Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies
Simple Summary
Abstract
1. Introduction
2. Types of Cancer Based on Molecular Classification
Types of Cancer | Subgroups | Biomarkers | Other Markers | Diagnostic Guidelines | Reference |
---|---|---|---|---|---|
Luminal | Luminal A | ER (≥1%), PR (≥20%), Ki-67 (<20%) | BCL2, CK8/18, ESR1, GATA3, TRPS1, GPR160, TMEM45B, BAG1 | [84] | [85,86,87] |
Luminal B (HER2-negative) | ER (≥1%), PR (<20%), HER2 (≤10%) Ki-67 (≥20%) | CK8/18, GATA3, TRPS1, ESR1, FOXA1, CXXC5, BIRC5, BLVRA, UBE2T | [86,87] | ||
Luminal B (HER2-positive) | ER (≥1%), PR (<20%), HER2 (>10%), Ki-67 (15–30%) | CK8/18, GATA3, TRPS1, MKI67, cyclin B1 | [85,86] | ||
HER2-enriched | HER2-positive | ER (<1%), PR (<20%), HER2 (>10%), Ki-67 (>30%) | ERBB2, MYC, MAPK, TP53, VHL, ATM | [88] | [89,90] |
HER2-low | ER (≥1%), HER2 (>10%), Ki-67 (≤30%) | BCL2, BAG1, FOXA1, ESR1, CCNE1, CCNB1, MYBL2, MKI67, MELK | [91,92] | ||
TNBC | BL1 | ER (<1%), PR (<20%), HER2 (≤10%), Ki-67 (>30%) | EGFR, CK5/6, CK14, CK17, MYC, PIK3CA, CDK6, AKT2, KRAS, FGFR1, IGF1R, CCNE1, CDKN2A/B, BRCA, PTEN, MDM2, RB1, TP53 | [84,88,93] | [83,94] |
BL2 | EGFR, MET, NGF, IGF-1R, Wnt-β-catenin | [83] | |||
M | Wnt, TGF-β, DNMT3A, TP53, PDGFRA, MAP3K1 | [83,94] | |||
MSL | ABCA8, PROCR, ENG, ALDHA1, PER1, ABCB1, TERT2IP, BCL2, BMP2, THY, HOXA5, HOXA10, MEIS1, MEIS2, MEOX1, MEOX2, MSX1, ITGAV, KDR, NGFR, NT5E, PDGFR, THY1, VCAM1 | [83] | |||
IM | Th1/Th2, IL-12, IL-7, TP53 | [83,95] | |||
CL | ALDH1A1, PROCR, ZEB1, VIM, CDH2, EPCAM, CDH1, IL-13, ALDH1A1, PROCR, ZEB1, VIM, CDH2, EPCAM, CDH1, IL-13, IL6, CXCL8, VEGF-C, NRF1, EREG | [96,97] | |||
LAR | AR (≥10%), ER (<1%), PR (<20%), HER2 (≤10%), Ki-67 (>30%) | DHCR24, ALCAM, FASN, FKBP5, APOD, PIP, SPDEF, CLDN8, PIK3CA, AKT1, NF1, GATA3, CDH1, KMT2C | [83,94,95] |
3. Molecular Mechanisms of Breast Cancer
3.1. Luminal Breast Cancer
3.2. HER2-Positive Breast Cancer
3.3. Triple-Negative Breast Cancer
4. Therapeutic Approaches
4.1. Endocrine Therapy
4.2. Anti-HER2 Therapy
4.3. TNBC Therapy
Study Objective | Methodology | Main Findings | Conclusions | Reference |
---|---|---|---|---|
Endocrine Therapy | ||||
Understand the benefits of using AI and TAM and the effectiveness and impact of different treatment schedules over a 5-year period | Meta-analysis of individual patient data |
| Benefits were clearer when the treatment was different | [145] |
Investigate if premenopausal women receiving ovarian suppression therapy benefit from AI in comparison to TAM to reduce breast cancer recurrence and improve patient survival over a 5-year period | Meta-analysis of individual patient data |
| Main benefit from taking AI was best seen when patients were treated differently | [146] |
Anti-HER2 Therapies | ||||
Investigate the mechanisms by which the combination of trastuzumab and pertuzumab enhance antitumor activity in HER2-positive breast cancer | In vitro (BT-474, KPL-4, SKBR3, Au565, SKOV3 and NIH/3T3 cells) In vivo (SCID-beige mice and C1qa-KO mice) |
| Dual therapy of pertuzumab plus trastuzumab promotes tumor cell lysis and tumor phagocytosis by macrophages | [152] |
| ||||
Investigate if adding pertuzumab to trastuzumab and chemotherapy improves disease recurrence and reduces mortality in HER2-positive early breast cancer patients | Randomized, multicenter, multinational clinical trial |
| The addition of pertuzumab to trastuzumab and chemotherapy increases the treatment efficacy by reducing patient relapses and mortality risk | [153] |
Evaluate OS and PFS in HER2-positive metastatic breast cancer patients receiving trastuzumab plus pertuzumab or trastuzumab plus pertuzumab with chemotherapy | Multicenter randomized clinical trial |
| Dual anti-HER2 therapy with chemotherapy increases OS and significantly enhances PFS | [154] |
Assess the efficacy and safety of dual anti-HER2 therapy in combination with chemotherapy in HER2-positive breast cancer patients in China | Retrospective study in China |
| Elevated pCR demonstrates the efficacy of trastuzumab plus pertuzumab with chemotherapy and the side effects are tolerable | [155] |
Assess the combinatory treatment of pertuzumab plus trastuzumab and chemotherapy in HER2-positive breast cancer patients | Retrospective, multicenter study |
| This combinatory therapy promotes higher pCR, which is linked to decreases disease recurrence and high survivability | [156] |
Compare the efficacy and safety between T-DXd and T-DM1 in patients with metastatic HER2-positive breast cancer | Randomized, multicenter clinical trial |
| T-DXd significantly improved the OS and PFS and reduced the risk of mortality | [159] |
Evaluate the efficacy and safety of trastuzumab deruxtecan compared to trastuzumab emtansine in Asian patients with HER2-positive metastatic breast cancer who were previously treated with trastuzumab and taxane | Subgroup analysis of a group of patients enrolled in the Breast03 study |
| T-DXd increased PFS, improved OS and reduced the risk of death | [160] |
TNBC Therapy | ||||
Understand the benefits and risks of including anthracyclines, and the comparative benefits of different anthracycline–taxane regimens | Patient-level meta-analysis |
| Adding anthracyclines to a taxane regimen increases the benefit by reducing the recurrence and the risk of mortality | [163] |
Assess the benefits and harms of platinum-based chemotherapy as adjuvant and neoadjuvant treatment in people with early triple-negative breast cancer | Systematic review |
| Platinum-based chemotherapy improved DFS and OS in both treatment modalities | [164] |
Investigate the efficacy and adverse effects of low-dose capecitabine maintenance after standard adjuvant chemotherapy in early-stage TNBC | Randomized clinical trial in China |
| Adding capecitabine after standard chemotherapy improved DFS, OS and locoregional recurrence-free survival | [165] |
Evaluate the efficacy and safety of atezolizumab plus nab-paclitaxel in patients with unresectable, locally advanced or metastatic TNBC | IMpassion130 randomized, double-blind clinical trial |
| Atezolizumab benefits OS and PFS, although its efficacy is confined to PD-L1-possitive tumors | [168] |
Evaluate the efficacy of pembrolizumab as first-line therapy for patients with PD-L1-positive metastatic TNBC | International, open-label, multicohort clinical trial |
| Higher response rate to pembrolizumab as first-line treatment benefits patients with metastatic TNBC, especially those with PD-L1-positive tumors | [169] |
4.4. Therapy Resistance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-Binding Cassette |
ADC | Antibody-Drug Conjugate |
AI | Aromatase Inhibitors |
AIB1 | Amplified in Breast Cancer 1 |
AKT | Protein Kinase B |
Ap1 | Activator Protein 1 |
BL1 | Basal-Like 1 |
BL2 | Basal-Like 2 |
BMI | Body Mass Index |
BRCA1 | Breast Cancer Associated Gene 1 |
BRCA2 | Breast Cancer Associated Gene 2 |
CAF | Cancer-Associated Fibroblasts |
CCL18 | Chemokine (C-C motif) Ligand 18 |
CL | Claudin-Low Type |
CMTM6 | CKLF-like MARVEL Transmembrane Domain-Containing 6 |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Antigen 4 |
DCIS | Ductal Carcinoma In Situ |
DFS | Disease-Free Survival |
E1 | Estrone |
E2 | Estradiol |
E3 | Estriol |
E4 | Estetrol |
EGFR | Epidermal Growth Factor Receptor |
ER | Estrogen Receptors |
ERE | Estrogen-Responsive Elements |
ERK1 | Extracellular Signal-Regulated Kinase 1 |
ERK2 | Extracellular Signal-Regulated Kinase 2 |
GDP | Guanosine Diphosphate |
GRB2 | Growth Factors Receptor-Bound Proteins 2 |
GTP | Guanosine Triphosphate |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HSPB1 | Heat Shock Protein Beta-1 |
IBC | Inflammatory Breast Cancer |
ICI | Immune Checkpoint Inhibitors |
IDC | Invasive Ductal Carcinoma |
IL-6 | Interleukin-6 |
ILC | Invasive Lobular Carcinoma |
IM | Immunomodulatory |
LAR | Luminal Androgen Receptor |
LCIS | Lobular Carcinoma In Situ |
M | Mesenchymal-Like |
MAPK | Mitogen-Activated Protein Kinase |
MEK 2 | Mitogen-Activated Protein Kinase Kinase 2 |
MEK1 | Mitogen-Activated Protein Kinase Kinase 1 |
MRI | Magnetic Resonance Imaging |
MSL | Mesenchymal Stem-Like |
MTA1 | Metastasis-Associated Protein 1 |
mTOR | Mammalian Target of Rapamycin |
NCOR | Nuclear Receptor Corepressor |
NFκB | Nuclear Factor-κB |
OS | Overall Survival |
pCR | Pathological Complete Response |
PD-1 | Programmed Death Receptor-1 |
PD-L1 | Programmed Death Receptor-Ligand 1 |
PFS | Progression-Free Survival |
PI3K | Phosphatidylinositol 3-Kinase |
PR | Progesterone Receptors |
PTEN | Phosphatase and Tensin Homolog |
RANK | Receptor Activator of Nuclear Factor κB |
RANKL | Receptor Activator of Nuclear Factor κB Ligand |
RAS | Rat Sarcoma |
SERM | Selective Estrogen Response Modulator |
SOS | Son Of Sevenless |
SP1 | Specificity Protein 1 |
SRC 1 | Steroid Receptor Coactivor 1 |
STAT3 | Signal Transducer and Activator of Transcription 3 |
TAM | Tamoxifen |
T-DM1 | Trastuzumab Emtansine |
T-DXd | Trastuzumab Deruxtecan |
TME | Tumor Microenvironment |
TNBC | Triple-Negative Breast Cancer |
TNF-α | Tumor Necrosis Factor Alpha |
References
- Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 8 December 2024).
- Breast Cancer Statistics. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/breast-cancer-statistics/ (accessed on 8 December 2024).
- Breast Cancer Facts. Available online: https://www.europadonna.org/breast-cancer/ (accessed on 29 January 2025).
- Grabinski, V.F.; Brawley, O.W. Disparities in Breast Cancer. Obstet. Gynecol. Clin. 2022, 49, 149–165. [Google Scholar]
- Xu, H.; Xu, B. Breast Cancer: Epidemiology, Risk Factors and Screening. Chin. J. Cancer Res. 2023, 35, 565–583. [Google Scholar]
- Benz, C.C. Impact of Aging on the Biology of Breast Cancer. Crit. Rev. Oncol. Hematol. 2007, 66, 65–74. [Google Scholar]
- Rojas, K.; Stuckey, A. Breast Cancer Epidemiology and Risk Factors. Clin. Obstet. Gynecol. 2016, 59, 651–672. [Google Scholar] [CrossRef] [PubMed]
- European Guidelines on Breast Cancer Screening and Diagnosis. Available online: https://cancer-screening-and-care.jrc.ec.europa.eu/en/ecibc/european-breast-cancer-guidelines?topic=63&usertype=60&filter_1=80&filter_2=79&updatef2=0 (accessed on 6 March 2025).
- Screening for Breast Cancer. Available online: https://www.cdc.gov/breast-cancer/screening/index.html (accessed on 6 March 2025).
- Obeagu, E.I.; Obeagu, G.U. Breast Cancer: A Review of Risk Factors and Diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [PubMed]
- Bodewes, F.T.H.; van Asselt, A.A.; Dorrius, M.D.; Greuter, M.J.W.; de Bock, G.H. Mammographic Breast Density and the Risk of Breast Cancer: A Systematic Review and Meta-Analysis. Breast 2022, 66, 62–68. [Google Scholar]
- Mokhtary, A.; Karakatsanis, A.; Valachis, A. Mammographic Density Changes over Time and Breast Cancer Risk: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 4805. [Google Scholar] [CrossRef]
- Mann, R.M.; Athanasiou, A.; Baltzer, P.A.T.; Camps-Herrero, J.; Clauser, P.; Fallenberg, E.M.; Forrai, G.; Fuchsjäger, M.H.; Helbich, T.H.; Killburn-Toppin, F.; et al. Breast Cancer Screening in Women with Extremely Dense Breasts Recommendations of the European Society of Breast Imaging (EUSOBI). Eur. Radiol. 2022, 32, 4036–4045. [Google Scholar]
- Lubinski, J.; Kotsopoulos, J.; Moller, P.; Pal, T.; Eisen, A.; Peck, L.; Karlan, B.Y.; Aeilts, A.; Eng, C.; Bordeleau, L.; et al. MRI Surveillance and Breast Cancer Mortality in Women With BRCA1 and BRCA2 Sequence Variations. JAMA Oncol. 2024, 10, 493–499. [Google Scholar]
- Trentham-Dietz, A.; Newcomb, P.A.; Nichols, H.B.; Hampton, J.M. Breast Cancer Risk Factors and Second Primary Malignancies among Women with Breast Cancer. Breast Cancer Res. Treat. 2007, 105, 195–207. [Google Scholar]
- Brewer, H.R.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Family History and Risk of Breast Cancer: An Analysis Accounting for Family Structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [PubMed]
- Liu, L.; Hao, X.; Song, Z.; Zhi, X.; Zhang, S.; Zhang, J. Correlation between Family History and Characteristics of Breast Cancer. Sci. Rep. 2021, 11, 6360. [Google Scholar]
- Collins, A.; Politopoulos, I. The Genetics of Breast Cancer: Risk Factors for Disease. Appl. Clin. Genet. 2011, 4, 11–19. [Google Scholar]
- Baretta, Z.; Mocellin, S.; Goldin, E.; Olopade, O.I.; Huo, D. Effect of BRCA Germline Mutations on Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e4975. [Google Scholar] [PubMed]
- Gorodetska, I.; Kozeretska, I.; Dubrovska, A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J. Cancer 2019, 10, 2109–2127. [Google Scholar]
- Naeem, M.; Hayat, M.; Ahmad Qamar, S.; Mehmood, T.; Munir, A.; Ahmad, G.; Rasool Azmir, U.; Adeel Faryad, M.; Zeeshan Talib, M.; Irfan, M.; et al. Risk Factors, Genetic Mutations and Prevention of Breast Cancer. Int. J. Biosci. 2019, 14, 492–496. [Google Scholar]
- Hamajima, N.; Hirose, K.; Tajima, K.; Rohan, T.; Friedenreich, C.M.; Calle, E.E.; Gapstur, S.M.; Patel, A.V.; Coates, R.J.; Liff, J.M.; et al. Menarche, Menopause, and Breast Cancer Risk: Individual Participant Meta-Analysis, Including 118 964 Women with Breast Cancer from 117 Epidemiological Studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar]
- Yue, W.; Yager, J.D.; Wang, J.P.; Jupe, E.R.; Santen, R.J. Estrogen Receptor-Dependent and Independent Mechanisms of Breast Cancer Carcinogenesis. Steroids 2013, 78, 161–170. [Google Scholar]
- Subramani, R.; Lakshmanaswamy, R. Pregnancy and Breast Cancer. Prog. Mol. Biol. Transl. Sci. 2017, 151, 81–111. [Google Scholar]
- Stordal, B. Breastfeeding Reduces the Risk of Breast Cancer: A Call for Action in High-income Countries with Low Rates of Breastfeeding. Cancer Med. 2022, 12, 4616–4625. [Google Scholar]
- Migliavacca Zucchetti, B.; Peccatori, F.A.; Codacci-Pisanelli, G. Pregnancy and Lactation: Risk or Protective Factors for Breast Cancer? Adv. Exp. Med. Biol. 2020, 1252, 195–197. [Google Scholar]
- Rozenberg, S.; Di Pietrantonio, V.; Vandromme, J.; Gilles, C. Menopausal Hormone Therapy and Breast Cancer Risk. Best. Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101577. [Google Scholar] [CrossRef]
- Yuk, J.-S.; Jin-Sung Yuk, C. Relationship between Menopausal Hormone Therapy and Breast Cancer: A Nationwide Population-Based Cohort Study. Int. J. Gynecol. Obstet. 2024, 166, 735–744. [Google Scholar] [CrossRef]
- Kanadys, W.; Barańska, A.; Malm, M.; Błaszczuk, A.; Polz-Dacewicz, M.; Janiszewska, M.; Jędrych, M. Use of Oral Contraceptives as a Potential Risk Factor for Breast Cancer: A Systematic Review and Meta-Analysis of Case-Control Studies up to 2010. Int. J. Environ. Res. Public Health 2021, 18, 4638. [Google Scholar] [CrossRef] [PubMed]
- Kamani, M.O.; Akgor, U.; Gültekin, M. Review of the Literature on Combined Oral Contraceptives and Cancer. Ecancermedicalscience 2022, 16, 1416. [Google Scholar] [CrossRef] [PubMed]
- Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 6 March 2025).
- Dehesh, T.; Fadaghi, S.; Seyedi, M.; Abolhadi, E.; Ilaghi, M.; Shams, P.; Ajam, F.; Mosleh-Shirazi, M.A.; Dehesh, P. The Relation between Obesity and Breast Cancer Risk in Women by Considering Menstruation Status and Geographical Variations: A Systematic Review and Meta-Analysis. BMC Womens Health 2023, 23, 392. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Alcohol and Breast Cancer. Pharmacol. Rep. 2022, 75, 69–84. [Google Scholar] [CrossRef]
- Lofterød, T.; Frydenberg, H.; Flote, V.; Eggen, A.E.; McTiernan, A.; Mortensen, E.S.; Akslen, L.A.; Reitan, J.B.; Wilsgaard, T.; Thune, I. Exploring the Effects of Lifestyle on Breast Cancer Risk, Age at Diagnosis, and Survival: The EBBA-Life Study. Breast Cancer Res. Treat. 2020, 182, 215–227. [Google Scholar] [CrossRef]
- National Cancer Policy Forum; Board on Health Care Services; Institute of Medicine. Tobacco use and cancer. In Reducing Tobacco-Related Cancer Incidence and Mortality: Workshop Summary; National Academies Press (US): Washington, DC, USA, 2013. [Google Scholar]
- Peñalver-Argüeso, B.; García-Esquinas, E.; Castelló, A.; de Larrea-Baz, N.F.; Castaño-Vinyals, G.; Amiano, P.; Fernández-Villa, T.; Guevara, M.; Fernández-Tardón, G.; Alguacil, J.; et al. Smoking History and Breast Cancer Risk by Pathological Subtype: MCC-Spain Study. Tob. Induc. Dis. 2023, 21, 157. [Google Scholar] [CrossRef]
- He, Y.; Si, Y.; Li, X.; Hong, J.; Yu, C.; He, N. The Relationship between Tobacco and Breast Cancer Incidence: A Systematic Review and Meta-Analysis of Observational Studies. Front. Oncol. 2022, 12, 961970. [Google Scholar]
- Rosenberg, L.; Boggs, D.A.; Bethea, T.N.; Wise, L.A.; Adams-Campbell, L.L.; Palmer, J.R. A Prospective Study of Smoking and Breast Cancer Risk among African American Women. Cancer Causes Control 2013, 24, 2207–2215. [Google Scholar]
- Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk Factors and Preventions of Breast Cancer. Int. J. Biol. Sci. 2017, 13, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Dixon-Suen, S.C.; Lewis, S.J.; Martin, R.M.; English, D.R.; Boyle, T.; Giles, G.G.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; et al. Physical Activity, Sedentary Time and Breast Cancer Risk: A Mendelian Randomization Study. Br. J. Sports Med. 2022, 56, 1157–1170. [Google Scholar] [CrossRef]
- Boraka, Ö.; Klintman, M.; Rosendahl, A.H. Physical Activity and Long-Term Risk of Breast Cancer, Associations with Time in Life and Body Composition in the Prospective Malmö Diet and Cancer Study. Cancers 2022, 14, 1960. [Google Scholar] [CrossRef]
- Stevens, R.G.; Hansen, J.; Costa, G.; Haus, E.; Kauppinen, T.; Aronson, K.J.; Castaño-Vinyals, G.; Davis, S.; Frings-Dresen, M.H.W.; Fritschi, L.; et al. Considerations of Circadian Impact for Defining “shift Work” in Cancer Studies: IARC Working Group Report. Occup. Environ. Med. 2011, 68, 154–162. [Google Scholar] [PubMed]
- Gómez-Salgado, J.; Fagundo-Rivera, J.; Ortega-Moreno, M.; Allande-Cussó, R.; Ayuso-Murillo, D.; Ruiz-Frutos, C. Night Work and Breast Cancer Risk in Nurses: Multifactorial Risk Analysis. Cancers 2021, 13, 1470. [Google Scholar] [CrossRef]
- Szkiela, M.; Kusideł, E.; Makowiec-Dabrowska, T.; Kaleta, D. How the Intensity of Night Shift Work Affects Breast Cancer Risk. Int. J. Environ. Res. Public Health 2021, 18, 4570. [Google Scholar] [CrossRef]
- Hansen, J.; Pedersen, J.E. Night Shift Work and Breast Cancer Risk—2023 Update of Epidemiologic Evidence. J. Natl. Cancer Cent. 2025, 5, 94–103. [Google Scholar] [CrossRef]
- Sánchez-Barceló, E.J.; Cos, S.; Mediavilla, D.; Martínez-Campa, C.; González, A.; Alonso-González, C. Melatonin–Estrogen Interactions in Breast Cancer. J. Pineal Res. 2005, 38, 217–222. [Google Scholar]
- Kubatka, P.; Zubor, P.; Busselberg, D.; Kwon, T.K.; Adamek, M.; Petrovic, D.; Opatrilova, R.; Gazdikova, K.; Caprnda, M.; Rodrigo, L.; et al. Melatonin and Breast Cancer: Evidences from Preclinical and Human Studies. Crit. Rev. Oncol. Hematol. 2018, 122, 133–143. [Google Scholar] [PubMed]
- Samanta, S. Melatonin: A Potential Antineoplastic Agent in Breast Cancer. J. Environ. Pathol. Toxicol. Oncol. 2022, 41, 55–84. [Google Scholar] [PubMed]
- Wei, F.; Chen, W.; Lin, X. Night-Shift Work, Breast Cancer Incidence, and All-Cause Mortality: An Updated Meta-Analysis of Prospective Cohort Studies. Sleep Breath. 2022, 26, 1509–1526. [Google Scholar]
- Barletta, J.A. Surgical Pathology of Carcinomas. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3526–3545. [Google Scholar]
- Tomlinson-Hansen, S.E.; Khan, M.; Cassaro, S. Breast Ductal Carcinoma in Situ. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sokolova, A.; Lakhani, S.R. Lobular Carcinoma in Situ: Diagnostic Criteria and Molecular Correlates. Mod. Pathol. 2021, 34, 8–14. [Google Scholar]
- Sahin, A.; Zhang, H. Invasive Breast Carcinoma. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms; Elsevier: Amsterdam, The Netherlands, 2014; pp. 934–951. [Google Scholar]
- Makki, J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin. Med. Insights Pathol. 2015, 8, 23–31. [Google Scholar] [CrossRef]
- McCart Reed, A.E.; Kalinowski, L.; Simpson, P.T.; Lakhani, S.R. Invasive Lobular Carcinoma of the Breast: The Increasing Importance of This Special Subtype. Breast Cancer Res. 2021, 23, 6. [Google Scholar] [PubMed]
- Rosenbluth, J.M.; Overmoyer, B.A. Inflammatory Breast Cancer: A Separate Entity. Curr. Oncol. Rep. 2019, 21, 86. [Google Scholar]
- Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various Types and Management of Breast Cancer: An Overview. J. Adv. Pharm. Technol. Res. 2010, 1, 109–126. [Google Scholar]
- Gomes Do Nascimento, R.; Otoni, K.M. Histological and Molecular Classification of Breast Cancer: What Do We Know? Mastology 2020, 30, e20200024. [Google Scholar]
- Zhang, X. Molecular Classification of Breast Cancer: Relevance and Challenges. Arch. Pathol. Lab. Med. 2023, 147, 46–51. [Google Scholar]
- Roy, M.; Fowler, A.M.; Ulaner, G.A.; Mahajan, A. Molecular Classification of Breast Cancer. PET Clin. 2023, 18, 441–458. [Google Scholar] [PubMed]
- Métodos de Tratamento—Cancro da Mama. Available online: https://www.ligacontracancro.pt/cancro-da-mama-metodos-de-tratamento/ (accessed on 7 March 2025).
- Treatment for Breast Cancer. Available online: https://www.cancerresearchuk.org/about-cancer/breast-cancer/treatment (accessed on 7 March 2025).
- Treatment Options for Breast Cancer. Available online: https://www.cancer.org/cancer/types/breast-cancer/treatment.html (accessed on 7 March 2025).
- Fumagalli, C.; Barberis, M. Breast Cancer Heterogeneity. Diagnostics 2021, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Gawin, M.; Kurczyk, A.; Niemiec, J.; Stanek-Widera, A.; Grela-Wojewoda, A.; Adamczyk, A.; Biskup-Frużyńska, M.; Polańska, J.; Widłak, P. Intra-Tumor Heterogeneity Revealed by Mass Spectrometry Imaging Is Associated with the Prognosis of Breast Cancer. Cancers 2021, 13, 4349. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2017, 15, 81–94. [Google Scholar]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor Heterogeneity: Preclinical Models, Emerging Technologies, and Future Applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar]
- Lovly, C.M.; Salama, A.K.S.; Salgia, R. Tumor Heterogeneity and Therapeutic Resistance. Am. Soc. Clin. Oncol. Educ. Book 2016, 36, 585–593. [Google Scholar]
- Tufail, M.; Cui, J.; Wu, C. Breast Cancer: Molecular Mechanisms of Underlying Resistance and Therapeutic Approaches. Am. J. Cancer Res. 2022, 12, 2920–2949. [Google Scholar]
- Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers 2023, 15, 1320. [Google Scholar] [CrossRef]
- Masoud, V.; Pagès, G. Targeted Therapies in Breast Cancer: New Challenges to Fight against Resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar]
- Wang, K.; Tepper, J.E. Radiation Therapy-Associated Toxicity: Etiology, Management, and Prevention. CA Cancer J. Clin. 2021, 71, 437–454. [Google Scholar]
- Langeh, U.; Kumar, V.; Ahuja, P.; Singh, C.; Singh, A. An Update on Breast Cancer Chemotherapy-Associated Toxicity and Their Management Approaches. Health Sci. Rev. 2023, 9, 100119. [Google Scholar]
- Anders, C.K.; LeBoeuf, N.R.; Bashoura, L.; Faiz, S.A.; Shariff, A.I.; Thomas, A. What’s the Price? Toxicities of Targeted Therapies in Breast Cancer Care. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 55–70. [Google Scholar] [PubMed]
- Mark, C.; Lee, J.S.; Cui, X.; Yuan, Y. Antibody–Drug Conjugates in Breast Cancer: Current Status and Future Directions. Int. J. Mol. Sci. 2023, 24, 13726. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Xu, Y.Y.; Shao, Z.M.; Yu, K.D. Resistance to Antibody-drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Commun. 2022, 43, 297–337. [Google Scholar]
- Chang, H.L.; Schwettmann, B.; McArthur, H.L.; Chan, I.S. Antibody-Drug Conjugates in Breast Cancer: Overcoming Resistance and Boosting Immune Response. J. Clin. Investig. 2023, 133, e172156. [Google Scholar]
- Mohanty, S.S.; Sahoo, C.R.; Padhy, R.N. Role of Hormone Receptors and HER2 as Prospective Molecular Markers for Breast Cancer: An Update. Genes Dis. 2022, 9, 648–658. [Google Scholar]
- Clusan, L.; Ferrière, F.; Flouriot, G.; Pakdel, F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 6834. [Google Scholar] [CrossRef]
- Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of Breast Cancer. In Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane (AU), Australia, 2022; pp. 31–42. [Google Scholar]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar]
- Eroles, P.; Bosch, A.; Alejandro Pérez-Fidalgo, J.; Lluch, A. Molecular Biology in Breast Cancer: Intrinsic Subtypes and Signaling Pathways. Cancer Treat. Rev. 2012, 38, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer—Molecular Subtypes. Available online: https://www.pathologyoutlines.com/topic/breastmolecularsubtypes.html (accessed on 12 March 2025).
- Atallah, N.M.; Haque, M.; Quinn, C.; Toss, M.S.; Makhlouf, S.; Ibrahim, A.; Green, A.R.; Alsaleem, M.; Rutland, C.S.; Allegrucci, C.; et al. Characterisation of Luminal and Triple-Negative Breast Cancer with HER2 Low Protein Expression. Eur. J. Cancer 2023, 195, 113371. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Somerfield, M.R.; Dowsett, M.; Hammond, M.E.H.; Hayes, D.F.; Mcshane, L.M.; Saphner, T.J.; Spears, P.A.; Allison, K.H. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J. Clin. Oncol. 2023, 41, 3867–3872. [Google Scholar] [CrossRef]
- Rediti, M.; Venet, D.; Joaquin Garcia, A.; Maetens, M.; Vincent, D.; Majjaj, S.; El-Abed, S.; Di Cosimo, S.; Ueno, T.; Izquierdo, M.; et al. Identification of HER2-Positive Breast Cancer Molecular Subtypes with Potential Clinical Implications in the ALTTO Clinical Trial. Nat. Commun. 2024, 15, 10402. [Google Scholar] [CrossRef]
- Zakaria, N.H.; Hashad, D.; Saied, M.H.; Hegazy, N.; Elkayal, A.; Tayae, E. Genetic Mutations in HER2-Positive Breast Cancer: Possible Association with Response to Trastuzumab Therapy. Hum. Genom. 2023, 17, 43. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Wu, W.; Lu, X. The Characteristics of HER2 Low-Expressing Breast Cancer: A China Single-Center Real-World Data Analysis. Breast Cancer Manag. 2023, 12, BMT71. [Google Scholar] [CrossRef]
- El Haddad, G.; Diab, E.; Hajjar, M.; Aoun, M.; Mallat, F.; Zalaquett, Z.; Kourie, H.R. Insights Into the Emerging Entity of HER2-Low Breast Cancer. Int. J. Breast Cancer 2024, 2024, 2853007. [Google Scholar] [CrossRef]
- Jayachandran, P.; Deshmukh, S.K.; Wu, S.; Ribeiro, J.; Kang, I.; Xiu, J.; Farrell, A.P.; Battaglin, F.; Spicer, D.V.; Soni, S.; et al. Molecular and Immunological Characterization of Androgen Receptor Expression in Different Breast Cancer Subtypes. J. Clin. Oncol. 2024, 42, 421114. [Google Scholar] [CrossRef]
- Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of Triple-Negative Breast Cancer. Annu. Rev. Pathol. 2022, 17, 181–204. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Ma, D.; Suo, C.; Shi, J.; Xue, M.; Hu, X.; Xiao, Y.; Yu, K.D.; Liu, Y.R.; Yu, Y.; et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell 2019, 35, 428–440.e5. [Google Scholar] [CrossRef]
- Pommier, R.M.; Sanlaville, A.; Tonon, L.; Kielbassa, J.; Thomas, E.; Ferrari, A.; Sertier, A.S.; Hollande, F.; Martinez, P.; Tissier, A.; et al. Comprehensive Characterization of Claudin-Low Breast Tumors Reflects the Impact of the Cell-of-Origin on Cancer Evolution. Nat. Commun. 2020, 11, 3431. [Google Scholar] [PubMed]
- Pan, C.; Xu, A.; Ma, X.; Yao, Y.; Zhao, Y.; Wang, C.; Chen, C. Research Progress of Claudin-Low Breast Cancer. Front. Oncol. 2023, 13, 1226118. [Google Scholar]
- Ortega, M.A.; Fraile-Martínez, O.; Asúnsolo, Á.; Buján, J.; García-Honduvilla, N.; Coca, S. Signal Transduction Pathways in Breast Cancer: The Important Role of PI3K/Akt/MTOR. J. Oncol. 2020, 2020, 9258396. [Google Scholar] [CrossRef]
- Miziak, P.; Baran, M.; Błaszczak, E.; Przybyszewska-Podstawka, A.; Kałafut, J.; Smok-Kalwat, J.; Dmoszyńska-Graniczka, M.; Kiełbus, M.; Stepulak, A. Estrogen Receptor Signaling in Breast Cancer. Cancers 2023, 15, 4689. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, R.; Picon-Ruiz, M.; Aurrekoetxea-Rodriguez, I.; Nunes de Paiva, V.; D’Amico, M.; Yoon, H.; Radhakrishnan, R.; Morata-Tarifa, C.; Ince, T.; Lippman, M.E.; et al. The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development. Cell Metab. 2020, 31, 1154–1172. [Google Scholar] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen Receptor Signaling Mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar]
- Gallez, A.; Dias Da Silva, I.; Wuidar, V.; Foidart, J.M.; Péqueux, C. Estetrol and Mammary Gland: Friends or Foes? J. Mammary Gland. Biol. Neoplasia 2021, 26, 297–308. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Yao, J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther. 2020, 13, 2183–2191. [Google Scholar] [CrossRef]
- Björnström, L.; Sjöberg, M. Mechanisms of Estrogen Receptor Signaling: Convergence of Genomic and Nongenomic Actions on Target Genes. Mol. Endocrinol. 2005, 19, 833–842. [Google Scholar]
- Altwegg, K.A.; Vadlamudi, R.K. Role of Estrogen Receptor Coregulators in Endocrine Resistant Breast Cancer. Explor. Target. Antitumor Ther. 2021, 2, 385–400. [Google Scholar]
- Mal, R.; Magner, A.; David, J.; Datta, J.; Vallabhaneni, M.; Kassem, M.; Manouchehri, J.; Willingham, N.; Stover, D.; Vandeusen, J.; et al. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front. Oncol. 2020, 10, 587386. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/MTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef]
- Nagandla, H.; Thomas, C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. Receptors 2024, 3, 182–200. [Google Scholar] [CrossRef] [PubMed]
- Paruthiyil, S.; Parmar, H.; Kerekatte, V.; Cunha, G.R.; Firestone, G.L.; Leitmant, D.C. Estrogen Receptor β Inhibits Human Breast Cancer Cell Proliferation and Tumor Formation by Causing a G2 Cell Cycle Arrest. Cancer Res. 2004, 64, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, X. The Role of Estrogen Receptor Beta in Breast Cancer. Biomark. Res. 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y. Estrogen Receptor β Expression and Its Clinical Implication in Breast Cancers: Favorable or Unfavorable? J. Breast Cancer 2022, 25, 75–93. [Google Scholar] [CrossRef]
- Li, Z.; Wei, H.; Li, S.; Wu, P.; Mao, X. The Role of Progesterone Receptors in Breast Cancer. Drug Des. Dev. Ther. 2022, 16, 305–314. [Google Scholar] [CrossRef]
- Trabert, B.; Sherman, M.E.; Kannan, N.; Stanczyk, F.Z. Progesterone and Breast Cancer. Endocr. Rev. 2020, 41, 320–344. [Google Scholar] [CrossRef]
- Azeez, J.M.; Susmi, R.; Remadevi, V.; Ravindran, V.; Sujatha, A.S.; Nair, R.; Ayswarya, S.; Sreeja, S. New Insights into the Functions of Progesterone Receptor (PR) Isoforms and Progesterone Signaling. Am. J. Cancer Res. 2021, 11, 5214–5232. [Google Scholar]
- Pan, L.; Li, J.; Xu, Q.; Gao, Z.; Yang, M.; Wu, X.; Li, X. HER2/PI3K/AKT Pathway in HER2-Positive Breast Cancer A Review. Medicine 2024, 103, e38508. [Google Scholar] [CrossRef]
- Gutierrez, C.; Schiff, R. HER 2: Biology, Detection, and Clinical Implications. Arch. Pathol. Lab. Med. 2011, 135, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhou, Z.; Wang, H.; Wang, R.; Shen, K.; Huang, R.; Zhong, H.; Zhou, Z.; Wang, H.; Wang, R.; et al. The Biological Roles and Clinical Applications of the PI3K/AKT Pathway in Targeted Therapy Resistance in HER2-Positive Breast Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 13376. [Google Scholar] [CrossRef]
- Shirman, Y.; Lubovsky, S.; Shai, A. HER2-Low Breast Cancer: Current Landscape and Future Prospects. Breast Cancer Targets Ther. 2023, 15, 605–616. [Google Scholar]
- Zhang, H.; Katerji, H.; Turner, B.M.; Hicks, D.G. HER2-Low Breast Cancers: New Opportunities and Challenges. Am. J. Clin. Pathol. 2022, 157, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.J.; Ma, D.; Xu, Y.Z.; Li, M.; Li, Y.W.; Xiao, Y.; Jin, X.; Wu, S.Y.; Zhao, Y.X.; Wang, H.; et al. Molecular Features and Clinical Implications of the Heterogeneity in Chinese Patients with HER2-Low Breast Cancer. Nat. Commun. 2023, 14, 5112. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, A.; Gautrey, H.; Browell, D.; Tyson-Capper, A. The HER2 Signaling Network in Breast Cancer—Like a Spider in Its Web. J. Mammary Gland. Biol. Neoplasia 2014, 19, 253–270. [Google Scholar]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar]
- Rocca, A.; Braga, L.; Volpe, M.C.; Maiocchi, S.; Generali, D. The Predictive and Prognostic Role of RAS–RAF–MEK–ERK Pathway Alterations in Breast Cancer: Revision of the Literature and Comparison with the Analysis of Cancer Genomic Datasets. Cancers 2022, 14, 5306. [Google Scholar] [CrossRef]
- Karim, A.M.; Eun Kwon, J.; Ali, T.; Jang, J.; Ullah, I.; Lee, Y.G.; Park, D.W.; Park, J.; Jeang, J.W.; Kang, S.C. Triple-Negative Breast Cancer: Epidemiology, Molecular Mechanisms, and Modern Vaccine-Based Treatment Strategies. Biochem. Pharmacol. 2023, 212, 115545. [Google Scholar]
- Choi, E.; Mun, G.I.; Lee, J.; Lee, H.; Cho, J.; Lee, Y.S. BRCA1 Deficiency in Triple-Negative Breast Cancer: Protein Stability as a Basis for Therapy. Biomed. Pharmacother. 2023, 158, 114090. [Google Scholar]
- Kumar, P.; Aggarwal, R. An Overview of Triple-Negative Breast Cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef]
- Xie, C.; Luo, J.; He, Y.; Jiang, L.; Zhong, L.; Shi, Y. BRCA2 Gene Mutation in Cancer. Medicine 2022, 101, e31705. [Google Scholar] [PubMed]
- Fu, X.; Tan, W.; Song, Q.; Pei, H.; Li, J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 813457. [Google Scholar] [CrossRef] [PubMed]
- Na, B.; Yu, X.; Withers, T.; Gilleran, J.; Yao, M.; Foo, T.K.; Chen, C.; Moore, D.; Lin, Y.; Kimball, S.D.; et al. Therapeutic Targeting of BRCA1 and TP53 Mutant Breast Cancer through Mutant P53 Reactivation. NPJ Breast Cancer 2019, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Arimura, A.; Sakai, K.; Kaneshiro, K.; Morisaki, T.; Hayashi, S.; Mizoguchi, K.; Yamada, M.; Kai, M.; Ono, M.; Nishio, K.; et al. TP53 and/or BRCA1 Mutations Based on CtDNA Analysis as Prognostic Biomarkers for Primary Triple-Negative Breast Cancer. Cancers 2024, 16, 1184. [Google Scholar] [CrossRef]
- Telli, M.L.; Litton, J.K.; Beck, J.T.; Jones, J.M.; Andersen, J.; Mina, L.A.; Brig, R.; Danso, M.; Yuan, Y.; Symmans, W.F.; et al. Neoadjuvant Talazoparib in Patients with Germline BRCA1/2 Mutation-Positive, Early-Stage Triple-Negative Breast Cancer: Exploration of Tumor BRCA Mutational Status. Breast Cancer 2024, 31, 886–897. [Google Scholar]
- Mavaddat, N.; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Keeman, R.; Bolla, M.K.; Dennis, J.; Wang, Q.; Ahearn, T.U.; et al. Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncol. 2022, 8, e216744. [Google Scholar]
- Mallick, S.; Duttaroy, A.K.; Dutta, S. The PIK3CA Gene and Its Pivotal Role in Tumor Tropism of Triple-Negative Breast Cancer. Transl. Oncol. 2024, 50, 102140. [Google Scholar]
- Mosele, F.; Stefanovska, B.; Lusque, A.; Tran Dien, A.; Garberis, I.; Droin, N.; Le Tourneau, C.; Sablin, M.P.; Lacroix, L.; Enrico, D.; et al. Outcome and Molecular Landscape of Patients with PIK3CA-Mutated Metastatic Breast Cancer. Ann. Oncol. 2020, 31, 377–386. [Google Scholar] [CrossRef]
- Reinhardt, K.; Stückrath, K.; Hartung, C.; Kaufhold, S.; Uleer, C.; Hanf, V.; Lantzsch, T.; Peschel, S.; John, J.; Pöhler, M.; et al. PIK3CA-Mutations in Breast Cancer. Breast Cancer Res. Treat. 2022, 196, 483–493. [Google Scholar]
- Spring, L.M.; Gupta, A.; Reynolds, K.L.; Gadd, M.A.; Ellisen, L.W.; Isakoff, S.J.; Moy, B.; Bardia, A. Neoadjuvant Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer: A Systematic Review and Meta-Analysis. JAMA Oncol. 2016, 2, 1477–1486. [Google Scholar]
- Reinbolt, R.E.; Mangini, N.; Hill, J.L.; Levine, L.B.; Dempsey, J.L.; Singaravelu, J.; Koehler, K.A.; Talley, A.; Lustberg, M.B. Endocrine Therapy in Breast Cancer: The Neoadjuvant, Adjuvant, and Metastatic Approach. Semin. Oncol. Nurs. 2015, 31, 146–155. [Google Scholar]
- Kerr, A.J.; Dodwell, D.; McGale, P.; Holt, F.; Duane, F.; Mannu, G.; Darby, S.C.; Taylor, C.W. Adjuvant and Neoadjuvant Breast Cancer Treatments: A Systematic Review of Their Effects on Mortality. Cancer Treat. Rev. 2022, 105, 102375. [Google Scholar] [CrossRef] [PubMed]
- Barchiesi, G.; Mazzotta, M.; Krasniqi, E.; Pizzuti, L.; Marinelli, D.; Capomolla, E.; Sergi, D.; Amodio, A.; Natoli, C.; Gamucci, T.; et al. Neoadjuvant Endocrine Therapy in Breast Cancer: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 3528. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; He, Y.; Li, S.; Chen, H. Crosstalk of Methylation and Tamoxifen in Breast Cancer (Review). Mol. Med. Rep. 2024, 30, 180. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ye, L.; Sun, S.; Yuan, J.; Huang, J.; Zeng, Z. Involvement of RFC3 in Tamoxifen Resistance in ER-Positive Breast Cancer through the Cell Cycle. Aging 2023, 15, 13738–13752. [Google Scholar] [CrossRef]
- Generali, D.; Berardi, R.; Caruso, M.; Cazzaniga, M.; Garrone, O.; Minchella, I.; Paris, I.; Pinto, C.; De Placido, S. Aromatase Inhibitors: The Journey from the State of the Art to Clinical Open Questions. Front. Oncol. 2023, 13, 1249160. [Google Scholar] [CrossRef]
- Cairns, J.; Ingle, J.N.; Dudenkov, T.M.; Kalari, K.R.; Carlson, E.E.; Na, J.; Buzdar, A.U.; Robson, M.E.; Ellis, M.J.; Goss, P.E.; et al. Pharmacogenomics of Aromatase Inhibitors in Postmenopausal Breast Cancer and Additional Mechanisms of Anastrozole Action. JCI Insight 2020, 5, e137571. [Google Scholar] [CrossRef]
- Kharb, R.; Haider, K.; Neha, K.; Yar, M.S. Aromatase Inhibitors: Role in Postmenopausal Breast Cancer. Arch. Pharm. 2020, 353, e2000081. [Google Scholar] [CrossRef]
- Bradley, R.; Burrett, J.; Clarke, M.; Davies, C.; Duane, F.; Evans, V.; Gettins, L.; Godwin, J.; Gray, R.; Liu, H.; et al. Aromatase Inhibitors versus Tamoxifen in Early Breast Cancer: Patient-Level Meta-Analysis of the Randomised Trials. Lancet 2015, 386, 1341–1352. [Google Scholar]
- Bradley, R.; Braybrooke, J.; Gray, R.; Hills, R.K.; Liu, Z.; Pan, H.; Peto, R.; Dodwell, D.; McGale, P.; Taylor, C.; et al. Aromatase Inhibitors versus Tamoxifen in Premenopausal Women with Oestrogen Receptor-Positive Early-Stage Breast Cancer Treated with Ovarian Suppression: A Patient-Level Meta-Analysis of 7030 Women from Four Randomised Trials. Lancet Oncol. 2022, 23, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Stanowicka-Grada, M.; Senkus, E. Anti-HER2 Drugs for the Treatment of Advanced HER2 Positive Breast Cancer. Curr. Treat. Options Oncol. 2023, 24, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nat. Rev. Drug Discov. 2022, 22, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, J.; Haddad, F.G.H.; Eid, R.; Lambertini, M.; Kourié, H.R. What Is the Role of HER2-Specific Antibody Immunity in Patients with HER2-Positive Early Breast Cancer Receiving Chemotherapy plus Trastuzumab? Transl. Cancer Res. 2018, 7, 1354–1356. [Google Scholar] [CrossRef]
- Maadi, H.; Wang, Z. A Novel Mechanism Underlying the Inhibitory Effects of Trastuzumab on the Growth of HER2-Positive Breast Cancer Cells. Cells 2022, 11, 4093. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Y.; Li, Y.; Li, Y.; Qi, L.; Wang, X. Pertuzumab Combined with Trastuzumab Compared to Trastuzumab in the Treatment of HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Oncol. 2022, 12, 894861. [Google Scholar] [CrossRef]
- Tsao, L.C.; Crosby, E.J.; Trotter, T.N.; Wei, J.; Wang, T.; Yang, X.; Summers, A.N.; Lei, G.; Rabiola, C.A.; Chodosh, L.A.; et al. Trastuzumab/Pertuzumab Combination Therapy Stimulates Antitumor Responses through Complement-Dependent Cytotoxicity and Phagocytosis. JCI Insight 2022, 7, e155636. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N. Eng. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef]
- Huober, J.; Weder, P.; Ribi, K.; Thürlimann, B.; Thery, J.-C.; Li, Q.; Vanlemmens, L.; Guiu, S.; Brain, E.; Grenier, J.; et al. Pertuzumab Plus Trastuzumab With or Without Chemotherapy Followed by Emtansine in ERBB2-Positive Metastatic Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1381–1389. [Google Scholar] [CrossRef]
- Peng, D.M.; Li, J.; Qiu, J.X.; Zhao, L. Neoadjuvant Pertuzumab plus Trastuzumab in Combination with Chemotherapy for Human Epidermal Growth Factor Receptor 2 Positive Breast Cancer: A Real-World Retrospective Single-Institutional Study in China. World J. Surg. Oncol. 2024, 22, 88. [Google Scholar] [CrossRef]
- González, A.F.; Jurado, J.C.; Valenti, E.L.; Cubero, R.U.; de la Gala, M.C.Á.; Guisado, M.A.M.; Ambite, R.Á.; González, C.J.R.; Góngora, M.A.; Pérez, L.R.; et al. Real-World Experience with Pertuzumab and Trastuzumab Combined with Chemotherapy in Neoadjuvant Treatment for Patients with Early-Stage HER2-Positive Breast Cancer: The NEOPERSUR Study. Clin. Transl. Oncol. 2024, 26, 2217–2226. [Google Scholar] [CrossRef]
- Barok, M.; Joensuu, H.; Isola, J. Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance. Breast Cancer Res. 2014, 16, 209. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.; Pandiella, A.; Vargas-Castrillón, E.; Díaz-Rodríguez, E.; Iglesias-Hernangómez, T.; Martínez Cano, C.; Fernández-Cuesta, I.; Winkow, E.; Perelló, M.F. Trastuzumab Deruxtecan in Breast Cancer. Crit. Rev. Oncol. Hematol. 2024, 198, 104355. [Google Scholar] [PubMed]
- Hurvitz, S.A.; Hegg, R.; Chung, W.P.; Im, S.A.; Jacot, W.; Ganju, V.; Chiu, J.W.Y.; Xu, B.; Hamilton, E.; Madhusudan, S.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine in Patients with HER2-Positive Metastatic Breast Cancer: Updated Results from DESTINY-Breast03, a Randomised, Open-Label, Phase 3 Trial. Lancet 2023, 401, 105–117. [Google Scholar] [CrossRef]
- Iwata, H.; Xu, B.; Kim, S.B.; Chung, W.P.; Park, Y.H.; Kim, M.H.; Tseng, L.M.; Chung, C.F.; Huang, C.S.; Kim, J.H.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine in Asian Patients with HER2-positive Metastatic Breast Cancer. Cancer Sci. 2024, 115, 3079–3088. [Google Scholar] [CrossRef] [PubMed]
- Sarno, F.; Dell’aversana, C.; Cappetta, D.; Megchelenbrink, W.L.; Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 2023, 15, 1796. [Google Scholar] [CrossRef]
- van den Ende, N.S.; Nguyen, A.H.; Jager, A.; Kok, M.; Debets, R.; van Deurzen, C.H.M. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2969. [Google Scholar] [CrossRef]
- Braybrooke, J.; Bradley, R.; Gray, R.; Hills, R.K.; Pan, H.; Peto, R.; Dodwell, D.; McGale, P.; Taylor, C.; Aihara, T.; et al. Anthracycline-Containing and Taxane-Containing Chemotherapy for Early-Stage Operable Breast Cancer: A Patient-Level Meta-Analysis of 100 000 Women from 86 Randomised Trials. Lancet 2023, 401, 1277–1292. [Google Scholar]
- Mason, S.R.E.; Willson, M.L.; Egger, S.J.; Beith, J.; Dear, R.F.; Goodwin, A. Platinum-Based Chemotherapy for Early Triple-Negative Breast Cancer. Cochrane Database Syst. Rev. 2023, 9, CD014805. [Google Scholar]
- Wang, X.; Wang, S.S.; Huang, H.; Cai, L.; Zhao, L.; Peng, R.J.; Lin, Y.; Tang, J.; Zeng, J.; Zhang, L.H.; et al. Effect of Capecitabine Maintenance Therapy Using Lower Dosage and Higher Frequency vs Observation on Disease-Free Survival Among Patients With Early-Stage Triple-Negative Breast Cancer Who Had Received Standard Treatment: The SYSUCC-001 Randomized Clinical Trial. JAMA 2020, 325, 50–58. [Google Scholar]
- Yao, Y.; Chu, Y.; Xu, B.; Hu, Q.; Song, Q. Radiotherapy after Surgery Has Significant Survival Benefits for Patients with Triple-negative Breast Cancer. Cancer Med. 2019, 8, 554–563. [Google Scholar]
- Liu, Y.; Hu, Y.; Xue, J.; Li, J.; Yi, J.; Bu, J.; Zhang, Z.; Qiu, P.; Gu, X. Advances in Immunotherapy for Triple-Negative Breast Cancer. Mol. Cancer 2023, 22, 145. [Google Scholar]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus Nab-Paclitaxel as First-Line Treatment for Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer (IMpassion130): Updated Efficacy Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar]
- Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; et al. Pembrolizumab Monotherapy for Previously Untreated, PD-L1-Positive, Metastatic Triple-Negative Breast Cancer: Cohort B of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019, 30, 405–411. [Google Scholar]
- Leon-Ferre, R.A.; Goetz, M.P. Advances in Systemic Therapies for Triple Negative Breast Cancer. BMJ 2023, 381, e071674. [Google Scholar]
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent Advances in Therapeutic Strategies for Triple-Negative Breast Cancer. J. Hematol. Oncol. 2022, 15, 121. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Song, B.; Yi, M.; Yan, Y.; Mei, Q.; Wu, K. Recent Advances in Targeted Strategies for Triple-Negative Breast Cancer. J. Hematol. Oncol. 2023, 16, 100. [Google Scholar] [CrossRef]
- Guo, L.; Kong, D.; Liu, J.; Zhan, L.; Luo, L.; Zheng, W.; Zheng, Q.; Chen, C.; Sun, S. Breast Cancer Heterogeneity and Its Implication in Personalized Precision Therapy. Exp. Hematol. Oncol. 2023, 12, 3. [Google Scholar]
- Wu, F.; Fan, J.; He, Y.; Xiong, A.; Yu, J.; Li, Y.; Zhang, Y.; Zhao, W.; Zhou, F.; Li, W.; et al. Single-Cell Profiling of Tumor Heterogeneity and the Microenvironment in Advanced Non-Small Cell Lung Cancer. Nat. Commun. 2021, 12, 2540. [Google Scholar]
- Ding, S.; Chen, X.; Shen, K. Single-cell RNA Sequencing in Breast Cancer: Understanding Tumor Heterogeneity and Paving Roads to Individualized Therapy. Cancer Commun. 2020, 40, 329–344. [Google Scholar]
- Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets. Semin. Cancer Biol. 2020, 60, 14–27. [Google Scholar] [CrossRef]
- Kundu, M.; Butti, R.; Panda, V.K.; Malhotra, D.; Das, S.; Mitra, T.; Kapse, P.; Gosavi, S.W.; Kundu, G.C. Modulation of the Tumor Microenvironment and Mechanism of Immunotherapy-Based Drug Resistance in Breast Cancer. Mol. Cancer 2024, 23, 92. [Google Scholar] [CrossRef]
- Azizi, E.; Carr, A.J.; Plitas, G.; Cornish, A.E.; Konopacki, C.; Prabhakaran, S.; Nainys, J.; Wu, K.; Kiseliovas, V.; Setty, M.; et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2019, 174, 1293–1308.e36. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Mo, H.; Hu, X.; Gao, R.; Zhao, Y.; Liu, B.; Niu, L.; Sun, X.; Yu, X.; et al. Single-Cell Analyses Reveal Key Immune Cell Subsets Associated with Response to PD-L1 Blockade in Triple-Negative Breast Cancer. Cancer Cell 2021, 39, 1578–1593.e8. [Google Scholar] [CrossRef]
- Belachew, E.B.; Sewasew, D.T. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol. 2021, 12, 599586. [Google Scholar] [CrossRef]
- Yao, J.; Deng, K.; Huang, J.; Zeng, R.; Zuo, J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front. Pharmacol. 2020, 11, 592912. [Google Scholar] [CrossRef]
- Saatci, O.; Huynh-Dam, K.T.; Sahin, O. Endocrine Resistance in Breast Cancer: From Molecular Mechanisms to Therapeutic Strategies. J. Mol. Med. 2021, 99, 1691–1710. [Google Scholar] [CrossRef]
- Fan, W.; Chang, J.; Fu, P. Endocrine Therapy Resistance in Breast Cancer: Current Status, Possible Mechanisms and Overcoming Strategies. Future Med. Chem. 2015, 7, 1511–1519. [Google Scholar] [CrossRef]
- Bos, M.K.; Deger, T.; Sleijfer, S.; Martens, J.W.M.; Wilting, S.M. ESR1 Methylation Measured in Cell-Free DNA to Evaluate Endocrine Resistance in Metastatic Breast Cancer Patients. Int. J. Mol. Sci. 2022, 23, 5631. [Google Scholar] [CrossRef]
- Kirn, V.; Strake, L.; Thangarajah, F.; Richters, L.; Eischeid, H.; Koitzsch, U.; Odenthal, M.; Fries, J. ESR1-Promoter-Methylation Status in Primary Breast Cancer and Its Corresponding Metastases. Clin. Exp. Metastasis 2018, 35, 707–712. [Google Scholar] [CrossRef]
- Brett, J.O.; Spring, L.M.; Bardia, A.; Wander, S.A. ESR1 Mutation as an Emerging Clinical Biomarker in Metastatic Hormone Receptor-Positive Breast Cancer. Breast Cancer Res. 2021, 23, 85. [Google Scholar]
- André, F.; Solovieff, N.; Su, F.; Bardia, A.; Neven, P.; Yap, Y.S.; Tripathy, D.; Lu, Y.-S.; Slamon, D.; Chia, S.; et al. Acquired Gene Alterations in Patients Treated with Ribociclib plus Endocrine Therapy or Endocrine Therapy Alone Using Baseline and End-of-Treatment Circulating Tumor DNA Samples in the MONALEESA-2, -3, and -7 Trials. Ann. Oncol. 2025, 36, 54–64. [Google Scholar] [PubMed]
- Raheem, F.; Karikalan, S.A.; Batalini, F.; El Masry, A.; Mina, L. Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 16198. [Google Scholar] [CrossRef] [PubMed]
- Tolaney, S.M.; Toi, M.; Neven, P.; Sohn, J.; Grischke, E.M.; Llombart-Cussac, A.; Soliman, H.; Wang, H.; Wijayawardana, S.; Jansen, V.M.; et al. Clinical Significance of PIK3CA and ESR1 Mutations in Circulating Tumor DNA: Analysis from the MONARCH 2 Study of Abemaciclib plus Fulvestrant. Clin. Cancer Res. 2022, 28, 1500–1506. [Google Scholar] [PubMed]
- Wu, X.; Yang, H.; Yu, X.; Qin, J.J. Drug-Resistant HER2-Positive Breast Cancer: Molecular Mechanisms and Overcoming Strategies. Front. Pharmacol. 2022, 13, 1012552. [Google Scholar]
- Nami, B.; Ghanaeian, A.; Wang, Z. Epigenetic Downregulation of HER2 during EMT Leads to Tumor Resistance to HER2-Targeted Therapies in Breast Cancer. bioRxiv 2020, 1–38. [Google Scholar] [CrossRef]
- Eliyatkin, N.O.; Aktas, S.; Ozgur, H.; Ercetin, P.; Kupelioglu, A. The Role of P95HER2 in Trastuzumab Resistance in Breast Cancer. J. BUON 2016, 21, 382–389. [Google Scholar]
- Xing, F.; Gao, H.; Chen, G.; Sun, L.; Sun, J.; Qiao, X.; Xue, J.; Liu, C. CMTM6 Overexpression Confers Trastuzumab Resistance in HER2-Positive Breast Cancer. Mol. Cancer 2023, 22, 6. [Google Scholar]
- Zimmerman, B.S.; Esteva, F.J. Next-Generation HER2-Targeted Antibody–Drug Conjugates in Breast Cancer. Cancers 2024, 16, 800. [Google Scholar] [CrossRef]
- Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of Resistance to Trastuzumab Emtansine (T-DM1) in HER2-Positive Breast Cancer. Br. J. Cancer 2019, 122, 603–612. [Google Scholar]
- Mehraj, U.; Dar, A.H.; Wani, N.A.; Mir, M.A. Tumor Microenvironment Promotes Breast Cancer Chemoresistance. Cancer Chemother. Pharmacol. 2021, 87, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, H.; Fu, Y.; Kuang, J.; Zhao, B.; Zhang, L.F.; Lin, J.; Lin, S.; Wu, D.; Xie, G. Cancer-Associated Fibroblasts Induce Growth and Radioresistance of Breast Cancer Cells through Paracrine IL-6. Cell Death Discov. 2023, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; He, J.; Yin, L.; Chen, X.; Zu, X.; Shen, Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front. Immunol. 2021, 12, 799428. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Zhang, Y.; Ye, F.; Luo, D.; Li, Y.; Jin, Y.; Han, D.; Wang, Z.; Chen, B.; et al. HSPB1 Facilitates Chemoresistance through Inhibiting Ferroptotic Cancer Cell Death and Regulating NF-ΚB Signaling Pathway in Breast Cancer. Cell Death Dis. 2023, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Nedeljković, M.; Damjanović, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise to the Challenge. Cells 2019, 8, 957. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Giorgini, S.; Morichetti, D.; Goteri, G.; Sartini, D.; Serritelli, E.N.; Emanuelli, M. Paraoxonase-2 Is Upregulated in Triple Negative Breast Cancer and Contributes to Tumor Progression and Chemoresistance. Hum. Cell 2023, 36, 1108–1119. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, J.; Wu, W.; Xie, S.; Yu, H.; Li, G.; Zhu, T.; Li, F.; Lu, J.; Wang, G.Y.; et al. Nicotinamide N-Methyltransferase Enhances Chemoresistance in Breast Cancer through SIRT1 Protein Stabilization. Breast Cancer Res. 2019, 21, 64. [Google Scholar] [CrossRef]
- Lawson, M.; Cureton, N.; Ros, S.; Cheraghchi-Bashi, A.; Urosevic, J.; D’Arcy, S.; Delpuech, O.; DuPont, M.; Fisher, D.I.; Gangl, E.T.; et al. The Next-Generation Oral Selective Estrogen Receptor Degrader Camizestrant (AZD9833) Suppresses ER+ Breast Cancer Growth and Overcomes Endocrine and CDK4/6 Inhibitor Resistance. Cancer Res. 2023, 83, 3989–4004. [Google Scholar] [CrossRef]
- Crucitta, S.; Ruglioni, M.; Lorenzini, G.; Bargagna, I.; Luculli, G.I.; Albanese, I.; Bilancio, D.; Patanè, F.; Fontana, A.; Danesi, R.; et al. CDK4/6 Inhibitors Overcome Endocrine ESR1 Mutation-Related Resistance in Metastatic Breast Cancer Patients. Cancers 2023, 15, 1306. [Google Scholar] [CrossRef]
- Chung, W.-P.; Huang, W.-L.; Lee, C.-H.; Hsu, H.-P.; Huang, W.-L.; Liu, Y.-Y.; Su, W.-C. PI3K Inhibitors in Trastuzumab-Resistant HER2-Positive Breast Cancer Cells with PI3K Pathway Alterations. Am. J. Cancer Res. 2022, 12, 3067–3082. [Google Scholar]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Eng. J. Med. 2020, 382, 597–609. [Google Scholar]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Eng. J. Med. 2022, 387, 217–226. [Google Scholar]
- Liu, X.; Wu, K.; Zheng, D.; Luo, C.; Fan, Y.; Zhong, X.; Zheng, H. Efficacy and Safety of PARP Inhibitors in Advanced or Metastatic Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 742139. [Google Scholar]
- Zhu, X.; Chen, L.; Huang, B.; Li, X.; Yang, L.; Hu, X.; Jiang, Y.; Shao, Z.; Wang, Z. Efficacy and Mechanism of the Combination of PARP and CDK4/6 Inhibitors in the Treatment of Triple-Negative Breast Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 122. [Google Scholar] [CrossRef]
- Howell, S.J.; Casbard, A.; Carucci, M.; Ingarfield, K.; Butler, R.; Morgan, S.; Meissner, M.; Bale, C.; Bezecny, P.; Moon, S.; et al. Fulvestrant plus Capivasertib versus Placebo after Relapse or Progression on an Aromatase Inhibitor in Metastatic, Oestrogen Receptor-Positive, HER2-Negative Breast Cancer (FAKTION): Overall Survival, Updated Progression-Free Survival, and Expanded Biomarker Analysis from a Randomised, Phase 2 Trial. Lancet Oncol. 2022, 23, 851–864. [Google Scholar]
- Ma, F.; Yan, M.; Li, W.; Ouyang, Q.; Tong, Z.; Teng, Y.; Wang, Y.; Wang, S.; Geng, C.; Luo, T.; et al. Pyrotinib versus Placebo in Combination with Trastuzumab and Docetaxel as First Line Treatment in Patients with HER2 Positive Metastatic Breast Cancer (PHILA): Randomised, Double Blind, Multicentre, Phase 3 Trial. BMJ 2023, 383, e076065. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Eng. J. Med. 2018, 379, 2108–2121. [Google Scholar]
- Dent, R.; André, F.; Gonçalves, A.; Martin, M.; Schmid, P.; Schütz, F.; Kümmel, S.; Swain, S.M.; Bilici, A.; Loirat, D.; et al. IMpassion132 Double-Blind Randomised Phase III Trial of Chemotherapy with or without Atezolizumab for Early Relapsing Unresectable Locally Advanced or Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2024, 35, 630–642. [Google Scholar] [CrossRef]
- Correia, A.S.; Gärtner, F.; Vale, N. Drug Combination and Repurposing for Cancer Therapy: The Example of Breast Cancer. Heliyon 2021, 7, e05948. [Google Scholar]
- Wang, Y.; Minden, A. Current Molecular Combination Therapies Used for the Treatment of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 11046. [Google Scholar] [CrossRef]
- Yeo, S.K.; Guan, J.L. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer 2018, 3, 753–760. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, E.; Canberk, S.; Schmitt, F.; Vale, N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers 2025, 17, 1102. https://doi.org/10.3390/cancers17071102
Carvalho E, Canberk S, Schmitt F, Vale N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers. 2025; 17(7):1102. https://doi.org/10.3390/cancers17071102
Chicago/Turabian StyleCarvalho, Eduarda, Sule Canberk, Fernando Schmitt, and Nuno Vale. 2025. "Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies" Cancers 17, no. 7: 1102. https://doi.org/10.3390/cancers17071102
APA StyleCarvalho, E., Canberk, S., Schmitt, F., & Vale, N. (2025). Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers, 17(7), 1102. https://doi.org/10.3390/cancers17071102