Trends in Overall Survival in Lung Adenocarcinoma with EFGR Mutation, KRAS Mutation, or No Mutation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structure of Study Population
3.2. Analysis of Overall Survival
3.2.1. Gene-Wise Analysis of Overall Survival
3.2.2. Trends in Overall Survival
3.2.3. Overall Survival of EGFR-Mutation Subtypes
3.2.4. Overall Survival of KRAS-Mutation Subtypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPI | checkpoint inhibitor |
MDT | multidisciplinary tumor board |
NSCLC | non-small cell lung cancer |
NGS | next-generation sequencing |
OS | overall survival |
PCR | polymerase-chain reaction |
TKI | tyrosine-kinase inhibitor |
TPS | tumor-proportion score |
References
- World Cancer Research Fund. International Lung Cancer Statistics. 2020. Available online: https://www.wcrf.org/cancer-trends/lung-cancer-statistics/ (accessed on 6 April 2024).
- WHO. Lung Cancer: Key Facts. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer#:~:text=globocan%202020%20estimates%20of%20cancer,deaths%20(18%25)%20in%202020 (accessed on 6 April 2024).
- Cancer.Net. Lung Cancer—Non-Small Cell. Available online: https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics (accessed on 6 April 2024).
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed]
- Vachani, A.; Sequist, L.V.; Spira, A. AJRCCM: 100-Year Anniversary. The Shifting Landscape for Lung Cancer: Past, Present, and Future. Am. J. Respir. Crit. Care Med. 2017, 195, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Sima, C.S.; Chaft, J.; Paik, P.K.; Pao, W.; Kris, M.G.; Ladanyi, M.; Riely, G.J. Association of KRAS and EGFR Mutations with Survival in Patients with Advanced Lung Adenocarcinomas. Cancer 2013, 119, 356–362. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Colombino, M.; Sini, M.C.; Manca, A.; Casula, M.; Palomba, G.; Pisano, M.; Doneddu, V.; Zinellu, A.; Santeufemia, D.; et al. Global Prognostic Impact of Driver Genetic Alterations in Patients with Lung Adenocarcinoma: A Real-Life Study. BMC Pulm. Med. 2022, 22, 32. [Google Scholar] [CrossRef]
- Goulding, R.E.; Chenoweth, M.; Carter, G.C.; Boye, M.E.; Sheffield, K.M.; John, W.J.; Leusch, M.S.; Muehlenbein, C.E.; Li, L.; Jen, M.-H.; et al. KRAS Mutation as a Prognostic Factor and Predictive Factor in Advanced/Metastatic Non-Small Cell Lung Cancer: A Systematic Literature Review and Meta-Analysis. Cancer Treat. Res. Commun. 2020, 24, 100200. [Google Scholar] [CrossRef]
- Mellema, W.W.; Dingemans, A.-M.C.; Thunnissen, E.; Snijders, P.J.F.; Derks, J.; Heideman, D.A.M.; Van Suylen, R.; Smit, E.F. KRAS Mutations in Advanced Nonsquamous Non-Small-Cell Lung Cancer Patients Treated with First-Line Platinum-Based Chemotherapy Have No Predictive Value. J. Thorac. Oncol. 2013, 8, 1190–1195. [Google Scholar] [CrossRef]
- Brady, A.K.; McNeill, J.D.; Judy, B.; Bauml, J.; Evans, T.L.; Cohen, R.B.; Langer, C.; Vachani, A.; Aggarwal, C. Survival Outcome According to KRAS Mutation Status in Newly Diagnosed Patients with Stage IV Non-Small Cell Lung Cancer Treated with Platinum Doublet Chemotherapy. Oncotarget 2015, 6, 30287–30294. [Google Scholar] [CrossRef]
- Lee, C.K.; Man, J.; Lord, S.; Links, M.; Gebski, V.; Mok, T.; Yang, J.C.-H. Checkpoint Inhibitors in Metastatic EGFR-Mutated Non-Small Cell Lung Cancer-A Meta-Analysis. J. Thorac. Oncol. 2017, 12, 403–407. [Google Scholar] [CrossRef]
- Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C.-H. Clinical and Molecular Characteristics Associated With Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 210–216. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.-H.; Sequist, L.V.; Geater, S.L.; Tsai, C.-M.; Mok, T.S.K.; Schuler, M.; Yamamoto, N.; Yu, C.-J.; Ou, S.-H.I.; Zhou, C.; et al. Clinical Activity of Afatinib in Patients with Advanced Non-Small-Cell Lung Cancer Harbouring Uncommon EGFR Mutations: A Combined Post-Hoc Analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Yamanaka, T.; Kato, T.; Ikeda, S.; Horinouchi, H.; Ichihara, E.; Kanazu, M.; Takiguchi, Y.; Tanaka, K.; Goto, Y.; et al. Treatment Rationale and Design of a Phase III Study of Afatinib or Chemotherapy in Patients with Non-Small-Cell Lung Cancer Harboring Sensitizing Uncommon Epidermal Growth Factor Receptor Mutations (ACHILLES/TORG1834). Clin. Lung Cancer 2020, 21, e592–e596. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Tanaka, H.; Misumi, T.; Yoshioka, H.; Kurata, T.; Tokito, T.; Fukuhara, T.; Sato, Y.; Shiraishi, Y.; Kusuhara, S.; et al. LBA66 Afatinib versus Chemotherapy for Treatment-Naïve Non-Small Cell Lung Cancer with a Sensitizing Uncommon Epidermal Growth Factor Receptor Mutation: A Phase III Study (ACHILLES/TORG1834). Ann. Oncol. 2023, 34, S1310–S1311. [Google Scholar] [CrossRef]
- Priantti, J.N.; Fujiwara, Y.; Aquino de Moraes, F.C.; Michelon, I.; Castro, C.; Leighl, N.B.; Cavalcante, L.; Addeo, A.; Bar, J.; Horita, N.; et al. Safety and Efficacy of Osimertinib in Patients With Non-Small-Cell Lung Cancer and Uncommon Tumoral Epidermal Growth Factor Receptor Mutations: A Systematic Review and Single-Arm Meta-Analysis. JCO Precis. Oncol. 2024, 8, e2400331. [Google Scholar] [CrossRef]
- Mazzaschi, G.; Perrone, F.; Minari, R.; Verzè, M.; Azzoni, C.; Bottarelli, L.; Pluchino, M.; Armillotta, M.P.; Ubaldi, A.; Altimari, A.; et al. Therapeutic Outcomes and Clinical Features of Advanced Non-Small Cell Lung Cancer Carrying KRAS Mutations: A Multicenter Real-Life Retrospective Study. Clin. Lung Cancer 2022, 23, e478–e488. [Google Scholar] [CrossRef]
- Holderfield, M.; Lee, B.J.; Jiang, J.; Tomlinson, A.; Seamon, K.J.; Mira, A.; Patrucco, E.; Goodhart, G.; Dilly, J.; Gindin, Y.; et al. Concurrent Inhibition of Oncogenic and Wild-Type RAS-GTP for Cancer Therapy. Nature 2024, 629, 919–926. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, L.; Maldonato, B.J.; Wang, Y.; Holderfield, M.; Aronchik, I.; Winters, I.P.; Salman, Z.; Blaj, C.; Menard, M.; et al. Translational and Therapeutic Evaluation of RAS-GTP Inhibition by RMC-6236 in RAS-Driven Cancers. Cancer Discov. 2024, 14, 994–1017. [Google Scholar] [CrossRef]
- Brierley, J.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 8th ed.; John Wiley & Sons, Inc.: Chichester, UK; Hoboken, NJ, USA, 2017; ISBN 978-1-119-26357-9. [Google Scholar]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- ONKOPEDIA. Lungenkarzinom, Nicht-Kleinzellig (NSCLC) 2025. Available online: https://www.onkopedia.com/de/onkopedia/guidelines/lungenkarzinom-nicht-kleinzellig-nsclc/@@guideline/html/index.html (accessed on 4 April 2025).
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. PAFS consensus group CONSORT 2010 Statement: Extension to Randomised Pilot and Feasibility Trials. Pilot Feasibility Stud. 2016, 2, 64. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, Y.; Mitsudomi, T.; Takahashi, T. TTF-1 Expression in Pulmonary Adenocarcinomas. Am. J. Surg. Pathol. 2002, 26, 767–773. [Google Scholar] [CrossRef]
- Schilsky, J.B.; Ni, A.; Ahn, L.; Datta, S.; Travis, W.D.; Kris, M.G.; Chaft, J.E.; Rekhtman, N.; Hellmann, M.D. Prognostic Impact of TTF-1 Expression in Patients with Stage IV Lung Adenocarcinomas. Lung Cancer 2017, 108, 205–211. [Google Scholar] [CrossRef]
- Kerr, K.M.; Bibeau, F.; Thunnissen, E.; Botling, J.; Ryška, A.; Wolf, J.; Öhrling, K.; Burdon, P.; Malapelle, U.; Büttner, R. The Evolving Landscape of Biomarker Testing for Non-Small Cell Lung Cancer in Europe. Lung Cancer 2021, 154, 161–175. [Google Scholar] [CrossRef]
- Tsunoda, A.; Morikawa, K.; Inoue, T.; Miyazawa, T.; Hoshikawa, M.; Takagi, M.; Mineshita, M. A Prospective Observational Study to Assess PD-L1 Expression in Small Biopsy Samples for Non-Small-Cell Lung Cancer. BMC Cancer 2019, 19, 546. [Google Scholar] [CrossRef]
- Negrao, M.V.; Skoulidis, F.; Montesion, M.; Schulze, K.; Bara, I.; Shen, V.; Xu, H.; Hu, S.; Sui, D.; Elamin, Y.Y.; et al. Oncogene-Specific Differences in Tumor Mutational Burden, PD-L1 Expression, and Outcomes from Immunotherapy in Non-Small Cell Lung Cancer. J. Immunother. Cancer 2021, 9, e002891. [Google Scholar] [CrossRef]
- Thomas, Q.D.; Quantin, X.; Lemercier, P.; Chouaid, C.; Schneider, S.; Filleron, T.; Remon-Masip, J.; Perol, M.; Debieuvre, D.; Audigier-Valette, C.; et al. Clinical Characteristic and Survival Outcomes of Patients with Advanced NSCLC According to KRAS Mutational Status in the French Real-Life ESME Cohort. ESMO Open 2024, 9, 103473. [Google Scholar] [CrossRef]
- Tsao, A.S.; Scagliotti, G.V.; Bunn, P.A.; Carbone, D.P.; Warren, G.W.; Bai, C.; de Koning, H.J.; Yousaf-Khan, A.U.; McWilliams, A.; Tsao, M.S.; et al. Scientific Advances in Lung Cancer 2015. J. Thorac. Oncol. 2016, 11, 613–638. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Suda, K.; Wiens, J.; Bunn, P.A. New and Emerging Targeted Treatments in Advanced Non-Small-Cell Lung Cancer. Lancet 2016, 388, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Kung, H.-J.; Mack, P.C.; Gandara, D.R. Genotyping and Genomic Profiling of Non-Small-Cell Lung Cancer: Implications for Current and Future Therapies. J. Clin. Oncol. 2013, 31, 1039–1049. [Google Scholar] [CrossRef]
- Schwegler, C.; Kaufmann, D.; Pfeiffer, D.; Aebi, S.; Diebold, J.; Gautschi, O. Population-Level Effect of Molecular Testing and Targeted Therapy in Patients with Advanced Pulmonary Adenocarcinoma: A Prospective Cohort Study. Virchows. Arch. 2018, 472, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.J.; Kim, H.R.; Arcila, M.E.; Barron, D.; Chakravarty, D.; Gao, J.; Chang, M.T.; Ni, A.; Kundra, R.; Jonsson, P.; et al. Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discov. 2017, 7, 596–609. [Google Scholar] [CrossRef] [PubMed]
- Pakkala, S.; Ramalingam, S.S. Personalized Therapy for Lung Cancer: Striking a Moving Target. JCI Insight 2018, 3, e120858. [Google Scholar] [CrossRef]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non-Small-Cell Lung Cancer: 5-Year Outcomes From the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell 2015, 161, 205–214. [Google Scholar] [CrossRef]
- Yang, J.C.-H.; Lee, D.H.; Lee, J.-S.; Fan, Y.; de Marinis, F.; Iwama, E.; Inoue, T.; Rodríguez-Cid, J.; Zhang, L.; Yang, C.-T.; et al. Phase III KEYNOTE-789 Study of Pemetrexed and Platinum With or Without.Pembrolizumab for Tyrosine Kinase Inhibitor–Resistant, EGFR-Mutant, Metastatic Nonsquamous Non-Small Cell Lung Cancer. J. Clin. Oncol. 2024, 42, 4029–4039. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR -Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Yang, J.C.-H.; Lee, C.K.; Kurata, T.; Kim, D.-W.; John, T.; Nogami, N.; Ohe, Y.; Mann, H.; Rukazenkov, Y.; et al. Osimertinib As First-Line Treatment of EGFR Mutation–Positive Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 841–849. [Google Scholar] [CrossRef]
- Thomas, Q.D.; Girard, N.; Bosquet, L.; Cavaillon, S.; Filleron, T.; Eltaief, S.; Chouaid, C.; Lena, H.; Debieuvre, D.; Perol, M.; et al. Optimizing Treatment Strategies for Egfr-Mutated Non-Small-Cell Lung Cancer Treated with Osimertinib: Real-World Outcomes and Insights. Cancers 2024, 16, 3563. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Randulfe, I.; Scanlon, L.A.; Carter, M.; Moliner, L.; Cil, E.; Califano, R.; Summers, Y.; Blackhall, F.; Lindsay, C.R.; Lewis, J.; et al. First-Line Osimertinib Compared to Earlier Generation TKIs in Advanced EGFR-Mutant NSCLC: A Real-World Survival Analysis. Lung Cancer 2025, 200, 108084. [Google Scholar] [CrossRef] [PubMed]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus Standard Chemotherapy as First-Line Treatment for European Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (EURTAC): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, N.; Mayo-de las Casas, C.; Queralt, C.; de Aguirre, I.; Melloni, B.; Cardenal, F.; Garcia-Gomez, R.; Massuti, B.; Sánchez, J.M.; Porta, R.; et al. Association of EGFR L858R Mutation in Circulating Free DNA With Survival in the EURTAC Trial. JAMA Oncol. 2015, 1, 149–157. [Google Scholar] [CrossRef]
- Villaruz, L.C.; Wang, X.; Bertino, E.M.; Gu, L.; Antonia, S.J.; Burns, T.F.; Clarke, J.; Crawford, J.; Evans, T.L.; Friedland, D.M.; et al. A Single-Arm, Multicenter, Phase II Trial of Osimertinib in Patients with Epidermal Growth Factor Receptor Exon 18 G719X, Exon 20 S768I, or Exon 21 L861Q Mutations. ESMO Open 2023, 8, 101183. [Google Scholar] [CrossRef]
- Lee, V.H.F.; Tin, V.P.C.; Choy, T.; Lam, K.; Choi, C.; Chung, L.; Tsang, J.W.H.; Ho, P.P.Y.; Leung, D.K.C.; Ma, E.S.K.; et al. Association of Exon 19 and 21 EGFR Mutation Patterns with Treatment Outcome after First-Line Tyrosine Kinase Inhibitor in Metastatic Non-Small-Cell Lung Cancer. J. Thorac. Oncol. 2013, 8, 1148–1155. [Google Scholar] [CrossRef]
- Sebastian, M.; Eberhardt, W.E.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; et al. KRAS G12C-Mutated Advanced Non-Small Cell Lung Cancer: A Real-World Cohort from the German Prospective, Observational, Nation-Wide CRISP Registry (AIO-TRK-0315). Lung Cancer 2021, 154, 51–61. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50%. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- Antonia, S.J.; Borghaei, H.; Ramalingam, S.S.; Horn, L.; De Castro Carpeño, J.; Pluzanski, A.; Burgio, M.A.; Garassino, M.; Chow, L.Q.M.; Gettinger, S.; et al. Four-Year Survival with Nivolumab in Patients with Previously Treated Advanced Non-Small-Cell Lung Cancer: A Pooled Analysis. Lancet Oncol. 2019, 20, 1395–1408. [Google Scholar] [CrossRef]
- Shahnam, A.; Davis, A.; Brown, L.J.; Sullivan, I.; Lin, K.; Ng, C.; Yeo, N.; Kong, B.Y.; Khoo, T.; Warburton, L.; et al. Real-World Outcomes of Non-Small Cell Lung Cancer Patients Harbouring KRAS G12C and KRAS G12D Mutations. Lung Cancer 2025, 201, 108421. [Google Scholar] [CrossRef]
- Peters, S.; Cho, B.C.; Luft, A.V.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Trukhin, D.; Kim, S.-W.; Ursol, G.M.; Hussein, M.; et al. Durvalumab With or Without Tremelimumab in Combination With Chemotherapy in First-Line Metastatic NSCLC: Five-Year Overall Survival Outcomes From the Phase 3 POSEIDON Trial. J. Thorac. Oncol. 2025, 20, 76–93. [Google Scholar] [CrossRef]
Current Cohort (NGS), n = 199 | Historic Cohort (PCR), n = 127 | ||||
---|---|---|---|---|---|
KRAS | Current EGFR | Current No-Driver | Historic EGFR | Historic No-Driver | |
Number | 90 | 41 | 68 | 46 | 81 |
Date of diagnosis (median, IQR) | 8/2020 3/18 to 10/22 | 3/2021 8/19 to 8/22 | 4/2021 2/18 to 3/23 | 11/2013 6/11 to 1/17 | 5/2014 8/12 to 5/16 |
Age (median, range) | 65.1 (39.1–86.8) | 68.4 (37.4–87.2) | 68.9 (32.3–90.8) | 71.8 (38.8–89.6) | 66.5 (44.6–84.8) |
Sex | |||||
Male | 46 (51%) | 10 (24%) | 41 (60%) | 14 (30%) | 42 (52%) |
Female | 44 (49%) | 31 (76%) | 27 (40%) | 32 (70%) | 39 (48%) |
Performance status | |||||
ECOG 0 | 25 (28%) | 22 (54%) | 12 (18%) | 13 (28%) | 18 (22%) |
ECOG 1 | 54 (60%) | 15 (37%) | 41 (60%) | 21 (46%) | 48 (59%) |
ECOG 2 | 9 (10%) | 4 (10%) | 10 (15%) | 10 (22%) | 12 (15%) |
ECOG 3 | 2 (2%) | 0 | 5 (7%) | 2 (4%) | 3 (4%) |
Smoking status | NA 1 | NA 2 | NA 1 | ||
Never-smoker | 5 (6%) | 19 (46%) | 6 (9%) | 27 (59%) | 16 (20%) |
Ever smoker | 84 (94%) | 22 (54%) | 60 (91%) | 19 (41%) | 64 (80%) |
Pack Years (median) a | 40 | 12 | 40 | 20 | 40 |
Histology | |||||
Adenocarcinoma | 87 (97%) | 38 (93%) | 68 (100%) | 46 (100%) | 80 (99%) |
Adeno-squamous carcinoma | 3 (3%) | 3 (7%) | 0 | 0 | 1 (1%) |
TTF1-pos. | 64 (80%) | 35 (100%) | 52 (88%) | 26 (96%) | 38 (68%) |
TTF1-neg. | 16 (20%) | 0 | 7 (12%) | 1 (4%) | 18 (32%) |
TTF1 NA | 10 | 6 | 9 | 19 | 25 |
PD-L1 (TPS) b | NA 12 | NA 6 | NA 9 | NA 34 | NA 46 |
0% | 23 (29%) | 23 (66%) | 28 (48%) | 5 (42%) | 22 (63%) |
1–49% | 23 (29%) | 9 (26%) | 17 (29%) | 4 (33%) | 8 (23%) |
50–100% | 32 (41%) | 3 (9%) | 14 (24%) | 3 (25%) | 5 (14%) |
Stage (UICC 8) | |||||
Staging included PET-CT | 63 (70%) | 22 (54%) | 39 (57%) | 9 (20%) | 24 (30%) |
IVA | 36 (40%) | 15 (37%) | 30 (44%) | 14 (30%) | 23 (28%) |
IVB | 54 (60%) | 26 (63%) | 38 (56%) | 32 (70%) | 58 (72%) |
Treatment included | NA 1 | ||||
Targeted therapy c | 6 (14%) | 41 (100%) | 0 | 42 (91%) | 0 |
Osimertinib 1L d | - | 32 (78%) | - | 5 (11%) | - |
Osimertinib ≥ 2L | - | 4 (10%) | - | 5 (11%) | - |
CPI | 79 (88%) | 11 (27%) | 53 (78%) | 2 (4%) | 24 (30%) |
CPI 1L | 67 (74%) | 1 (2%) | 40 (59%) | 1 (2%) | 5 (6%) |
CPI ≥ 2L | 12 (13%) | 10 (24%) | 13 (19%) | 1 (2%) | 19 (23%) |
BSC only | 4 (4%) | 0 | 6 (9%) | 3 (7%) | 3 (4%) |
Follow-up of living patients (months) [median (range)] | 23.3 5.1–115.6 | 44.7 6.9–72.7 | 36.0 3.8–144.3 | 74.9 1.6–151.8 | 87.8 67.4–115.6 |
Deaths | 58 (64%) | 26 (63%) | 48 (71%) | 40 (87%) | 77 (95%) |
Death due to lung cancer | 49 (54%) | 24 (59%) | 34 (50%) | 31 (67%) e | 72(89%) |
Death due to other causes | 9 (10%) | 2 (5%) | 14 (21%) | 8 (17%) | 5 (6%) |
Parameter | Overall Survival (Months) | Comparison Between Subgroups | |||
---|---|---|---|---|---|
n | Median | HR | CI | p | |
Current | (Figure 2A) | ||||
current EGFR | 41 | 37.3 | 0.581 (vs. current no-driver) | 0.366–0.922 | 0.021 * |
0.700 (vs. KRAS) | 0.450–1.09 | 0.114 | |||
KRAS | 90 | 19.2 | 0.841 (vs. current no-driver) | 0.571–1.24 | 0.382 |
current no-driver | 68 | 12.0 | - | - | - |
Historic | (Figure 2B) | ||||
historic EGFR | 46 | 23.3 | 0.598 (vs. no-driver) | 0.413–0.865 | 0.0063 ** |
historic no-driver | 81 | 9.5 | - | - | - |
Trends | (Figure 3A–D) | ||||
current no-driver | 68 | 12.0 | 0.713 (vs. historic no-driver) | 0.501–1.01 | 0.060 |
historic no-driver | 81 | 9.5 | - | - | - |
current no-driver * | 53 | 18.7 | 0.597 (vs. historic no-driver *) | 0.399–0.894 | 0.012 * |
historic no-driver * | 66 | 10.3 | - | - | - |
current EGFR | 41 | 37.3 | 0.699 (vs. historic EGFR) | 0.428–1.14 | 0.152 |
historic EGFR | 46 | 23.3 | - | - | - |
current EGFR * | 32 | 44.5 | 0.684 (vs. historic EGFR *) | 0.365–1.28 | 0.236 |
historic EGFR * | 29 | 29.6 | - | - | - |
EGFR subtypes | (Figure 3E–F) | ||||
all EGFR del exon 19 | 48 | 38.0 | 0.475 (vs. all exon 21) | 0.240–0.939 | 0.032 * |
0.404 (vs. all uncommon) | 0.184–0.889 | 0.024 * | |||
0.510 (vs. all no-driver) | 0.369–0.706 | <0.0001 *** | |||
all EGFR exon 21 L858R | 25 | 17.1 | 0.886 (vs. uncommon) | 0.410–1.92 | 0.759 |
0.752 (vs. all no-driver) | 0.478–1.18 | 0.217 | |||
all EGFR uncommon | 14 | 13.4 | 0.939 (vs. all no-driver) | 0.537–1.64 | 0.826 |
all no-driver | 149 | 10.7 | - | - | - |
current EGFR del exon 19 | 22 | 44.5 | 0.775 (vs. EGFR del exon 19 historic) | 0.395–1.52 | 0.457 |
historic EGFR del exon 19 | 26 | 28.6 | - | - | - |
current EGFR exon 21 L858R | 12 | 33.4 | 0.268 (vs. EGFR exon 21 L858R historic) | 0.100–0.717 | 0.0087 ** |
historic EGFR exon 21 L858R | 13 | 13.3 | - | - | - |
current EGFR uncommon | 7 | 9.1 | 2.04 (vs. EGFR uncommon historic) | 0.634–6.56 | 0.232 |
historic EGFR uncommon | 7 | 16.3 | - | - | - |
KRAS subtypes a | (Figure 4A–F) | ||||
KRAS G12C | 41 | 19.2 | 0.869 (vs. nonG12C) | 0.507–1.49 | 0.609 |
KRAS G12A | 9 | 10.0 | 1.16 (vs. nonG12A) | 0.500–2.70 | 0.728 |
KRAS G12D | 7 | 9.1 | 3.21 (vs. nonG12D) | 0.966–10.7 | 0.057 |
KRAS G12V | 10 | 37.8 | 0.864 (vs. nonG12V) | 0.386–1.94 | 0.723 |
KRAS G13X | 7 | 17.2 | 2.34 (vs. nonG13X) | 0.767–7.14 | 0.135 |
KRAS Q61H | 4 | 25.2 | 0.913 (vs. nonQ61H) | 0.297–2.81 | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faehling, M.; Fallscheer, S.; Schwenk, B.; Seifarth, H.; Sträter, J.; Lengerke, C.; Christopoulos, P. Trends in Overall Survival in Lung Adenocarcinoma with EFGR Mutation, KRAS Mutation, or No Mutation. Cancers 2025, 17, 1237. https://doi.org/10.3390/cancers17071237
Faehling M, Fallscheer S, Schwenk B, Seifarth H, Sträter J, Lengerke C, Christopoulos P. Trends in Overall Survival in Lung Adenocarcinoma with EFGR Mutation, KRAS Mutation, or No Mutation. Cancers. 2025; 17(7):1237. https://doi.org/10.3390/cancers17071237
Chicago/Turabian StyleFaehling, Martin, Sabine Fallscheer, Birgit Schwenk, Harald Seifarth, Jörn Sträter, Claudia Lengerke, and Petros Christopoulos. 2025. "Trends in Overall Survival in Lung Adenocarcinoma with EFGR Mutation, KRAS Mutation, or No Mutation" Cancers 17, no. 7: 1237. https://doi.org/10.3390/cancers17071237
APA StyleFaehling, M., Fallscheer, S., Schwenk, B., Seifarth, H., Sträter, J., Lengerke, C., & Christopoulos, P. (2025). Trends in Overall Survival in Lung Adenocarcinoma with EFGR Mutation, KRAS Mutation, or No Mutation. Cancers, 17(7), 1237. https://doi.org/10.3390/cancers17071237