Genomic Signature for Initial Brain Metastasis Velocity (iBMV) in Non-Small-Cell Lung Cancer Patients: The Elusive Biomarker to Predict the Development of Brain Metastases?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Initial Brain Metastasis Velocity
2.3. Comprehensive Genomic Profiling
2.4. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Development of Genomic Risk Score for iBMV
3.3. Development of Brain Metastases Based on iBMV Genomic Risk Score
3.4. Other Clinical Outcomes Related to iBMV Genomic Risk Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Stoltzfus, K.C.; Chen, H.; Louie, A.V.; Lehrer, E.J.; Horn, S.R.; Palmer, J.D.; Trifiletti, D.M.; Brown, P.D.; Zaorsky, N.G. Epidemiology of synchronous brain metastases. Neuro-Oncol. Adv. 2020, 2, vdaa041. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.D.; Cheung, V.J.; Patel, A.J.; Suki, D.; Rao, G. Epidemiology of metastatic brain tumors. Neurosurg. Clin. North Am. 2011, 22, 1–6. [Google Scholar] [CrossRef]
- Brenner, A.W.; Patel, A.J. Review of Current Principles of the Diagnosis and Management of Brain Metastases. Front. Oncol. 2022, 12, 857622. [Google Scholar] [CrossRef]
- Natesan, D.; Carpenter, D.J.; Giles, W.; Oyekunle, T.; Niedzwiecki, D.; Reitman, Z.J.; Kirkpatrick, J.P.; Floyd, S.R. Clinical Factors Associated With 30-Day Mortality Among Patients Undergoing Radiation Therapy for Brain Metastases. Adv. Radiat. Oncol. 2023, 8, 101211. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.R.; Mehta, M.P. Targeted therapy for brain metastases: Improving the therapeutic ratio. Clin. Cancer Res. 2007, 13, 1675–1683. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Pichert, M.D.; Canavan, M.E.; Maduka, R.C.; Li, A.X.; Ermer, T.; Zhan, P.L.; Kaminski, M.; Udelsman, B.V.; Blasberg, J.D.; Mase, V.J., Jr.; et al. Revisiting indications for brain imaging during the clinical staging evaluation of lung cancer. JTO Clin. Res. Rep. 2022, 3, 100318. [Google Scholar] [CrossRef] [PubMed]
- Arvold, N.D.; Lee, E.Q.; Mehta, M.P.; Margolin, K.; Alexander, B.M.; Lin, N.U.; Anders, C.K.; Soffietti, R.; Camidge, D.R.; Vogelbaum, M.A.; et al. Updates in the management of brain metastases. Neuro. Oncol. 2016, 18, 1043–1065. [Google Scholar] [CrossRef]
- Najafian, K.; Rehany, B.; Nowakowski, A.; Ghazimoghadam, S.; Pierre, K.; Zakarian, R.; Al-Saadi, T.; Reinhold, C.; Babajani-Feremi, A.; Wong, J.K.; et al. Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans. Neuro-Oncol. Adv. 2024, 6, vdae200. [Google Scholar] [CrossRef]
- Zuccato, J.A.; Mamatjan, Y.; Nassiri, F.; Ajisebutu, A.; Liu, J.C.; Muazzam, A.; Singh, O.; Zhang, W.; Voisin, M.; Mirhadi, S.; et al. Prediction of brain metastasis development with DNA methylation signatures. Nat. Med. 2025, 31, 116–125. [Google Scholar] [CrossRef]
- Soike, M.H.; McTyre, E.R.; Hughes, R.T.; Farris, M.; Cramer, C.K.; LeCompte, M.C.; Lanier, C.M.; Ruiz, J.; Su, J.; Watabe, K.; et al. Initial brain metastasis velocity: Does the rate at which cancers first seed the brain affect outcomes? J. Neuro-Oncol. 2018, 139, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Wang, Y.Z.; D’Agostino, R.; Liu, Y.; Ruiz, J.; Lycan, T.; Oliver, G.; Miller, L.D.; Topaloglu, U.; Pinkney, J.; et al. Prognostic Mutational Signatures of NSCLC Patients treated with chemotherapy, immunotherapy and chemoimmunotherapy. npj Precis. Oncol. 2023, 7, 34. [Google Scholar] [CrossRef]
- Choi, A.R.; Lanier, C.M.; Glynn, S.E.; D’Agostino, R.; Farris, M.; Abdulhaleem, M.; Wang, Y.; Smith, M.; Ruiz, J.; Lycan, T.; et al. External Validation of Oligometastatic Genomic Signaturein Non-Small Cell Lung Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S95. [Google Scholar] [CrossRef]
- Abdulhaleem, M.; Hunting, J.C.; Wang, Y.; Smith, M.R.; Agostino, R.J.; Lycan, T.; Farris, M.K.; Ververs, J.; Lo, H.W.; Watabe, K.; et al. Use of comprehensive genomic profiling for biomarker discovery for the management of non-small cell lung cancer brain metastases. Front. Oncol. 2023, 13, 1214126. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.I.; Nagasaka, M.; Zhu, V.W. Liquid Biopsy to Identify Actionable Genomic Alterations. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 978–997. [Google Scholar] [CrossRef] [PubMed]
- Leighl, N.B.; Page, R.D.; Raymond, V.M.; Daniel, D.B.; Divers, S.G.; Reckamp, K.L.; Villalona-Calero, M.A.; Dix, D.; Odegaard, J.I.; Lanman, R.B.; et al. Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-small Cell Lung Cancer. Clin. Cancer Res. 2019, 25, 4691–4700. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Schouten, L.J.; Rutten, J.; Huveneers, H.A.; Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002, 94, 2698–2705. [Google Scholar] [CrossRef]
- Ryoo, J.J.; Batech, M.; Zheng, C.Y.; Kim, R.W.; Gould, M.K.; Kagan, A.R.; Lien, W.W. Radiotherapy (RT) for brain metastases (BM) near the end of life (EOL): Palliation or poor-quality care? J. Clin. Oncol. 2015, 33, 58. [Google Scholar] [CrossRef]
- Kuremsky, J.G.; Urbanic, J.J.; Petty, W.J.; Lovato, J.F.; Bourland, J.D.; Tatter, S.B.; Ellis, T.L.; McMullen, K.P.; Shaw, E.G.; Chan, M.D. Tumor histology predicts patterns of failure and survival in patients with brain metastases from lung cancer treated with gamma knife radiosurgery. Neurosurgery 2013, 73, 641–647. [Google Scholar] [CrossRef]
- Ayala-Peacock, D.N.; Attia, A.; Braunstein, S.E.; Ahluwalia, M.S.; Hepel, J.; Chung, C.; Contessa, J.; McTyre, E.; Peiffer, A.M.; Lucas, J.T., Jr.; et al. Prediction of new brain metastases after radiosurgery: Validation and analysis of performance of a multi-institutional nomogram. J. Neuro-Oncol. 2017, 135, 403–411. [Google Scholar] [CrossRef]
- Mujoomdar, A.; Austin, J.H.; Malhotra, R.; Powell, C.A.; Pearson, G.D.; Shiau, M.C.; Raftopoulos, H. Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: Primary tumor size, cell type, and lymph node metastases. Radiology 2007, 242, 882–888. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chung, C.L.; Chou, Y.T.; Lee, H.L.; Lin, S.E.; Liu, H.E. Identification of subgroup patients with stage IIIB/IV non-small cell lung cancer at higher risk for brain metastases. Lung Cancer 2013, 82, 319–323. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, W.; Rong, L.; Sun, M.; Lin, X.; Wang, L.; Wang, S.; Wang, Y.; Hui, Z. Epidermal growth factor receptor mutations and brain metastases in non-small cell lung cancer. Front. Oncol. 2022, 12, 912505. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, W.J.; Lester-Coll, N.H.; Wu, A.J.; Yang, T.J.; Lockney, N.A.; Gerber, N.K.; Beal, K.; Amini, A.; Patil, T.; Kavanagh, B.D.; et al. Management of Brain Metastases in Tyrosine Kinase Inhibitor-Naive Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer: A Retrospective Multi-Institutional Analysis. J. Clin. Oncol. 2017, 35, 1070. [Google Scholar] [CrossRef] [PubMed]
- Johung, K.L.; Yeh, N.; Desai, N.B.; Williams, T.M.; Lautenschlaeger, T.; Arvold, N.D.; Ning, M.S.; Attia, A.; Lovly, C.M.; Goldberg, S.; et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J. Clin. Oncol. 2016, 34, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Na, I.I.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J. Thorac. Oncol. 2014, 9, 195–199. [Google Scholar] [CrossRef]
- Griesinger, F.; Roeper, J.; Pottgen, C.; Willborn, K.C.; Eberhardt, W.E.E. Brain metastases in ALK-positive NSCLC—Time to adjust current treatment algorithms. Oncotarget 2018, 9, 35181–35194. [Google Scholar] [CrossRef]
- Rangachari, D.; Yamaguchi, N.; VanderLaan, P.A.; Folch, E.; Mahadevan, A.; Floyd, S.R.; Uhlmann, E.J.; Wong, E.T.; Dahlberg, S.E.; Huberman, M.S.; et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer 2015, 88, 108–111. [Google Scholar] [CrossRef]
- Pena-Pino, I.; Chen, C.C. Stereotactic Radiosurgery as Treatment for Brain Metastases: An Update. Asian J. Neurosurg. 2023, 18, 246–257. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Jones, B.M.; Dickstein, D.R.; Green, S.; Germano, I.M.; Palmer, J.D.; Laack, N.; Brown, P.D.; Gondi, V.; Wefel, J.S.; et al. The Cognitive Effects of Radiotherapy for Brain Metastases. Front. Oncol. 2022, 12, 893264. [Google Scholar] [CrossRef] [PubMed]
- Shenker, R.F.; McTyre, E.R.; Taksler, G.B.; D’Agostino, R.B.; Cramer, C.K.; Ruiz, J.; Alphonse-Sullivan, N.K.; Farris, M.; Watabe, K.; Xing, F.; et al. Analysis of the drivers of cost of management when patients with brain metastases are treated with upfront radiosurgery. Clin. Neurol. Neurosur. 2019, 176, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Lanier, C.M.; Choi, A.R.; D’Agostino, R.; Glynn, S.E.; Abdulhaleem, M.; Smith, M.; Wang, Y.; Ruiz, J.; Lycan, T.; Petty, W.J.; et al. Genomic Signature for Leptomeningeal Progression in Brain Metastasis Patients Using Liquid Biopsy-Acquired Comprehensive Genomic Profiling. Int. J. Radiat. Oncol. 2024, 120, S190–S191. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Carter, S.L.; Santagata, S.; Cahill, D.P.; Taylor-Weiner, A.; Jones, R.T.; Van Allen, E.M.; Lawrence, M.S.; Horowitz, P.M.; Cibulskis, K.; et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015, 5, 1164–1177. [Google Scholar] [CrossRef] [PubMed]
- McTyre, E.R.; Soike, M.H.; Farris, M.; Ayala-Peacock, D.N.; Hepel, J.T.; Page, B.R.; Shen, C.; Kleinberg, L.; Contessa, J.N.; Corso, C.; et al. Multi-institutional validation of brain metastasis velocity, a recently defined predictor of outcomes following stereotactic radiosurgery. Radiother. Oncol. 2020, 142, 168–174. [Google Scholar] [CrossRef]
- McTyre, E.; Ayala-Peacock, D.; Contessa, J.; Corso, C.; Chiang, V.; Chung, C.; Fiveash, J.; Ahluwalia, M.; Kotecha, R.; Chao, S.; et al. Multi-institutional competing risks analysis of distant brain failure and salvage patterns after upfront radiosurgery without whole brain radiotherapy for brain metastasis. Ann. Oncol. 2018, 29, 497–503. [Google Scholar] [CrossRef]
- Lamba, N.; Iorgulescu, B. Checkpoint Blockade Therapy for Brain-Metastatic Non-Small Cell Lung Cancer: A Comparative Effectiveness Analysis of National Data. J. Immunother. Cancer 2020, 8, A115–A116. [Google Scholar] [CrossRef]
Entire Cohort | Positive iBMV | Neutral iBMV | Negative iBMV | |
---|---|---|---|---|
n, % | ||||
312 (100%) | 95 (30.4%) | 197 (63.1%) | 20 (6.4%) | |
Median age, years | ||||
67 | 67 | 68 | 66 | |
Sex | ||||
Male | 155 (49.7%) | 42 (27.1%) | 102 (65.8%) | 11 (7.1%) |
Female | 157 (50.3%) | 53 (33.8%) | 95 (60.5%) | 9 (5.7%) |
Race | ||||
White | 265 (84.9%) | 77 (29.1%) | 169 (63.8%) | 19 (7.2%) |
African American | 40 (12.8%) | 16 (40%) | 24 (60%) | 0 |
Asian Indian | 1 (0.3%) | 0 | 0 | 1 (100%) |
Hispanic | 1 (0.3%) | 0 | 1 (100%) | 0 |
Other | 5 (1.6%) | 2 (40%) | 3 (60%) | 0 |
Karnofsky Performance Status | ||||
100–80% | 201 (64.4%) | 57 (28.3%) | 132 (65.7%) | 12 (59.7%) |
70–50% | 99 (31.7%) | 35 (35.4%) | 57 (57.6%) | 7 (7.1%) |
40–0% | 9 (2.9%) | 1 (11%) | 7 (77.8%) | 1 (11%) |
Unknown | 3 (1.0%) | 2 (66.7%) | 1 (33.3%) | 0 |
Actionable Mutations | ||||
EGFR | 69 (22.1%) | 21 (30.4%) | 41 (59.4%) | 7 (10.1%) |
KRAS | 94 (30.1%) | 32 (34.0%) | 56 (59.6%) | 6 (6.4%) |
ALK | 19 (6.1%) | 8 (42.1%) | 7 (36.8%) | 4 (21.1%) |
ROS1 | 14 (4.5%) | 6 (42.9%) | 6 (42.9%) | 2 (14.3%) |
BRAF | 27 (8.7%) | 26 (96.3%) | 1 (3.7%) | 1 (3.7%) |
Smoking Status | ||||
Former | 194 (62.2%) | |||
Current | 69 (22.1%) | |||
Never | 49 (15.7%) | |||
Stage | ||||
I | 4 (1.3%) | |||
II | 3 (1.0%) | |||
III | 38 (12.2%) | |||
IV | 267 (85.6%) | |||
NSCLC Histology | ||||
Adenocarcinoma | 247 (79.2%) | |||
Squamous cell carcinoma | 53 (17.0%) | |||
Large-cell carcinoma | 2 (0.6%) | |||
NSCLC-NOS | 10 (3.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glynn, S.E.; Lanier, C.M.; Choi, A.R.; D’Agostino, R., Jr.; Farris, M.; Abdulhaleem, M.; Wang, Y.; Smith, M.; Ruiz, J.; Lycan, T.; et al. Genomic Signature for Initial Brain Metastasis Velocity (iBMV) in Non-Small-Cell Lung Cancer Patients: The Elusive Biomarker to Predict the Development of Brain Metastases? Cancers 2025, 17, 991. https://doi.org/10.3390/cancers17060991
Glynn SE, Lanier CM, Choi AR, D’Agostino R Jr., Farris M, Abdulhaleem M, Wang Y, Smith M, Ruiz J, Lycan T, et al. Genomic Signature for Initial Brain Metastasis Velocity (iBMV) in Non-Small-Cell Lung Cancer Patients: The Elusive Biomarker to Predict the Development of Brain Metastases? Cancers. 2025; 17(6):991. https://doi.org/10.3390/cancers17060991
Chicago/Turabian StyleGlynn, Sarah E., Claire M. Lanier, Ariel R. Choi, Ralph D’Agostino, Jr., Michael Farris, Mohammed Abdulhaleem, Yuezhu Wang, Margaret Smith, Jimmy Ruiz, Thomas Lycan, and et al. 2025. "Genomic Signature for Initial Brain Metastasis Velocity (iBMV) in Non-Small-Cell Lung Cancer Patients: The Elusive Biomarker to Predict the Development of Brain Metastases?" Cancers 17, no. 6: 991. https://doi.org/10.3390/cancers17060991
APA StyleGlynn, S. E., Lanier, C. M., Choi, A. R., D’Agostino, R., Jr., Farris, M., Abdulhaleem, M., Wang, Y., Smith, M., Ruiz, J., Lycan, T., Petty, W. J., Cramer, C. K., Tatter, S. B., Laxton, A. W., White, J. J., Su, J., Whitlow, C. T., Soto-Pantoja, D. R., Xing, F., ... Helis, C. A. (2025). Genomic Signature for Initial Brain Metastasis Velocity (iBMV) in Non-Small-Cell Lung Cancer Patients: The Elusive Biomarker to Predict the Development of Brain Metastases? Cancers, 17(6), 991. https://doi.org/10.3390/cancers17060991