. 2025. "Advances in Surgery and Sustainability: The Use of AI Systems and Reusable Devices in Laparoscopic Colorectal Surgery" Cancers 17, no. 5: 761. https://doi.org/10.3390/cancers17050761
APA StyleIwai, T., Shinji, S., Yamada, T., Uehara, K., Matsuda, A., Yokoyama, Y., Takahashi, G., Miyasaka, T., Matsui, T., & Yoshida, H. (2025). Advances in Surgery and Sustainability: The Use of AI Systems and Reusable Devices in Laparoscopic Colorectal Surgery. Cancers, 17(5), 761. https://doi.org/10.3390/cancers17050761