An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma
Simple Summary
Abstract
1. Introduction
2. Determinants of Drug Resistance in PM
2.1. Signaling Networks Regulating Drug Resistance
2.2. Drug Resistance Regulation by Proteins and Genes
2.3. Chemoresistance-Associated miRNAs
2.4. Cancer Stem Cell-Induced Chemoresistance
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mujoomdar, A.A.; Tilleman, T.R.; Richards, W.G.; Bueno, R.; Sugarbaker, D.J. Prevalence of in Vitro Chemotherapeutic Drug Resistance in Primary Malignant Pleural Mesothelioma: Result in a Cohort of 203 Resection Specimens. J. Thorac. Cardiovasc. Surg. 2010, 140, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Mastromarino, M.G.; Aprile, V.; Lucchi, M. Editorial: Advances in Malignant Pleural Mesothelioma: Diagnosis, Treatment, and Molecular Mechanisms. Front. Oncol. 2023, 13, 1158416. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R.; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific Clues for Prevention, Diagnosis, and Therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef]
- Rossini, M.; Rizzo, P.; Bononi, I.; Clementz, A.; Ferrari, R.; Martini, F.; Tognon, M.G. New Perspectives on Diagnosis and Therapy of Malignant Pleural Mesothelioma. Front. Oncol. 2018, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Newland, J.J.; Molin, M.D.; Terhune, J.H. An Update in Malignant Peritoneal Mesothelioma Diagnosis and Treatment—A Narrative Review. AME Surg. J. 2023, 3, 319–326. [Google Scholar] [CrossRef]
- Neumann, V.; Löseke, S.; Nowak, D.; Herth, F.J.F.; Tannapfel, A. Malignant Pleural Mesothelioma. Dtsch. Arztebl. Int. 2013, 110, 319–326. [Google Scholar] [CrossRef]
- Chee, S.J.; Lopez, M.; Mellows, T.; Gankande, S.; Moutasim, K.A.; Harris, S.; Clarke, J.; Vijayanand, P.; Thomas, G.J.; Ottensmeier, C.H. Evaluating the Effect of Immune Cells on the Outcome of Patients with Mesothelioma. Br. J. Cancer 2017, 117, 1341–1348. [Google Scholar] [CrossRef]
- Ye, L.; Ma, S.; Robinson, B.W.; Creaney, J. Immunotherapy Strategies for Mesothelioma—The Role of Tumor Specific Neoantigens in a New Era of Precision Medicine. Expert. Rev. Respir. Med. 2019, 13, 181–192. [Google Scholar] [CrossRef]
- Nicolini, F.; Mazza, M.; Nicolini, F.; Mazza, M. The Immune System of Mesothelioma Patients: A Window of Opportunity for Novel Immunotherapies. In Rare Diseases-Diagnostic and Therapeutic Odyssey; IntechOpen: London, UK, 2021; ISBN 978-1-83969-412-7. [Google Scholar]
- Rijavec, E.; Biello, F.; Barletta, G.; Dellepiane, C.; Genova, C. Novel Approaches for the Treatment of Unresectable Malignant Pleural Mesothelioma: A Focus on Immunotherapy and Target Therapy (Review). Mol. Clin. Oncol. 2022, 16, 89. [Google Scholar] [CrossRef]
- Nowak, A.K.; Jackson, A.; Sidhu, C. Management of Advanced Pleural Mesothelioma—At the Crossroads. JCO Oncol. Pract. 2022, 18, 116–124. [Google Scholar] [CrossRef]
- López-Castro, R.; Fuentes-Martín, Á.; Medina Del Valle, A.; García Peña, T.; Soro García, J.; López González, L.; Cilleruelo Ramos, Á. Advances in Immunotherapy for Malignant Pleural Mesothelioma: From Emerging Strategies to Translational Insights. Open Respir. Arch. 2024, 6, 100323. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Wang, X.F.; Wigle, D.A.; Watt, C.; Masters, G.A.; Kelley, K.; Kozono, D.E.; Stinchcombe, T. Neoadjuvant Immunotherapy in Sarcomatoid Mesothelioma (Alliance A082101). JCO J. Clin. Oncol. 2023, 41, TPS8602. [Google Scholar] [CrossRef]
- Nicolini, F.; Bocchini, M.; Bronte, G.; Delmonte, A.; Guidoboni, M.; Crinò, L.; Mazza, M. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front. Oncol. 2019, 9, 1519. [Google Scholar] [CrossRef]
- Janes, S.M.; Alrifai, D.; Fennell, D.A. Perspectives on the Treatment of Malignant Pleural Mesothelioma. N. Engl. J. Med. 2021, 385, 1207–1218. [Google Scholar] [CrossRef]
- Panou, V.; Vyberg, M.; Weinreich, U.M.; Meristoudis, C.; Falkmer, U.G.; Røe, O.D. The Established and Future Biomarkers of Malignant Pleural Mesothelioma. Cancer Treat. Rev. 2015, 41, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Scherpereel, A.; Wallyn, F.; Albelda, S.M.; Munck, C. Novel Therapies for Malignant Pleural Mesothelioma. Lancet Oncol. 2018, 19, e161–e172. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Cedres, S.; Valdivia, A.; Iranzo, P.; Callejo, A.; Pardo, N.; Navarro, A.; Martinez-Marti, A.; Assaf-Pastrana, J.D.; Felip, E.; Garrido, P. Current State-of-the-Art Therapy for Malignant Pleural Mesothelioma and Future Options Centered on Immunotherapy. Cancers 2023, 15, 5787. [Google Scholar] [CrossRef]
- Chen, S.-H.; Chang, J.-Y. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int. J. Mol. Sci. 2019, 20, 4136. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Dasari, S.; Noubissi, F.K.; Ray, P.; Kumar, S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. JEP J. Exp. Pharmacol. 2021, 13, 303–328. [Google Scholar] [CrossRef]
- Adjei, A.A. Pharmacology and Mechanism of Action of Pemetrexed. Clin. Lung Cancer 2004, 5, S51–S55. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, T.; Chen, Z.; Zhan, C.; Wang, Q. Mechanisms of Resistance to Pemetrexed in Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2019, 8, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Chen, X. Drug Resistance and Combating Drug Resistance in Cancer. CDR Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Brasseur, K.; Gévry, N.; Asselin, E. Chemoresistance and Targeted Therapies in Ovarian and Endometrial Cancers. Oncotarget 2016, 8, 4008–4042. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Cree, I.A.; Charlton, P. Molecular Chess? Hallmarks of Anti-Cancer Drug Resistance. BMC Cancer 2017, 17, 10. [Google Scholar] [CrossRef]
- Vaidya, F.U.; Sufiyan Chhipa, A.; Mishra, V.; Gupta, V.K.; Rawat, S.G.; Kumar, A.; Pathak, C. Molecular and Cellular Paradigms of Multidrug Resistance in Cancer. Cancer Rep. 2022, 5, e1291. [Google Scholar] [CrossRef]
- Lu, C.; Shervington, A. Chemoresistance in Gliomas. Mol. Cell Biochem. 2008, 312, 71–80. [Google Scholar] [CrossRef]
- Zolondick, A.A.; Gaudino, G.; Xue, J.; Pass, H.I.; Carbone, M.; Yang, H. Asbestos-Induced Chronic Inflammation in Malignant Pleural Mesothelioma and Related Therapeutic Approaches-a Narrative Review. Precis. Cancer Med. 2021, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Cioce, M.; Canino, C.; Pulito, C.; Muti, P.; Strano, S.; Blandino, G. Butein Impairs the Protumorigenic Activity of Malignant Pleural Mesothelioma Cells. Cell Cycle 2012, 11, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Canino, C.; Mori, F.; Cambria, A.; Diamantini, A.; Germoni, S.; Alessandrini, G.; Borsellino, G.; Galati, R.; Battistini, L.; Blandino, R.; et al. SASP Mediates Chemoresistance and Tumor-Initiating-Activity of Mesothelioma Cells. Oncogene 2012, 31, 3148–3163. [Google Scholar] [CrossRef]
- Canino, C.; Luo, Y.; Marcato, P.; Blandino, G.; Pass, H.I.; Cioce, M. A STAT3-NFkB/DDIT3/CEBPβ Axis Modulates ALDH1A3 Expression in Chemoresistant Cell Subpopulations. Oncotarget 2015, 6, 12637–12653. [Google Scholar] [CrossRef] [PubMed]
- Kopecka, J.; Salaroglio, I.C.; Righi, L.; Libener, R.; Orecchia, S.; Grosso, F.; Milosevic, V.; Ananthanarayanan, P.; Ricci, L.; Capelletto, E.; et al. Loss of C/EBP-β LIP Drives Cisplatin Resistance in Malignant Pleural Mesothelioma. Lung Cancer 2018, 120, 34–45. [Google Scholar] [CrossRef]
- Cioce, M.; Canino, C.; Goparaju, C.; Yang, H.; Carbone, M.; Pass, H.I. Autocrine CSF-1R Signaling Drives Mesothelioma Chemoresistance via AKT Activation. Cell Death Dis. 2014, 5, e1167. [Google Scholar] [CrossRef]
- Baselga, J.; Arteaga, C.L. Critical Update and Emerging Trends in Epidermal Growth Factor Receptor Targeting in Cancer. J. Clin. Oncol. 2005, 23, 2445–2459. [Google Scholar] [CrossRef]
- Chia, P.L.; Parakh, S.; Russell, P.; Gan, H.K.; Asadi, K.; Gebski, V.; Murone, C.; Walkiewicz, M.; Liu, Z.; Thapa, B.; et al. Expression of EGFR and Conformational Forms of EGFR in Malignant Pleural Mesothelioma and Its Impact on Survival. Lung Cancer 2021, 153, 35–41. [Google Scholar] [CrossRef]
- Xin, H.-W.; Yang, J.-H.; Nguyen, D.M. Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Requires E-Cadherin in Esophageal Cancer and Malignant Pleural Mesothelioma. Anticancer. Res. 2013, 33, 2401–2408. [Google Scholar]
- Lowe, S.W.; Cepero, E.; Evan, G. Intrinsic Tumour Suppression. Nature 2004, 432, 307–315. [Google Scholar] [CrossRef]
- Barbone, D.; Yang, T.-M.; Morgan, J.R.; Gaudino, G.; Broaddus, V.C. Mammalian Target of Rapamycin Contributes to the Acquired Apoptotic Resistance of Human Mesothelioma Multicellular Spheroids. J. Biol. Chem. 2008, 283, 13021–13030. [Google Scholar] [CrossRef] [PubMed]
- Barbone, D.; Follo, C.; Echeverry, N.; Gerbaudo, V.H.; Klabatsa, A.; Bueno, R.; Felley-Bosco, E.; Broaddus, V.C. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE 2015, 10, e0134825. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Dong, J. The Hippo Signaling Pathway in Drug Resistance in Cancer. Cancers 2021, 13, 318. [Google Scholar] [CrossRef]
- Nguyen, C.D.K.; Yi, C. YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 2019, 5, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xie, L.-X.; Zhang, X.-Y.; Hu, P.; Long, M.-F.; Xiong, F.; Huang, J.; Ye, X.-Q. Role of YAP in Lung Cancer Resistance to Cisplatin. Oncol. Lett. 2018, 16, 3949–3954. [Google Scholar] [CrossRef]
- Papavassiliou, K.A.; Sofianidi, A.A.; Papavassiliou, A.G. YAP/TAZ-TEAD Signalling Axis: A New Therapeutic Target in Malignant Pleural Mesothelioma. J. Cell. Mol. Med. 2024, 28, e18330. [Google Scholar] [CrossRef]
- Blackwell, C.; Sherk, C.; Fricko, M.; Ganji, G.; Barnette, M.; Hoang, B.; Tunstead, J.; Skedzielewski, T.; Alsaid, H.; Jucker, B.M.; et al. Inhibition of FGF/FGFR Autocrine Signaling in Mesothelioma with the FGF Ligand Trap, FP-1039/GSK3052230. Oncotarget 2016, 7, 39861–39871. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, C.; Lu, G.; Hu, Z.; Chen, Q.; Du, X. FGF/FGFR Signaling Pathway Involved Resistance in Various Cancer Types. J. Cancer 2020, 11, 2000–2007. [Google Scholar] [CrossRef]
- Grusch, M.; Pirker, C.; Hoda, M.A.R.; Berger, W.; Schelch, K. MA06.04 FGF5 Expression in Malignant Pleural Mesothelioma: Impact on Cell Growth, Cisplatin Resistance and Patient Survival. J. Thorac. Oncol. 2021, 16, S153. [Google Scholar] [CrossRef]
- Staumont, B.; Jamakhani, M.; Costa, C.; Vandermeers, F.; Sriramareddy, S.N.; Redouté, G.; Mascaux, C.; Delvenne, P.; Hubert, P.; Safari, R.; et al. TGFα Promotes Chemoresistance of Malignant Pleural Mesothelioma. Cancers 2020, 12, 1484. [Google Scholar] [CrossRef]
- Viarengo, A.; Burlando, B.; Ceratto, N.; Panfoli, I. Antioxidant Role of Metallothioneins: A Comparative Overview. Cell. Mol. Biol. 2000, 46, 407–417. [Google Scholar] [PubMed]
- Ziller, A.; Fraissinet-Tachet, L. Metallothionein Diversity and Distribution in the Tree of Life: A Multifunctional Protein. Metallomics 2018, 10, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Borchert, S.; Suckrau, P.-M.; Walter, R.F.H.; Wessolly, M.; Mairinger, E.; Steinborn, J.; Hegedus, B.; Hager, T.; Herold, T.; Eberhardt, W.E.E.; et al. Impact of Metallothionein-Knockdown on Cisplatin Resistance in Malignant Pleural Mesothelioma. Sci. Rep. 2020, 10, 18677. [Google Scholar] [CrossRef]
- Mairinger, F.D.; Schmeller, J.; Borchert, S.; Wessolly, M.; Mairinger, E.; Kollmeier, J.; Hager, T.; Mairinger, T.; Christoph, D.C.; Walter, R.F.H.; et al. Immunohistochemically Detectable Metallothionein Expression in Malignant Pleural Mesotheliomas Is Strongly Associated with Early Failure to Platin-Based Chemotherapy. Oncotarget 2018, 9, 22254–22268. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.G.; Farrell, M.P.; Schmitz, J.C. Thymidylate Synthase: A Critical Target for Cancer Chemotherapy. Clin. Color. Cancer 2002, 1, 220–229. [Google Scholar] [CrossRef]
- Saga, Y.; Suzuki, M.; Mizukami, H.; Kohno, T.; Takei, Y.; Fukushima, M.; Ozawa, K. Overexpression of Thymidylate Synthase Mediates Desensitization for 5-Fluorouracil of Tumor Cells. Int. J. Cancer 2003, 106, 324–326. [Google Scholar] [CrossRef]
- Sato, Y.; Tomita, M.; Soga, T.; Ochiai, A.; Makinoshima, H. Upregulation of Thymidylate Synthase Induces Pemetrexed Resistance in Malignant Pleural Mesothelioma. Front. Pharmacol. 2021, 12, 718675. [Google Scholar] [CrossRef]
- Kitazono-Saitoh, M.; Takiguchi, Y.; Kitazono, S.; Ashinuma, H.; Kitamura, A.; Tada, Y.; Kurosu, K.; Sakaida, E.; Sekine, I.; Tanabe, N.; et al. Interaction and Cross-Resistance of Cisplatin and Pemetrexed in Malignant Pleural Mesothelioma Cell Lines. Oncol. Rep. 2012, 28, 33–40. [Google Scholar] [CrossRef]
- Hanna, V.S.; Hafez, E.A.A. Synopsis of Arachidonic Acid Metabolism: A Review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef]
- Cioce, M.; Canino, C.; Pass, H.; Blandino, G.; Strano, S.; Fazio, V.M. Arachidonic Acid Drives Adaptive Responses to Chemotherapy-Induced Stress in Malignant Mesothelioma. J. Exp. Clin. Cancer Res. 2021, 40, 344. [Google Scholar] [CrossRef]
- Matherly, L.H.; Hou, Z.; Gangjee, A. The Promise and Challenges of Exploiting the Proton-Coupled Folate Transporter for Selective Therapeutic Targeting of Cancer. Cancer Chemother. Pharmacol. 2018, 81, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, E.; Zucali, P.A.; Assaraf, Y.G.; Funel, N.; Gemelli, M.; Stark, M.; Thunnissen, E.; Hou, Z.; Muller, I.B.; Struys, E.A.; et al. Role of Proton-Coupled Folate Transporter in Pemetrexed Resistance of Mesothelioma: Clinical Evidence and New Pharmacological Tools. Ann. Oncol. 2017, 28, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Li Petri, G.; El Hassouni, B.; Sciarrillo, R.; Funel, N.; Mantini, G.; Zeeuw van der Laan, E.A.; Cascioferro, S.; Avan, A.; Zucali, P.A.; Zaffaroni, N.; et al. Impact of Hypoxia on Chemoresistance of Mesothelioma Mediated by the Proton-Coupled Folate Transporter, and Preclinical Activity of New Anti-LDH-A Compounds. Br. J. Cancer 2020, 123, 644–656. [Google Scholar] [CrossRef]
- Jensen, D.E.; Proctor, M.; Marquis, S.T.; Gardner, H.P.; Ha, S.I.; Chodosh, L.A.; Ishov, A.M.; Tommerup, N.; Vissing, H.; Sekido, Y.; et al. BAP1: A Novel Ubiquitin Hydrolase Which Binds to the BRCA1 RING Finger and Enhances BRCA1-Mediated Cell Growth Suppression. Oncogene 1998, 16, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Wiesner, T.; Scolyer, R.A. Tumours Associated with BAP1 Mutations. Pathology 2013, 45, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Oehl, K.; Vrugt, B.; Wagner, U.; Kirschner, M.B.; Meerang, M.; Weder, W.; Felley-Bosco, E.; Wollscheid, B.; Bankov, K.; Demes, M.C.; et al. Alterations in BAP1 Are Associated with Cisplatin Resistance through Inhibition of Apoptosis in Malignant Pleural Mesothelioma. Clin. Cancer Res. 2021, 27, 2277–2291. [Google Scholar] [CrossRef]
- Guazzelli, A.; Meysami, P.; Bakker, E.; Demonacos, C.; Giordano, A.; Krstic-Demonacos, M.; Mutti, L. BAP1 Status Determines the Sensitivity of Malignant Mesothelioma Cells to Gemcitabine Treatment. Int. J. Mol. Sci. 2019, 20, 429. [Google Scholar] [CrossRef]
- Berx, G.; van Roy, F. Involvement of Members of the Cadherin Superfamily in Cancer. Cold Spring Harb. Perspect. Biol. 2009, 1, a003129. [Google Scholar] [CrossRef]
- Jeanes, A.; Gottardi, C.J.; Yap, A.S. Cadherins and Cancer: How Does Cadherin Dysfunction Promote Tumor Progression? Oncogene 2008, 27, 6920–6929. [Google Scholar] [CrossRef]
- Kato, T.; Sato, T.; Yokoi, K.; Sekido, Y. E-Cadherin Expression Is Correlated with Focal Adhesion Kinase Inhibitor Resistance in Merlin-Negative Malignant Mesothelioma Cells. Oncogene 2017, 36, 5522–5531. [Google Scholar] [CrossRef]
- Janson, V.; Andersson, B.; Behnam-Motlagh, P.; Engström, K.G.; Henriksson, R.; Grankvist, K. Acquisition of Cisplatin-Resistance in Malignant Mesothelioma Cells Abrogates Na+,K+,2Cl(-)-Cotransport Activity and Cisplatin-Induced Early Membrane Blebbing. Cell Physiol. Biochem. 2008, 22, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front. Oncol. 2017, 7, 78. [Google Scholar] [CrossRef]
- Xu, D.; Liang, S.-Q.; Yang, H.; Lüthi, U.; Riether, C.; Berezowska, S.; Marti, T.M.; Hall, S.R.R.; Bruggmann, R.; Kocher, G.J.; et al. Increased Sensitivity to Apoptosis upon Endoplasmic Reticulum Stress-Induced Activation of the Unfolded Protein Response in Chemotherapy-Resistant Malignant Pleural Mesothelioma. Br. J. Cancer 2018, 119, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Lasham, A.; Print, C.G.; Woolley, A.G.; Dunn, S.E.; Braithwaite, A.W. YB-1: Oncoprotein, Prognostic Marker and Therapeutic Target? Biochem. J. 2013, 449, 11–23. [Google Scholar] [CrossRef]
- Schelch, K.; Emminger, D.; Zitta, B.; Johnson, T.G.; Kopatz, V.; Eder, S.; Ries, A.; Stefanelli, A.; Heffeter, P.; Hoda, M.A.; et al. Targeting YB-1 via Entinostat Enhances Cisplatin Sensitivity of Pleural Mesothelioma in Vitro and in Vivo. Cancer Lett. 2023, 574, 216395. [Google Scholar] [CrossRef]
- Magee, P.; Shi, L.; Garofalo, M. Role of MicroRNAs in Chemoresistance. Ann. Transl. Med. 2015, 3, 332. [Google Scholar] [CrossRef]
- Si, W.; Shen, J.; Zheng, H.; Fan, W. The Role and Mechanisms of Action of MicroRNAs in Cancer Drug Resistance. Clin. Epigenetics 2019, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Moody, H.L.; Lind, M.J.; Maher, S.G. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Mol. Ther. Nucleic Acids 2017, 8, 317–329. [Google Scholar] [CrossRef]
- Yamamoto, K.; Seike, M.; Takeuchi, S.; Soeno, C.; Miyanaga, A.; Noro, R.; Minegishi, Y.; Kubota, K.; Gemma, A. MiR-379/411 Cluster Regulates IL-18 and Contributes to Drug Resistance in Malignant Pleural Mesothelioma. Oncol. Rep. 2014, 32, 2365–2372. [Google Scholar] [CrossRef]
- Amatya, V.J.; Mawas, A.S.; Kushitani, K.; Mohi El-Din, M.M.; Takeshima, Y. Differential MicroRNA Expression Profiling of Mesothelioma and Expression Analysis of MiR-1 and MiR-214 in Mesothelioma. Int. J. Oncol. 2016, 48, 1599–1607. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, Y.; Liang, P.; Wang, B.; Tan, H.; Zhang, Y.; Gao, X.; Gao, J. TP53TG1 Enhances Cisplatin Sensitivity of Non-Small Cell Lung Cancer Cells through Regulating MiR-18a/PTEN Axis. Cell Biosci. 2018, 8, 23. [Google Scholar] [CrossRef]
- Suzuki, R.; Amatya, V.J.; Kushitani, K.; Kai, Y.; Kambara, T.; Fujii, Y.; Takeshima, Y. Inhibition of MiR-18a-3p Reduces Proliferation of Mesothelioma Cells and Sensitizes Them to Cisplatin. Oncol. Lett. 2020, 19, 4161–4168. [Google Scholar] [CrossRef]
- Sun, W.-J.; Zhang, Y.-N.; Xue, P. MiR-186 Inhibits Proliferation, Migration, and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Targeting Twist1. J. Cell Biochem. 2019, 120, 10001–10009. [Google Scholar] [CrossRef]
- Guo, W.; You, X.; Xu, D.; Zhang, Y.; Wang, Z.; Man, K.; Wang, Z.; Chen, Y. PAQR3 Enhances Twist1 Degradation to Suppress Epithelial–Mesenchymal Transition and Metastasis of Gastric Cancer Cells. Carcinogenesis 2016, 37, 397–407. [Google Scholar] [CrossRef]
- Feng, M.-Y.; Wang, K.; Shi, Q.-T.; Yu, X.-W.; Geng, J.-S. Gene Expression Profiling in TWIST-Depleted Gastric Cancer Cells. Anat. Rec. 2009, 292, 262–270. [Google Scholar] [CrossRef]
- Cioce, M.; Rutigliano, D.; Puglielli, A.; Fazio, V.M. Butein-Instigated MiR-186-5p-Dependent Modulation of TWIST1 Affects Resistance to Cisplatin and Bioenergetics of Malignant Pleural Mesothelioma Cells. Cancer Drug Resist. 2022, 5, 814–828. [Google Scholar] [CrossRef]
- Kanintronkul, Y.; Worayuthakarn, R.; Thasana, N.; Winayanuwattikun, P.; Pattanapanyasat, K.; Surarit, R.; Ruchirawat, S.; Svasti, J. Overcoming Multidrug Resistance in Human Lung Cancer with Novel Benzo[a]Quinolizin-4-Ones. Anticancer. Res. 2011, 31, 921–927. [Google Scholar]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.-R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef]
- Kenworthy, R.; Bosco, D.B.; DeLigio, J.T.; Zorio, D.A.R. Micro-RNA149 Confers Taxane Resistance to Malignant Mesothelioma Cells via Regulation of P-Glycoprotein Expression. Cancer Biol. Ther. 2018, 19, 181–187. [Google Scholar] [CrossRef]
- Soini, Y.; Järvinen, K.; Kaarteenaho-Wiik, R.; Kinnula, V. The Expression of P-Glycoprotein and Multidrug Resistance Proteins 1 and 2 (MRP1 and MRP2) in Human Malignant Mesothelioma. Ann. Oncol. 2001, 12, 1239–1245. [Google Scholar] [CrossRef]
- Williams, M.; Cheng, Y.Y.; Phimmachanh, M.; Winata, P.; van Zandwijk, N.; Reid, G. Tumour Suppressor MicroRNAs Contribute to Drug Resistance in Malignant Pleural Mesothelioma by Targeting Anti-Apoptotic Pathways. Cancer Drug Resist. 2019, 2, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, J.; Guo, F. MiR-186 Reverses Cisplatin Resistance and Inhibits the Formation of the Glioblastoma-Initiating Cell Phenotype by Degrading Yin Yang 1 in Glioblastoma. Int. J. Mol. Med. 2019, 43, 517–524. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Z.; Sun, L.; Fang, Y.; Xu, X.; Zhou, G. MiR-186 Regulates Chemo-Sensitivity to Paclitaxel via Targeting MAPT in Non-Small Cell Lung Cancer (NSCLC). Mol. Biosyst. 2016, 12, 3417–3424. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, X.; Chen, Y.; Huang, Y.; He, J.; Luo, H. MiR-186-5p Targeting SIX1 Inhibits Cisplatin Resistance in Non-Small-Cell Lung Cancer Cells (NSCLCs). Neoplasma 2020, 67, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.C.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; et al. Epithelial-to-Mesenchymal Transition Is Not Required for Lung Metastasis but Contributes to Chemoresistance. Nature 2015, 527, 472–476. [Google Scholar] [CrossRef]
- Hayat, H.; Hayat, H.; Dwan, B.F.; Gudi, M.; Bishop, J.O.; Wang, P. A Concise Review: The Role of Stem Cells in Cancer Progression and Therapy. Onco Targets Ther. 2021, 14, 2761–2772. [Google Scholar] [CrossRef]
- Rezayatmand, H.; Razmkhah, M.; Razeghian-Jahromi, I. Drug Resistance in Cancer Therapy: The Pandora’s Box of Cancer Stem Cells. Stem Cell Res. Ther. 2022, 13, 181. [Google Scholar] [CrossRef]
- Chen, W.; Dong, J.; Haiech, J.; Kilhoffer, M.-C.; Zeniou, M. Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int. 2016, 2016, 1740936. [Google Scholar] [CrossRef]
- Phi, L.T.H.; Sari, I.N.; Yang, Y.-G.; Lee, S.-H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer Stem Cells (CSCs) in Drug Resistance and Their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018, 2018, 5416923. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Ajani, J.A.; Song, S. Drug Resistance and Cancer Stem Cells. Cell Commun. Signal. 2021, 19, 19. [Google Scholar] [CrossRef]
- Ohno, Y.; Shingyoku, S.; Miyake, S.; Tanaka, A.; Fudesaka, S.; Shimizu, Y.; Yoshifuji, A.; Yamawaki, Y.; Yoshida, S.; Tanaka, S.; et al. Differential Regulation of the Sphere Formation and Maintenance of Cancer-Initiating Cells of Malignant Mesothelioma via CD44 and ALK4 Signaling Pathways. Oncogene 2018, 37, 6357–6367. [Google Scholar] [CrossRef]
- Ghani, F.I.; Yamazaki, H.; Iwata, S.; Okamoto, T.; Aoe, K.; Okabe, K.; Mimura, Y.; Fujimoto, N.; Kishimoto, T.; Yamada, T.; et al. Identification of Cancer Stem Cell Markers in Human Malignant Mesothelioma Cells. Biochem. Biophys. Res. Commun. 2011, 404, 735–742. [Google Scholar] [CrossRef]
- Pasdar, E.A.; Smits, M.; Stapelberg, M.; Bajzikova, M.; Stantic, M.; Goodwin, J.; Yan, B.; Stursa, J.; Kovarova, J.; Sachaphibulkij, K.; et al. Characterisation of Mesothelioma-Initiating Cells and Their Susceptibility to Anti-Cancer Agents. PLoS ONE 2015, 10, e0119549. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Naito, M.; Ghani, F.I.; Dang, N.H.; Iwata, S.; Morimoto, C. Characterization of Cancer Stem Cell Properties of CD24 and CD26-Positive Human Malignant Mesothelioma Cells. Biochem. Biophys. Res. Commun. 2012, 419, 529–536. [Google Scholar] [CrossRef]
- Cortes-Dericks, L.; Carboni, G.L.; Schmid, R.A.; Karoubi, G. Putative Cancer Stem Cells in Malignant Pleural Mesothelioma Show Resistance to Cisplatin and Pemetrexed. Int. J. Oncol. 2010, 37, 437–444. [Google Scholar] [CrossRef]
- Cortes-Dericks, L.; Froment, L.; Boesch, R.; Schmid, R.A.; Karoubi, G. Cisplatin-Resistant Cells in Malignant Pleural Mesothelioma Cell Lines Show ALDH(High)CD44(+) Phenotype and Sphere-Forming Capacity. BMC Cancer 2014, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Kai, K.; D’Costa, S.; Yoon, B.-I.; Brody, A.R.; Sills, R.C.; Kim, Y. Characterization of Side Population Cells in Human Malignant Mesothelioma Cell Lines. Lung Cancer 2010, 70, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Melotti, A.; Daga, A.; Marubbi, D.; Zunino, A.; Mutti, L.; Corte, G. In Vitro and in Vivo Characterization of Highly Purified Human Mesothelioma Derived Cells. BMC Cancer 2010, 10, 54. [Google Scholar] [CrossRef]
- Frei, C.; Opitz, I.; Soltermann, A.; Fischer, B.; Moura, U.; Rehrauer, H.; Weder, W.; Stahel, R.; Felley-Bosco, E. Pleural Mesothelioma Side Populations Have a Precursor Phenotype. Carcinogenesis 2011, 32, 1324–1332. [Google Scholar] [CrossRef]
- Wu, L.; Blum, W.; Zhu, C.-Q.; Yun, Z.; Pecze, L.; Kohno, M.; Chan, M.-L.; Zhao, Y.; Felley-Bosco, E.; Schwaller, B.; et al. Putative Cancer Stem Cells May Be the Key Target to Inhibit Cancer Cell Repopulation between the Intervals of Chemoradiation in Murine Mesothelioma. BMC Cancer 2018, 18, 471. [Google Scholar] [CrossRef]
- Milosevic, V.; Kopecka, J.; Salaroglio, I.C.; Libener, R.; Napoli, F.; Izzo, S.; Orecchia, S.; Ananthanarayanan, P.; Bironzo, P.; Grosso, F.; et al. Wnt/IL-1β/IL-8 Autocrine Circuitries Control Chemoresistance in Mesothelioma Initiating Cells by Inducing ABCB5. Int. J. Cancer 2020, 146, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, G.; Grun, D.; Alexander, H.R.; Friedberg, J.S.; Xu, W.; Keillor, J.W.; Kandasamy, S.; Eckert, R.L. Transglutaminase Is a Mesothelioma Cancer Stem Cell Survival Protein That Is Required for Tumor Formation. Oncotarget 2018, 9, 34495–34505. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lv, X.; Yan, Y.; Zhao, Y.; Ma, R.; He, M.; Wei, M. Hypoxia-Mediated Cancer Stem Cell Resistance and Targeted Therapy. Biomed. Pharmacother. 2020, 130, 110623. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-C.; Hwang, S.-H.; Kim, N.-Y.; Lee, H.-S.; Ji, S.; Yang, Y.; Kim, Y. Hypoxia Promotes Acquisition of Aggressive Phenotypes in Human Malignant Mesothelioma. BMC Cancer 2018, 18, 819. [Google Scholar] [CrossRef]
- Endoh, D.; Ishii, K.; Kohno, K.; Virgona, N.; Miyakoshi, Y.; Yano, T.; Ishida, T. Chemoresistance related to hypoxia adaptation in mesothelioma cells from tumor spheroids. Exp. Oncol. 2022, 44, 121–125. [Google Scholar] [CrossRef]
- De Gooijer, C.J.; Baas, P.; Burgers, J.A. Current Chemotherapy Strategies in Malignant Pleural Mesothelioma. Transl. Lung Cancer Res. 2018, 7, 574–583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes-Dericks, L.; Galetta, D. An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma. Cancers 2025, 17, 979. https://doi.org/10.3390/cancers17060979
Cortes-Dericks L, Galetta D. An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma. Cancers. 2025; 17(6):979. https://doi.org/10.3390/cancers17060979
Chicago/Turabian StyleCortes-Dericks, Lourdes, and Domenico Galetta. 2025. "An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma" Cancers 17, no. 6: 979. https://doi.org/10.3390/cancers17060979
APA StyleCortes-Dericks, L., & Galetta, D. (2025). An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma. Cancers, 17(6), 979. https://doi.org/10.3390/cancers17060979