Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Patient Characteristics
3.2. Association of the Individual Variables in the Calculated Scores with CRS, CRS Progression to grade ≥ 2, and ICANS
3.3. P-m-EASIX Score Demonstrated the Greatest Discriminatory Capabilities for ICANS and CRS
3.4. IL6-m-EASIX Had the Highest Initial Discriminatory Capabilities for CRS Progression to grade ≥ 2
4. Discussion
4.1. Phosphorous: P-m-EASIX
4.2. IL6: IL6-m-EASIX
4.3. The Role of Thrombocytopenia in CRS and ICANS
4.4. m-EASIX
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V.S.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant. 2021, 56, 552–566. Available online: https://www.nature.com/articles/s41409-020-01134-4 (accessed on 24 August 2024). [CrossRef] [PubMed]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.; Brassil, K.; Caterino, J.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef]
- Greenbaum, U.; Strati, P.; Saliba, R.M.; Torres, J.; Rondon, G.; Nieto, Y.; Hosing, C.; Srour, S.A.; Westin, J.; Fayad, L.E.; et al. CRP and ferritin in addition to the EASIX score predict CAR-T–related toxicity. Blood Adv. 2021, 5, 2799–2806. [Google Scholar] [CrossRef]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, X.; Xiao, Y. The critical role of endothelial cell in the toxicity associated with chimeric antigen receptor T cell therapy and intervention strategies. Ann. Hematol. 2024, 103, 2197–2206. Available online: https://link.springer.com/article/10.1007/s00277-024-05640-z (accessed on 3 April 2024). [CrossRef]
- Korell, F.; Penack, O.; Mattie, M.; Schreck, N.; Benner, A.; Krzykalla, J.; Wang, Z.; Schmitt, M.; Bullinger, L.; Müller-Tidow, C.; et al. EASIX and Severe Endothelial Complications After CD19-Directed CAR-T Cell Therapy—A Cohort Study. Front. Immunol. 2022, 13, 877477. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; Fein, J.A.; Shouval, A.; Danylesko, I.; Shem-Tov, N.; Zlotnik, M.; Yerushalmi, R.; Shimoni, A.; Nagler, A. External validation and comparison of multiple prognostic scores in allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019, 3, 1881–1890. [Google Scholar] [CrossRef]
- Luft, T.; Benner, A.; Terzer, T.; Jodele, S.; Dandoy, C.E.; Storb, R.; Kordelas, L.; Beelen, D.; Gooley, T.; Sandmaier, B.M.; et al. EASIX and mortality after allogeneic stem cell transplantation. Bone Marrow Transplant. 2019, 55, 553–561. [Google Scholar] [CrossRef]
- Pennisi, M.; Sanchez-Escamilla, M.; Flynn, J.R.; Shouval, R.; Tomas, A.A.; Silverberg, M.L.; Batlevi, C.; Brentjens, R.; Dahi, P.; Devlin, S.; et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 2021, 5, 3397. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Mahadeo, K.M.; Khazal, S.J.; Abdel-Azim, H.; Fitzgerald, J.C.; Taraseviciute, A.; Bollard, C.M.; Tewari, P.; Duncan, C.; Traube, C.; McCall, D.; et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 2018, 16, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Gust, J.; Ponce, R.; Liles, W.C.; Garden, G.A.; Turtle, C.J. Cytokines in CAR T Cell–Associated Neurotoxicity. Front. Immunol. 2020, 11, 577027. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kishimoto, T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021, 53, 1116–1123. Available online: https://www.nature.com/articles/s12276-021-00649-0 (accessed on 5 April 2024). [CrossRef]
- Santomasso, B.; Park, J.H.; Riviere, I.; Mead, E.; Halton, E.; Diamonte, C.; Purdon, T.; Senechal, B.; Li, D.; Sadelain, M.; et al. Biomarkers associated with neurotoxicity in adult patients with relapsed or refractory B-ALL (R/R B-ALL) treated with CD19 CAR T cells. J. Clin. Oncol. 2017, 35, 3019. Available online: https://ascopubs.org/doi/10.1200/JCO.2017.35.15_suppl.3019 (accessed on 18 April 2024). [CrossRef]
- Tang, J.P.; Peters, C.W.; Quiros, C.; Wang, X.; Klomhaus, A.M.; Yamada, R.E.; Timmerman, J.M.; Moore, T.B.; Nowicki, T.S. Hypophosphatemia Due to Increased Effector Cell Metabolic Activity Is Associated with Neurotoxicity Symptoms in CD19-Targeted CAR T-cell Therapy. Cancer Immunol. Res. 2022, 10, 1433–1440. [Google Scholar] [CrossRef]
- Barker, K.; Koza, S.; Katsanis, E.; Husnain, M. Hypophosphatemia and pre-infusion thrombocytopenia as biomarkers for CRS and ICANS after CAR T therapy. Bone Marrow Transplant. 2023, 58, 1267–1269. [Google Scholar] [CrossRef]
- Lafeuille, P.; Diamond, S.; Socolov, A.; Aptekar, J.; Nowicki, T. Phosphorus Disruption Is Associated with the Incidence and Severity of Neurotoxicity Symptoms in CD19-Targeted CAR-T Cell Therapy: A Pooled Clinical Trial Analysis. Blood 2023, 142, 3626. [Google Scholar] [CrossRef]
- Nakamura, N.; Arai, Y.; Kitawaki, T.; Jo, T.; Mizumoto, C.; Kanda, J.; Nishikori, M.; Yamashita, K.; Takaori-Kondo, A. Decreased serum phosphate levels are a useful biomarker to predict occurrence and severity of cytokine release syndrome in chimeric antigen receptor T-cell therapy. Br. J. Haematol. 2022, 200, E1–E3. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Sehn, L.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022, 139, 2737–2746. [Google Scholar] [CrossRef] [PubMed]
- Filioglou, D.; Husnain, M.; Khurana, S.; Simpson, R.J.; Katsanis, E. Has the shortage of fludarabine altered the current paradigm of lymphodepletion in favor of bendamustine? Front. Immunol. 2023, 14, 1329850. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Matsuoka, Y.; Mitsuyuki, S.; Yonetani, N.; Kawai, J.; Kondo, T.; Ishikawa, T. Early prediction of cytokine release syndrome by measuring phosphate and magnesium levels following chimeric antigen receptor T cell therapy. Blood Cell Ther. 2023, 6, 129–134. [Google Scholar] [PubMed]
- Juluri, K.R.; Wu, Q.V.; Voutsinas, J.M.; Hou, J.; Hirayama, A.V.; Mullane, E.; Miles, N.; Maloney, D.G.; Turtle, C.J.; Bar, M.; et al. Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy. Blood Adv. 2022, 6, 2055–2068. [Google Scholar] [CrossRef]
- Rejeski, K.; Perez, A.; Sesques, P.; Hoster, E.; Berger, C.; Jentzsch, L.; Mougiakakos, D.; Frölich, L.; Ackermann, J.; Bücklein, V.; et al. CAR-HEMATOTOX: A model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 2021, 138, 2499–2513. [Google Scholar] [CrossRef]
- Nakamura, N.; Jo, T.; Arai, Y.; Kitawaki, T.; Nishikori, M.; Mizumoto, C.; Kanda, J.; Yamashita, K.; Nagao, M.; Takaori-Kondo, A. Clinical Impact of Cytokine Release Syndrome on Prolonged Hematotoxicity after Chimeric Antigen Receptor T Cell Therapy: KyoTox A-Score, a Novel Prediction Model. Biol. Blood Marrow Transplant. 2024, 30, 404–414. [Google Scholar] [CrossRef]
- Ho-Tin-Noé, B.; Demers, M.; Wagner, D.D. How platelets safeguard vascular integrity. J. Thromb. Haemost. 2011, 9, 56–65. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, S.; Chen, S.; Wang, Y.; Sun, Q.; Xu, X.; Li, Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J. Exp. Clin. Cancer Res. 2021, 40, 1–23. Available online: https://jeccr.biomedcentral.com/articles/10.1186/s13046-021-02148-6 (accessed on 19 May 2023). [CrossRef]
- Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 2017, 16, 635–661. [Google Scholar] [CrossRef]
- Acosta-Medina, A.A.; Johnson, I.M.K.; Bansal, R.; Hathcock, M.; Kenderian, S.J.; Durani, U.; Khurana, A.; Wang, Y.; Paludo, J.; Villasboas, J.; et al. Pre-lymphodepletion & infusion endothelial activation and stress index as predictors of clinical outcomes in CAR-T therapy for B-cell lymphoma. Blood Cancer J. 2023, 13, 7. Available online: https://www.nature.com/articles/s41408-022-00777-4 (accessed on 2 April 2024).
Patient Characteristics | |
---|---|
Age, median (range) | |
Sex (n) | |
Female | 26 |
Male | 16 |
Non-Hodgkin’s lymphoma subtype (n) | |
Diffuse large B-cell lymphoma (DLBCL) | 40 |
Follicular cell lymphoma | 2 |
CAR-T cell product | |
Tisagenlecleucel | 33 |
Abxicabtagene ciloleucel | 9 |
ECOG pre infusion (n) | |
0–1 | 38 |
2–3 | 4 |
4–5 | 0 |
IPI pre infusion (n) | |
0–2 low/low–intermediate risk | 16 |
3–5 intermediate/intermediate–high risk | 26 |
≥1 site of extranodal disease | |
Yes | 24 |
No | 18 |
Lymphodepleting regimen | |
Fludarabine/cyclophosphamide | 33 |
Bendamustine | 9 |
Previous stem cell transplant | |
Yes | 10 |
No | 32 |
Median (Range) | N | Odds Ratio | 95% CI | p Value | |
---|---|---|---|---|---|
CRS | |||||
Day +0 | |||||
Platelets • | 11.9 (1.10–22.9) | 42 | 0.796 | 0.650 to 0.912 | 0.00031 |
Phosphorous ° | 33.5 (25.0- 46.0) | 42 | 0.720 | 0.273 to 1.85 | 0.50 |
IL-6 * | 2.00 (2.00–15.8) | 21 | 2.02 | 0.953 to 38.7 | 0.43 |
CRP * | 0.954 (0.301–2.08) | 40 | 1.43 | 0.178 to 2.88 | 0.62 |
LDH * | 2.32 (2.100–2.84) | 40 | 1.13 | 0.743 to 1.732 | 0.78 |
Day +1 | |||||
Platelets • | 11.5 (1.00–20.2) | 42 | 0.832 | 0.697 to 0.950 | 0.016 |
Phosphorous ° | 30.0 (19.0–39.0) | 42 | 0.874 | 0.759 to 0.978 | 0.032 |
CRP * | 1.24 (0.478–2.22) | 42 | 1.39 | 0.925 to 2.32 | 0.28 |
LDH * | 2.37 (2.10 to 2.91) | 42 | 1.17 | 0.943 to 1.45 | 0.38 |
Day 2 | |||||
Platelets • | 10.1 (1.00–17.6) | 42 | 0.797 | 0.645 to 0.924 | 0.0014 |
Phosphorous ° | 22.0 (16.0 to 36.0) | 42 | 0.730 | 0.556 to 0.873 | 0.0048 |
CRP * | 1.72 (0.477 to 2.22) | 42 | 1.93 | 1.07 to 5.32 | 0.049 |
LDH * | 2.32 (2.09 to 2.84) | 42 | 1.04 | 0.832 to 1.43 | 0.63 |
Day 3 | |||||
Platelets • | 10.4 (2.1–16.8) | 42 | 0.805 | 0.634 to 0.949 | 0.0070 |
Phosphorous ° | 22.2 (14.0–35.0) | 42 | 0.728 | 0.546 to 0.862 | <0.0001 |
IL-6 * | 56.0 (2.00–637.3) | 27 | 1.18 | 1.02 to 1.49 | 0.0009 |
CRP * | 1.57 (0.826–2.4) | 42 | 4.21 | 1.25 to 6.34 | 0.0246 |
LDH * | 2.34 (2.14–2.52) | 42 | 1.32 | 0.992 to 1.58 | 0.248 |
ICANS | |||||
Day 0 | |||||
Platelets • | 10.1 (1.20–11.1) | 42 | 0.862 | 0.753 to 0.972 | 0.025 |
Phosphorous ° | 3.10 (2.50–4.80) | 42 | 0.946 | 0.839 to 1.05 | 0.34 |
IL-6 * | 2.00 (2.00–9.60) | 21 | 1.06 | 0.801 to 1.36 | 0.62 |
CRP * | 1.07 (0.477–2.08) | 40 | 0.991 | 0.966 to 1.01 | 0.39 |
LDH * | 2.37 (2.09–2.84) | 40 | 1.01 | 0.998 to 1.09 | 0.12 |
Day 1 | |||||
Platelets • | 8.9 (1.00 to 16.4) | 42 | 0.821 | 0.698 to 0.931 | 0.0024 |
Phosphorous ° | 28.5 (20.0 to 34.0) | 42 | 0.921 | 0.784 to 0.979 | 0.0001 |
CRP * | 1.42 (0.672 to 2.22) | 42 | 1.34 | 0.954 to 1.49 | 0.157 |
LDH * | 2.42 (2.21–2.91) | 42 | 1.73 | 0.869 to 2.85 | 0.34 |
Day 2 | |||||
Platelets • | 6.45 (1.00 to 12.4) | 42 | 0.781 | 0.641 to 0.913 | 0.0009 |
Phosphorous ° | 22.0 (19.0 to 29.0) | 42 | 0.886 | 0.723 to 0.931 | 0.0048 |
CRP * | 1.802 (0.897 to 2.21) | 42 | 1.56 | 1.19 to 1.83 | 0.025 |
LDH * | 2.46 (2.14–2.84) | 42 | 1.435 | 0.812 to 2.17 | 0.39 |
Day 3 | |||||
Platelets • | 6.55 (1.20- 11.1) | 42 | 0.746 | 0.593 to 0.888 | 0.0038 |
Phosphorous ° | 19.5 (14.00–30.0) | 42 | 0.872 | 0.748 to 0.976 | 0.0036 |
IL-6 * | 146 (2.00–637.3) | 27 | 1.39 | 1.09 to 1.71 | 0.0034 |
CRP * | 1.73 (0.823- 2.34) | 42 | 1.42 | 1.31 to 1.57 | 0.0037 |
LDH * | 2.37 (2.16–2.43) | 42 | 1.05 | 0.932 to 1.13 | 0.16 |
Progression of CRS to grade ≥ 2 | |||||
Day 0 | |||||
Platelets • | 11.4 (1.10–24.5) | 42 | 0.880 | 0.779 to 0.974 | 0.023 |
Phosphorous ° | 31.0 (25.0–46.0) | 42 | 0.951 | 0.857 to 1.05 | 0.32 |
IL-6 * | 2.00 (2.0–16.8) | 21 | 1.31 | 0.991 to 2.17 | 0.14 |
CRP * | 0.930 (0.301–2.082) | 40 | 1.23 | 0.867 to 1.41 | 0.77 |
LDH * | 2.32 (2.10–2.84) | 40 | 1.56 | 0.836 to 2.26 | 0.47 |
Day 1 | |||||
Platelets • | 10.8 (1.50 to 16.4) | 42 | 0.827 | 0.702 to 0.942 | 0.010 |
Phosphorous ° | 28.0 (21.0–38.0) | 42 | 0.926 | 0.823 to 1.02 | 0.15 |
CRP * | 1.24 (0.478–2.22) | 42 | 1.10 | 0.925 to 1.41 | 0.28 |
LDH * | 2.38 (2.21 to 2.91) | 40 | 1.38 | 0.773 to 1.79 | 0.38 |
Day 2 | |||||
Platelets • | 9.70 (1.30 to 16.1) | 42 | 0.796 | 0.658 to 0.923 | 0.0074 |
Phosphorous ° | 23.0 (20.0–35.0) | 42 | 0.878 | 0.752 to 0.964 | 0.010 |
CRP * | 1.26 (0.491 to 2.22) | 40 | 1.34 | 0.845 to 1.687 | 0.32 |
LDH * | 2.34 (2.14 to 2.84) | 40 | 1.49 | 0.743 to 2.38 | 0.49 |
Day 3 | |||||
Platelets • | 8.60 (1.20–13.2) | 42 | 0.819 | 0.659 to 0.935 | 0.0076 |
Phosphorous ° | 20.0 (14.0–35.0) | 42 | 0.862 | 0.764 to 0.943 | 0.0040 |
IL-6 * | 111 (2.00–637.5) | 27 | 1.52 | 1.26 to 1.78 | 0.016 |
CRP * | 1.74 (.826–2.37) | 42 | 1.43 | 1.11 to 1.89 | 0.016 |
LDH * | 2.37 (2.16–2.51) | 42 | 1.51 | 0.993 to 2.15 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barker, K.; Marco, T.; Husnain, M.; Katsanis, E. Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression. Cancers 2025, 17, 918. https://doi.org/10.3390/cancers17060918
Barker K, Marco T, Husnain M, Katsanis E. Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression. Cancers. 2025; 17(6):918. https://doi.org/10.3390/cancers17060918
Chicago/Turabian StyleBarker, Kenneth, Tom Marco, Muhammad Husnain, and Emmanuel Katsanis. 2025. "Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression" Cancers 17, no. 6: 918. https://doi.org/10.3390/cancers17060918
APA StyleBarker, K., Marco, T., Husnain, M., & Katsanis, E. (2025). Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression. Cancers, 17(6), 918. https://doi.org/10.3390/cancers17060918