Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Multiplex Immunohistochemistry
2.3. Image Acquisition and Analysis
2.4. Gene Set Variation Analysis
2.5. Statistical Analysis
3. Results
3.1. pNT Subtypes Differ in Their T Cell but Not in Their Macrophage Compartment
3.2. TLS Are a Common Component of pNT with Variable Presence in HR-NBL, NHR-NBL, GNBL, and GN Independent of Their Maturation
3.3. Presence of TLS Is Linked to Prolonged Progression-Free Survival of pNT Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, J.H.; Ro, J.Y. Mediastinal Neuroblastoma, Ganglioneuroblastoma, and Ganglioneuroma: Pathology Review and Diagnostic Approach. Semin. Diagn. Pathol. 2022, 39, 120–130. [Google Scholar] [CrossRef]
- Shimada, H.; Sano, H.; Hazard, F.K. Pathology of Peripheral Neuroblastic Tumors. Clin. Pediatr. Hematol. Oncol. 2020, 27, 73–86. [Google Scholar] [CrossRef]
- Brodeur, G.M. Neuroblastoma: Biological Insights into a Clinical Enigma. Nat. Rev. Cancer 2003, 3, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.I.; Dyberg, C.; Wickström, M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019, 12, 9. [Google Scholar] [CrossRef]
- Körber, V.; Stainczyk, S.A.; Kurilov, R.; Henrich, K.-O.; Hero, B.; Brors, B.; Westermann, F.; Höfer, T. Neuroblastoma Arises in Early Fetal Development and Its Evolutionary Duration Predicts Outcome. Nat. Genet. 2023, 55, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.M.; Reyes-Múgica, M.; Chan, J.K.C.; Hasle, H.; Lazar, A.J.; Rossi, S.; Ferrari, A.; Jarzembowski, J.A.; Pritchard-Jones, K.; Hill, D.A.; et al. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov. 2022, 12, 331–355. [Google Scholar] [CrossRef]
- Park, J.R.; Eggert, A.; Caron, H. Neuroblastoma: Biology, Prognosis, and Treatment. Hematol./Oncol. Clin. N. Am. 2010, 24, 65–86. [Google Scholar] [CrossRef]
- Colon, N.C.; Chung, D.H. Neuroblastoma. Adv. Pediatr. 2011, 58, 297–311. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Rao, R.; Lashkari, H.P.; Kini, H.; Kini, J.R.; Kudurugundi, V.B.; Ashok, V.; Gowthuvalli, C.V. A Needle in the Haystack: An Unusual Case Presentation of Ganglioneuroblastoma at a Tertiary Care Center in Coastal Karnataka. Clin. Case Rep. 2023, 11, e8149. [Google Scholar] [CrossRef]
- Shah, D.; Chaudhary, S.R.; Khan, S.; Mallik, S. Overreliance on Radiological Findings Leading to Misdiagnosed Giant Retroperitoneal Ganglioneuroma: A Case Report and Literature Review. Cureus 2023, 15, e43914. [Google Scholar] [CrossRef]
- Conces, M.R. Peripheral Neuroblastic Tumors of the Adrenal Gland: Clinicopathologic Features and Important Molecular Alterations. Diagn. Histopathol. 2020, 26, 200–206. [Google Scholar] [CrossRef]
- Irwin, M.S.; Naranjo, A.; Zhang, F.F.; Cohn, S.L.; London, W.B.; Gastier-Foster, J.M.; Ramirez, N.C.; Pfau, R.; Reshmi, S.; Wagner, E.; et al. Revised Neuroblastoma Risk Classification System: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2021, 39, 3229–3241. [Google Scholar] [CrossRef]
- Shimada, H.; Ambros, I.M.; Dehner, L.P.; Hata, J.; Joshi, V.V.; Roald, B.; Stram, D.O.; Gerbing, R.B.; Lukens, J.N.; Matthay, K.K.; et al. The International Neuroblastoma Pathology Classification (the Shimada System). Cancer 1999, 86, 364–372. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Fridman, W.H.; Zitvogel, L.; Sautès–Fridman, C.; Kroemer, G. The Immune Contexture in Cancer Prognosis and Treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020, 52, 55–81. [Google Scholar] [CrossRef]
- Mackenzie, N.J.; Nicholls, C.; Templeton, A.R.; Perera, M.P.; Jeffery, P.L.; Zimmermann, K.; Kulasinghe, A.; Kenna, T.J.; Vela, I.; Williams, E.D.; et al. Modelling the Tumor Immune Microenvironment for Precision Immunotherapy. Clin. Transl. Immunol. 2022, 11, e1400. [Google Scholar] [CrossRef]
- Cendrowicz, E.; Sas, Z.; Bremer, E.; Rygiel, T.P. The Role of Macrophages in Cancer Development and Therapy. Cancers 2021, 13, 1946. [Google Scholar] [CrossRef]
- Italiani, P.; Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014, 5, 514. [Google Scholar] [CrossRef]
- Liu, J.; Geng, X.; Hou, J.; Wu, G. New Insights into M1/M2 Macrophages: Key Modulators in Cancer Progression. Cancer Cell Int. 2021, 21, 389. [Google Scholar] [CrossRef]
- Yuan, X.; Seneviratne, J.A.; Du, S.; Xu, Y.; Chen, Y.; Jin, Q.; Jin, X.; Balachandran, A.; Huang, S.; Xu, Y.; et al. Single-Cell Profiling of Peripheral Neuroblastic Tumors Identifies an Aggressive Transitional State That Bridges an Adrenergic-Mesenchymal Trajectory. Cell Rep. 2022, 41, 111455. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Luo, Y. Targeting Macrophages in Cancer Immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Plesca, I.; Benešová, I.; Beer, C.; Sommer, U.; Müller, L.; Wehner, R.; Heiduk, M.; Aust, D.; Baretton, G.; Bachmann, M.P.; et al. Clinical Significance of Tumor-Infiltrating Conventional and Plasmacytoid Dendritic Cells in Pancreatic Ductal Adenocarcinoma. Cancers 2022, 14, 1216. [Google Scholar] [CrossRef]
- Truxova, I.; Kasikova, L.; Hensler, M.; Skapa, P.; Laco, J.; Pecen, L.; Belicova, L.; Praznovec, I.; Halaska, M.J.; Brtnicky, T.; et al. Mature Dendritic Cells Correlate with Favorable Immune Infiltrate and Improved Prognosis in Ovarian Carcinoma Patients. J. ImmunoTherapy Cancer 2018, 6, 139. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Pereira, M.V.A.; Galvani, R.G.; Gonçalves-Silva, T.; De Vasconcelo, Z.F.M.; Bonomo, A. Tissue Adaptation of CD4 T Lymphocytes in Homeostasis and Cancer. Front. Immunol. 2024, 15, 1379376. [Google Scholar] [CrossRef] [PubMed]
- Speiser, D.E.; Chijioke, O.; Schaeuble, K.; Münz, C. CD4+ T Cells in Cancer. Nat. Cancer 2023, 4, 317–329. [Google Scholar] [CrossRef]
- Kang, W.; Feng, Z.; Luo, J.; He, Z.; Liu, J.; Wu, J.; Rong, P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front. Immunol. 2021, 12, 689270. [Google Scholar] [CrossRef]
- Kumagai, S.; Itahashi, K.; Nishikawa, H. Regulatory T Cell-Mediated Immunosuppression Orchestrated by Cancer: Towards an Immuno-Genomic Paradigm for Precision Medicine. Nat. Rev. Clin. Oncol. 2024, 21, 337–353. [Google Scholar] [CrossRef]
- Andrews, L.P.; Marciscano, A.E.; Drake, C.G.; Vignali, D.A.A. LAG 3 (CD 223) as a Cancer Immunotherapy Target. Immunol. Rev. 2017, 276, 80–96. [Google Scholar] [CrossRef]
- Patsoukis, N.; Wang, Q.; Strauss, L.; Boussiotis, V.A. Revisiting the PD-1 Pathway. Sci. Adv. 2020, 6, eabd2712. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Gilmour, C.; Patnaik, S.; Wang, L.L. Combinatorial Blockade for Cancer Immunotherapy: Targeting Emerging Immune Checkpoint Receptors. Front. Immunol. 2023, 14, 1264327. [Google Scholar] [CrossRef]
- Wienke, J.; Dierselhuis, M.P.; Tytgat, G.A.M.; Künkele, A.; Nierkens, S.; Molenaar, J.J. The Immune Landscape of Neuroblastoma: Challenges and Opportunities for Novel Therapeutic Strategies in Pediatric Oncology. Eur. J. Cancer 2021, 144, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Yan, G.; Zhang, G. Tertiary Lymphoid Structures in Cancer: Maturation and Induction. Front. Immunol. 2024, 15, 1369626. [Google Scholar] [CrossRef] [PubMed]
- Teillaud, J.-L.; Houel, A.; Panouillot, M.; Riffard, C.; Dieu-Nosjean, M.-C. Tertiary Lymphoid Structures in Anticancer Immunity. Nat. Rev. Cancer 2024, 24, 629–646. [Google Scholar] [CrossRef]
- Fridman, W.H.; Meylan, M.; Pupier, G.; Calvez, A.; Hernandez, I.; Sautès-Fridman, C. Tertiary Lymphoid Structures and B Cells: An Intratumoral Immunity Cycle. Immunity 2023, 56, 2254–2269. [Google Scholar] [CrossRef]
- Jacquelot, N.; Tellier, J.; Nutt, S.; Belz, B. Tertiary Lymphoid Structures and B Lymphocytes in Cancer Prognosis and Response to Immunotherapies. OncoImmunology 2021, 10, 1900508. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary Lymphoid Structures in the Era of Cancer Immunotherapy. Nat. Rev. Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Thommen, D.S. Tertiary Lymphoid Structures in Cancer. Science 2022, 375, eabf9419. [Google Scholar] [CrossRef]
- Cooper, R.; Khakoo, Y.; Matthay, K.K.; Lukens, J.N.; Seeger, R.C.; Stram, D.O.; Gerbing, R.B.; Nakagawa, A.; Shimada, H. Opsoclonus-Myoclonus-Ataxia Syndrome in Neuroblastoma: Histopathologic Features-A Report from the Children’s Cancer Group. Med. Pediatr. Oncol. 2001, 36, 623–629. [Google Scholar] [CrossRef]
- Gambini, C.; Conte, M.; Bernini, G.; Angelini, P.; Pession, A.; Paolucci, P.; Donfrancesco, A.; Veneselli, E.; Mazzocco, K.; Tonini, G.P.; et al. Neuroblastic Tumors Associated with Opsoclonus-Myoclonus Syndrome: Histological, Immunohistochemical and Molecular Features of 15 Italian Cases. Virchows Arch. 2003, 442, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Melaiu, O.; Chierici, M.; Lucarini, V.; Jurman, G.; Conti, L.A.; De Vito, R.; Boldrini, R.; Cifaldi, L.; Castellano, A.; Furlanello, C.; et al. Cellular and Gene Signatures of Tumor-Infiltrating Dendritic Cells and Natural-Killer Cells Predict Prognosis of Neuroblastoma. Nat. Commun. 2020, 11, 5992. [Google Scholar] [CrossRef]
- Verhoeven, B.M.; Mei, S.; Olsen, T.K.; Gustafsson, K.; Valind, A.; Lindström, A.; Gisselsson, D.; Fard, S.S.; Hagerling, C.; Kharchenko, P.V.; et al. The Immune Cell Atlas of Human Neuroblastoma. Cell Rep. Med. 2022, 3, 100657. [Google Scholar] [CrossRef] [PubMed]
- Kießler, M.; Plesca, I.; Sommer, U.; Wehner, R.; Wilczkowski, F.; Müller, L.; Tunger, A.; Lai, X.; Rentsch, A.; Peuker, K.; et al. Tumor-Infiltrating Plasmacytoid Dendritic Cells Are Associated with Survival in Human Colon Cancer. J. Immunother. Cancer 2021, 9, e001813. [Google Scholar] [CrossRef] [PubMed]
- Rupp, L.; Dietsche, I.; Kießler, M.; Sommer, U.; Muckenhuber, A.; Steiger, K.; Van Eijck, C.W.F.; Richter, L.; Istvanffy, R.; Jäger, C.; et al. Neoadjuvant Chemotherapy Is Associated with Suppression of the B Cell-Centered Immune Landscape in Pancreatic Ductal Adenocarcinoma. Front. Immunol. 2024, 15, 1378190. [Google Scholar] [CrossRef]
- Rupp, L.; Resag, A.; Potkrajcic, V.; Warm, V.; Wehner, R.; Jöhrens, K.; Bösmüller, H.; Eckert, F.; Schmitz, M. Prognostic Impact of the Post-Treatment T Cell Composition and Spatial Organization in Soft Tissue Sarcoma Patients Treated with Neoadjuvant Hyperthermic Radio(Chemo)Therapy. Front. Immunol. 2023, 14, 1185197. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Johnson, K.S. Phenoptr: InForm Helper Functions, version 0.3.2; Akoya Biosciences: Marlborough, MA, USA, 2022. [Google Scholar]
- Johnson, K.S. Phenoptrreports: Create Reports Using Phenoptics Data 2022, version 0.1.6; Akoya Biosciences: Marlborough, MA, USA, 2022. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fridman, W.H.; Meylan, M.; Petitprez, F.; Sun, C.-M.; Italiano, A.; Sautès-Fridman, C. B Cells and Tertiary Lymphoid Structures as Determinants of Tumour Immune Contexture and Clinical Outcome. Nat. Rev. Clin. Oncol. 2022, 19, 441–457. [Google Scholar] [CrossRef]
- Gunderson, A.J.; Rajamanickam, V.; Bui, C.; Bernard, B.; Pucilowska, J.; Ballesteros-Merino, C.; Schmidt, M.; McCarty, K.; Philips, M.; Piening, B.; et al. Germinal Center Reactions in Tertiary Lymphoid Structures Associate with Neoantigen Burden, Humoral Immunity and Long-Term Survivorship in Pancreatic Cancer. OncoImmunology 2021, 10, 1900635. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Sun, L.; Mo, H.; Feng, Y.; Wu, X.; Li, C.; Chen, C.; Li, J.; Xin, Y.; et al. Maturation and Abundance of Tertiary Lymphoid Structures Are Associated with the Efficacy of Neoadjuvant Chemoimmunotherapy in Resectable Non-Small Cell Lung Cancer. J. Immunother. Cancer 2022, 10, e005531. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Huang, X.; Liu, R.; Ye, F.; Li, X.; Sun, B.; Li, H. Transcriptome Analysis of Tertiary Lymphoid Structures (TLSs)-Related Genes Reveals Prognostic Value and Immunotherapeutic Potential in Cancer. Oncologie 2024, 26, 287–300. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, J.; Xiao, Y.; Ming, J.; Zhou, J.; Dong, F.; Zhou, X.; Xu, Z.; Zhao, X.; Lei, P.; et al. CD20+CD22+ADAM28+ B Cells in Tertiary Lymphoid Structures Promote Immunotherapy Response. Front. Immunol. 2022, 13, 865596. [Google Scholar] [CrossRef] [PubMed]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; ISBN 978-1-138-33149-5. [Google Scholar]
- Gu, Z. Complex Heatmap Visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps, version 1.0 12; Akoya Biosciences: Marlborough, MA, USA, 2024. [Google Scholar]
- Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The Impact of Interferon-Regulatory Factors to Macrophage Differentiation and Polarization into M1 and M2. Immunobiology 2018, 223, 101–111. [Google Scholar] [CrossRef]
- Gao, J.; Liang, Y.; Wang, L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front. Immunol. 2022, 13, 888713. [Google Scholar] [CrossRef]
- Günthner, R.; Anders, H.-J. Interferon-Regulatory Factors Determine Macrophage Phenotype Polarization. Mediat. Inflamm. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.-H.; Jin, L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front. Immunol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Morcrette, G.; Hirsch, T.Z.; Badour, E.; Pilet, J.; Caruso, S.; Calderaro, J.; Martin, Y.; Imbeaud, S.; Letouzé, E.; Rebouissou, S.; et al. APC Germline Hepatoblastomas Demonstrate Cisplatin-Induced Intratumor Tertiary Lymphoid Structures. OncoImmunology 2019, 8, e1583547. [Google Scholar] [CrossRef] [PubMed]
- Holterhus, M.; Altvater, B.; Kailayangiri, S.; Rossig, C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers 2022, 14, 2177. [Google Scholar] [CrossRef] [PubMed]
- Sherif, S.; Roelands, J.; Mifsud, W.; Ahmed, E.I.; Raynaud, C.M.; Rinchai, D.; Sathappan, A.; Maaz, A.; Saleh, A.; Ozer, E.; et al. The Immune Landscape of Solid Pediatric Tumors. J. Exp. Clin. Cancer Res. 2022, 41, 199. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.L.; Meyran, D.; Ziegler, D.S.; Haber, M.; Ekert, P.G.; Trapani, J.A.; Neeson, P.J. Immune Profiling of Pediatric Solid Tumors. J. Clin. Investig. 2020, 130, 3391–3402. [Google Scholar] [CrossRef]
- Masih, K.E.; Wei, J.S.; Milewski, D.; Khan, J. Exploring and Targeting the Tumor Immune Microenvironment of Neuroblastoma. J. Cell. Immunol. 2021, 3, 305. [Google Scholar] [CrossRef]
- Anderson, J.; Majzner, R.G.; Sondel, P.M. Immunotherapy of Neuroblastoma: Facts and Hopes. Clin. Cancer Res. 2022, 28, 3196–3206. [Google Scholar] [CrossRef]
- Batchu, S. Immunological Landscape of Neuroblastoma and Its Clinical Significance. Cancer Treat. Res. Commun. 2021, 26, 100274. [Google Scholar] [CrossRef]
- Feng, C.; Li, T.; Xiao, J.; Wang, J.; Meng, X.; Niu, H.; Jiang, B.; Huang, L.; Deng, X.; Yan, X.; et al. Tumor Microenvironment Profiling Identifies Prognostic Signatures and Suggests Immunotherapeutic Benefits in Neuroblastoma. Front. Cell Dev. Biol. 2022, 10, 814836. [Google Scholar] [CrossRef]
- Wienke, J.; Visser, L.L.; Kholosy, W.M.; Keller, K.M.; Barisa, M.; Poon, E.; Munnings-Tomes, S.; Himsworth, C.; Calton, E.; Rodriguez, A.; et al. Integrative Analysis of Neuroblastoma by Single-Cell RNA Sequencing Identifies the NECTIN2-TIGIT Axis as a Target for Immunotherapy. Cancer Cell 2024, 42, 283–300.e8. [Google Scholar] [CrossRef]
- Mina, M.; Boldrini, R.; Citti, A.; Romania, P.; D’Alicandro, V.; De Ioris, M.; Castellano, A.; Furlanello, C.; Locatelli, F.; Fruci, D. Tumor-Infiltrating T Lymphocytes Improve Clinical Outcome of Therapy-Resistant Neuroblastoma. OncoImmunology 2015, 4, e1019981. [Google Scholar] [CrossRef]
- Asgharzadeh, S.; Salo, J.A.; Ji, L.; Oberthuer, A.; Fischer, M.; Berthold, F.; Hadjidaniel, M.; Liu, C.W.-Y.; Metelitsa, L.S.; Pique-Regi, R.; et al. Clinical Significance of Tumor-Associated Inflammatory Cells in Metastatic Neuroblastoma. J. Clin. Oncol. 2012, 30, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.; Kock, A.; Idborg, H.; Arsenian Henriksson, M.; Martinsson, T.; Johnsen, J.I.; Korotkova, M.; Kogner, P.; Jakobsson, P.-J. COX/mPGES-1/PGE 2 Pathway Depicts an Inflammatory-Dependent High-Risk Neuroblastoma Subset. Proc. Natl. Acad. Sci. USA 2015, 112, 8070–8075. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, E.; Jiang, C.; Cheng, C. B Cell Infiltration Is Highly Associated with Prognosis and an Immune-Infiltrated Tumor Microenvironment in Neuroblastoma. J. Cancer Metastasis Treat. 2021, 7, 10-20517. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.; Plesca, I.; Rothe, R.; Resag, A.; Löck, S.; Benešová, I.; Rupp, L.; Linge, A.; Wehner, R.; Krause, M.; et al. Type I Conventional Dendritic Cells and CD8+ T Cells Predict Favorable Clinical Outcome of Head and Neck Squamous Cell Carcinoma Patients. Front. Immunol. 2024, 15, 1414298. [Google Scholar] [CrossRef]
- Chowdhury, F.; Dunn, S.; Mitchell, S.; Mellows, T.; Ashton-Key, M.; Gray, J.C. PD-L1 and CD8 + PD1 + Lymphocytes Exist as Targets in the Pediatric Tumor Microenvironment for Immunomodulatory Therapy. OncoImmunology 2015, 4, e1029701. [Google Scholar] [CrossRef]
- Melaiu, O.; Mina, M.; Chierici, M.; Boldrini, R.; Jurman, G.; Romania, P.; D’Alicandro, V.; Benedetti, M.C.; Castellano, A.; Liu, T.; et al. PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clin. Cancer Res. 2017, 23, 4462–4472. [Google Scholar] [CrossRef]
- Rosenberg, M.I.; Greenstein, E.; Buchkovich, M.; Peres, A.; Santoni-Rugiu, E.; Yang, L.; Mikl, M.; Vaksman, Z.; Gibbs, D.L.; Reshef, D.; et al. Polyclonal Lymphoid Expansion Drives Paraneoplastic Autoimmunity in Neuroblastoma. Cell Rep. 2023, 42, 112879. [Google Scholar] [CrossRef]
- Chen, L.; Oke, T.; Siegel, N.; Cojocaru, G.; Tam, A.J.; Blosser, R.L.; Swailes, J.; Ligon, J.A.; Lebid, A.; Morris, C.; et al. The Immunosuppressive Niche of Soft-Tissue Sarcomas Is Sustained by Tumor-Associated Macrophages and Characterized by Intratumoral Tertiary Lymphoid Structures. Clin. Cancer Res. 2020, 26, 4018–4030. [Google Scholar] [CrossRef]
- Xu, W.; Lu, J.; Liu, W.-R.; Anwaier, A.; Wu, Y.; Tian, X.; Su, J.-Q.; Qu, Y.-Y.; Yang, J.; Zhang, H.; et al. Heterogeneity in Tertiary Lymphoid Structures Predicts Distinct Prognosis and Immune Microenvironment Characterizations of Clear Cell Renal Cell Carcinoma. J. Immunother. Cancer 2023, 11, e006667. [Google Scholar] [CrossRef]
- Weiss, T.; Taschner-Mandl, S.; Janker, L.; Bileck, A.; Rifatbegovic, F.; Kromp, F.; Sorger, H.; Kauer, M.O.; Frech, C.; Windhager, R.; et al. Schwann Cell Plasticity Regulates Neuroblastic Tumor Cell Differentiation via Epidermal Growth Factor-like Protein 8. Nat. Commun. 2021, 12, 1624. [Google Scholar] [CrossRef]
- Gomez, R.L.; Ibragimova, S.; Ramachandran, R.; Philpott, A.; Ali, F.R. Tumoral Heterogeneity in Neuroblastoma. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188805. [Google Scholar] [CrossRef] [PubMed]
- Kasikova, L.; Rakova, J.; Hensler, M.; Lanickova, T.; Tomankova, J.; Pasulka, J.; Drozenova, J.; Mojzisova, K.; Fialova, A.; Vosahlikova, S.; et al. Tertiary Lymphoid Structures and B Cells Determine Clinically Relevant T Cell Phenotypes in Ovarian Cancer. Nat. Commun. 2024, 15, 2528. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, S.-W.; Zhou, J.-J.; Chen, D.-R.; Liu, J.; Wu, Z.-Z.; Wang, W.-Y.; Zhang, M.-J.; Sun, Z.-J. Tertiary Lymphoid Structure Raises Survival and Immunotherapy in HPV—HNSCC. J. Dent. Res. 2023, 102, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, G.; Bergomas, F.; Grizzi, F.; Doni, A.; Bianchi, P.; Malesci, A.; Laghi, L.; Allavena, P.; Mantovani, A.; Marchesi, F. Occurrence of Tertiary Lymphoid Tissue Is Associated with T-Cell Infiltration and Predicts Better Prognosis in Early-Stage Colorectal Cancers. Clin. Cancer Res. 2014, 20, 2147–2158. [Google Scholar] [CrossRef]
- Cabrita, R.; Lauss, M.; Sanna, A.; Donia, M.; Skaarup Larsen, M.; Mitra, S.; Johansson, I.; Phung, B.; Harbst, K.; Vallon-Christersson, J.; et al. Tertiary Lymphoid Structures Improve Immunotherapy and Survival in Melanoma. Nature 2020, 577, 561–565. [Google Scholar] [CrossRef]
- Dieu-Nosjean, M.-C.; Antoine, M.; Danel, C.; Heudes, D.; Wislez, M.; Poulot, V.; Rabbe, N.; Laurans, L.; Tartour, E.; De Chaisemartin, L.; et al. Long-Term Survival for Patients With Non–Small-Cell Lung Cancer With Intratumoral Lymphoid Structures. J. Clin. Oncol. 2008, 26, 4410–4417. [Google Scholar] [CrossRef]
PatientID | Gender | Age at Diagnosis (Months) | INPC | Differentiation Stage | Stroma (%) | INRGSS Group | MYCN | MKI | Histology | Survival | OS Time (Months) | Progress | PFS Time (Months) | TLS Count |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | f | 174 | NBL | poorly differentiated | 5 | high | - | low | UH | alive | 169 | - | 169 | 0 |
P2 | m | 33 | NBL | differentiating | 30 | intermediate | - | low | FH | dead | 50 | + | 28 | 0 |
P3 | m | 48 | NBL | poorly differentiated | 5 | high | - | low | UH | alive | 208 | + | 27 | 0 |
P4 | m | 20 | NBL | poorly differentiated | 30 | low | - | intermediate | UH | alive | 192 | - | 192 | 0 |
P5 | m | 2 | NBL | poorly differentiated | 10 | intermediate | - | low | FH | alive | 102 | - | 102 | 0 |
P6 | m | 1 | NBL | poorly differentiated | 3 | low | - | low | FH | alive | 71 | - | 71 | 0 |
P7 | m | 41 | NBL | poorly differentiated | 5 | high | - | low | UH | dead | 45 | + | 18 | 0 |
P8 | m | 12 | NBL | poorly differentiated | 3 | intermediate | - | low | FH | alive | 110 | - | 110 | 36 |
P9 | f | 28 | GNBL | intermixed | 80 | low | - | n.a. | FH | n.a. | n.a. | n.a. | n.a. | 11 |
P10 | m | 149 | GN | mature | 99 | low | - | n.a. | FH | alive | 56 | + | 56 | 4 |
P11 | f | 33 | GNBL | intermixed | 40 | low | - | low | FH | alive | 103 | - | 103 | 7 |
P12 | m | 65 | GNBL | intermixed | 99 | low | - | low | FH | alive | 103 | - | 103 | 18 |
P13 | f | 128 | GNBL | nodular | 7 | intermediate | - | low | UH | alive | 93 | + | 10 | 0 |
P14 | m | 85 | GN | maturing | 95 | low | - | n.a. | FH | alive | 52 | - | 52 | 20 |
P15 | f | 83 | GNBL | nodular | 45 | intermediate | - | low | UH | alive | 37 | - | 37 | 14 |
P16 | m | 127 | GN | maturing | 99 | low | n.a. | n.a. | FH | n.a. | n.a. | n.a. | n.a. | 2 |
P17 | m | 12 | NBL | differentiating | 10 | intermediate | - | low | FH | alive | 63 | + | 22 | 0 |
P18 | f | 23 | NBL | poorly differentiated | 7 | high | - | low | UH | alive | 40 | - | 40 | 0 |
P19 | m | 74 | GN | maturing | 99 | low | n.a. | n.a. | FH | alive | 60 | - | 60 | 52 |
P20 | m | 63 | NBL | poorly differentiated | 7 | high | - | high | UH | alive | 35 | + | 19 | 0 |
P21 | f | 5 | NBL | poorly differentiated | 7 | low | - | intermediate | FH | alive | 63 | - | 63 | 17 |
P22 | m | 39 | NBL | undifferentiated | 0 | high | - | n.a. | UH | alive | 45 | + | 35 | 0 |
P23 | m | 7 | NBL | poorly differentiated | 40 | low | - | low | FH | alive | 45 | - | 45 | 0 |
P24 | f | 47 | NBL | poorly differentiated | 40 | high | - | low | UH | alive | 47 | - | 47 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothe, R.; Golle, T.; Hachkar, B.; Hörz, T.; Pablik, J.; Rupp, L.; Dietsche, I.; Kruppa, C.; Fitze, G.; Schmitz, M.; et al. Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients. Cancers 2025, 17, 1303. https://doi.org/10.3390/cancers17081303
Rothe R, Golle T, Hachkar B, Hörz T, Pablik J, Rupp L, Dietsche I, Kruppa C, Fitze G, Schmitz M, et al. Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients. Cancers. 2025; 17():1303. https://doi.org/10.3390/cancers17081303
Chicago/Turabian StyleRothe, Rebecca, Therés Golle, Basma Hachkar, Tina Hörz, Jessica Pablik, Luise Rupp, Ina Dietsche, Christian Kruppa, Guido Fitze, Marc Schmitz, and et al. 2025. "Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients" Cancers 17, no. : 1303. https://doi.org/10.3390/cancers17081303
APA StyleRothe, R., Golle, T., Hachkar, B., Hörz, T., Pablik, J., Rupp, L., Dietsche, I., Kruppa, C., Fitze, G., Schmitz, M., Haase, M., & Wehner, R. (2025). Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients. Cancers, 17(), 1303. https://doi.org/10.3390/cancers17081303