Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Material and Methods
- -
- Population: Adult (≥18 years old) patients with RCC;
- -
- Intervention: Measurement of circulating or cell-free miRNA in urine samples of patients with RCC;
- -
- Comparator/Control: Healthy subjects or patients with RCC after surgery;
- -
- Outcome (main): Different expression of miRNA in urine samples between patients with RCC and healthy subjects through diagnostic accuracy measurements. Outcome (additional): Different expression of miRNA in urine samples of patients with RCC before and after surgery through diagnostic accuracy measurements.
- -
- pediatric patients and adult patients with benign renal tumors;
- -
- measurement of RNA other than circulating or cell-free miRNA in blood samples of patients with RCC (snRNA, ccRNA, exosomal RNA, lncRNA…);
- -
- reviews and metanalysis, abstracts, letters and meeting report.
- -
- bibliographic data: first author, publication year and citation;
- -
- study characteristics: study design, country, number of centers, sample size;
- -
- participant characteristics: disease, gender, age;
- -
- intervention characteristics: type of miRNA, dosage method and phase;
- -
- control characteristics: healthy subjects or patients with RCC in other phases;
- -
- study outcomes.
3. Results
Risk of Bias and Certainty Assessment for Included Studies
4. Discussion
- Collaboration between research centers and clinical institutions is considered essential to validate these biomarkers in different populations and clinical settings.
- Studies evaluating urinary miRNAs multiple times in homogeneous populations could resolve the issue of intraindividual and interindividual fluctuation of miRNA in urine.
- Standardized procedures for data reporting and sample collecting must be created to enhance study comparability, increase the reliability of the results and avoid future inconsistencies among studies.
- Technological advances in miRNAs detection, such as next-generation sequencing and machine learning-based analysis, may increase sensitivity and specificity, improving the viability of miRNA-based diagnostics in standard clinical settings.
- The accuracy of diagnosis may be increased by combining miRNAs with additional biomarkers, such as protein or genetic biomarkers.
- Further studies with longer follow-up of pT3 and pT4 RCC patients would enrich our current knowledge about urinary miRNAs as potential predictors of metastases and response index to adjuvant therapy.
- To reduce risk of bias and increase the quality of future studies, it is crucial to identify and account for relevant confounding factors and apply the analysis to larger, independent cohorts to ensure their generalizability and clinical applicability.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Delahunt, B.; Eble, J.N.; Samaratunga, H.; Thunders, M.; Yaxley, J.W.; Egevad, L. Staging of renal cell carcinoma: Current progress and potential advances. Pathology 2021, 53, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, A.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, D.d.S.; Gitaí, D.L.G.; de Andrade, T.G. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol. Dis. 2015, 54, 364–368. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Supplementary Material to: PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef]
- Guadagni, L.; Cochetti, G.; Paladini, A.; Russo, M.; Pastore, F.; Saqer, E.; La Mura, R.; Vitale, A.; Ricci, F.; Mangione, P.; et al. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD42024550716 (accessed on 8 December 2024).
- Mendeley Ltd. Mendeley Desktop; Mendeley Ltd.: London, UK, 2021; Available online: https://www.mendeley.com/ (accessed on 16 February 2025).
- Microsoft Corporation. Microsoft Excel; Microsoft Corporation: 2018. Available online: https://office.microsoft.com/excel (accessed on 16 February 2025).
- Higgins, J.P.; Morgan, R.L.; Rooney, A.A.; Taylor, K.W.; Thayer, K.A.; Silva, R.A.; Lemeris, C.; Akl, E.A.; Bateson, T.F.; Berkman, N.D.; et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ. Int. 2024, 186, 108602. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations; The GRADE Working Group: 2013. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 1 October 2013).
- Bustos, M.A.; Gottlieb, J.; Choe, J.; Suyeon, R.; Lin, S.Y.; Allen, W.M.; Krasne, D.L.; Wilson, T.G.; Hoon, D.S.; Linehan, J.A. Diagnostic miRNA Signatures in Paired Tumor, Plasma, and Urine Specimens From Renal Cell Carcinoma Patients. Clin. Chem. 2023, 70, 261–272. [Google Scholar] [CrossRef]
- Cochetti, G.; Cari, L.; Nocentini, G.; Maulà, V.; Suvieri, C.; Cagnani, R.; De Vermandois, J.A.R.; Mearini, E. Detection of urinary miRNAs for diagnosis of clear cell renal cell carcinoma. Sci. Rep. 2020, 10, 21290. [Google Scholar] [CrossRef]
- Cochetti, G.; Cari, L.; Maulà, V.; Cagnani, R.; Paladini, A.; Del Zingaro, M.; Nocentini, G.; Mearini, E. Validation in an Independent Cohort of MiR-122, MiR-1271, and MiR-15b as Urinary Biomarkers for the Potential Early Diagnosis of Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Fedorko, M.; Juracek, J.; Stanik, M.; Svoboda, M.; Poprach, A.; Buchler, T.; Pacik, D.; Dolezel, J.; Slaby, O. Detection of let-7 miRNAs in urine supernatant as potential diagnostic approach in non-metastatic clear-cell renal cell carcinoma. Biochem. Medica 2017, 27, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, A.; Péoch, M.; Cottier, M.; Mottet, N. Detection of urinary cell-free miR-210 as a potential tool of liquid biopsy for clear cell renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Mytsyk, Y.; Dosenko, V.; Borys, Y.; Kucher, A.; Gazdikova, K.; Busselberg, D.; Caprnda, M.; Kruzliak, P.; Farooqi, A.A.; Lubov, M. MicroRNA-15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. Int. Urol. Nephrol. 2018, 50, 851–859. [Google Scholar] [CrossRef]
- Oto, J.; Herranz, R.; Plana, E.; Sánchez-González, J.V.; Pérez-Ardavín, J.; Hervás, D.; Fernández-Pardo, Á.; Cana, F.; Vera-Donoso, C.D.; Martínez-Sarmiento, M.; et al. Identification of miR-20a-5p as Robust Normalizer for Urine microRNA Studies in Renal Cell Carcinoma and a Profile of Dysregulated microRNAs. Int. J. Mol. Sci. 2021, 22, 7913. [Google Scholar] [CrossRef]
- Outeiro-Pinho, G.; Barros-Silva, D.; Aznar, E.; Sousa, A.-I.; Vieira-Coimbra, M.; Oliveira, J.; Gonçalves, C.S.; Costa, B.M.; Junker, K.; Henrique, R.; et al. MicroRNA-30a-5pme: A novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 2020, 39, 98. [Google Scholar] [CrossRef]
- Petrozza, V.; Pastore, A.L.; Palleschi, G.; Tito, C.; Porta, N.; Ricci, S.; Marigliano, C.; Costantini, M.; Simone, G.; Di Carlo, A.; et al. Secreted MiR-210-3p as Non-Invasive Biomarker in Clear Cell Renal Cell Carcinoma. Oncotarget 2017, 8, 69551–69558. [Google Scholar] [CrossRef]
- Petrozza, V.; Costantini, M.; Tito, C.; Giammusso, L.M.; Sorrentino, V.; Cacciotti, J.; Porta, N.; Iaiza, A.; Pastore, A.L.; Di Carlo, A.; et al. Emerging role of secreted miR-210-3p as potential biomarker for clear cell Renal Cell Carcinoma metastasis. Cancer Biomark. 2020, 27, 181–188. [Google Scholar] [CrossRef]
- Aveta, A.; Cilio, S.; Contieri, R.; Spena, G.; Napolitano, L.; Manfredi, C.; Franco, A.; Crocerossa, F.; Cerrato, C.; Ferro, M.; et al. Urinary MicroRNAs as Biomarkers of Urological Cancers: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 10846. [Google Scholar] [CrossRef]
- Tito, C.; De Falco, E.; Rosa, P.; Iaiza, A.; Fazi, F.; Petrozza, V.; Calogero, A. Circulating microRNAs from the Molecular Mechanisms to Clinical Biomarkers: A Focus on the Clear Cell Renal Cell Carcinoma. Genes 2021, 12, 1154. [Google Scholar] [CrossRef]
- von Brandenstein, M.; Schlosser, M.; Herden, J.; Heidenreich, A.; Störkel, S.; Fries, J.W.U. MicroRNAs as Urinary Biomarker for Oncocytoma. Dis. Markers 2018, 2018, 6979073. [Google Scholar] [CrossRef] [PubMed]
Study (First Author, Publication Year, Countries) | Number of Participants (Cases; Controls) | miRNA | Results |
---|---|---|---|
Bustos (2024, USA) [13] | 34 (18 RCC; 16 healthy) | 349 miRNAs evaluated; 9 miRNAs (miR-296-5p, miR-486-5p, miR-185-5p, miR-106b-5p, miR-451a, miR-93-5p, miR-584-5p, miR-20a-5p, and miR-1275) went through validation | miR-1275 (p = 3.71 × 10−6) ↑ in RCC (ccRCC, pRCC and cRCC) compared to controls |
Cochetti (2020, Italy) [14] | 27 (13 ccRCC; 14 healthy) | 55 miRNAs evaluated; 3 miRNAs (miR-122, miR-15b, miR-1271) went through validation | miR-122 (p = 0.0042) and miR-1271 (p = 0.0101) ↑ in ccRCC compared to controls; miR-15b (p = 0.4094) no statistical difference between cases and controls |
Cochetti (2022, Italy) [15] | 56 (28 ccRCC; 28 healthy) | miR-122, miR-1271-5p, miR-15b-5p | miR-122 (p = 0.0192) ↑ in ccRCC compared to controls; miR-1271-5p (p = 0.0645) e miR-15b-5p (p = 0.0817) no statistical difference between cases and controls; the 7p-urinary score (parameter #1, miR-1271-5p; #2, miR-122-5p/miR-16-5p; #3, miR-122-5p/miRTC; #4, miR-1271-5p/miR-16-5p; #5, miR-1271-5p/miRTC; #6, miR-15b-5p/miRTC; #7, miR-15b-5p/Cel-miR-39-3p) showed statistical difference (p < 0.0001) between ccRCC and controls |
Fedorko (2017, Czech Republic) [16] | 105 (69 ccRCC; 36 healthy) | let-7 miRNAs (let-7a, let-7b, let-7c, let-7d, let-7e and let-7g) | let-7a (p < 0.001), let-7b (p < 0.001), let-7c (p = 0.005), let-7d (p = 0.006), let-7e (p = 0.015), and let-7g (p = 0.002) ↑ in ccRCC compared to controls |
Li (2017, France, China) [17] | 120 (75 ccRCC; 45 healthy) | miR-210 | miR-210 (p < 0.001) ↑ in ccRCC compared to controls; miR-210 (p < 0.0001) ↓ in patients 1 week after nephrectomy compared to ccRCC pre-surgery |
Mytsyk (2018, Ukraine) [18] | 82 (22 ccRCC, 16 pRCC, 14 chRCC, 8 oncocytoma, 2 papillary adenoma, 5 angiomyolipoma; 15 healthy) | miR-15a | miR-15a ↑ in RCC compared to controls and benign tumors (p < 0.01); no significant difference (p > 0.05) in miR-15a expression levels between ccRCC, pRCC and chRCC subtypes; miR-15a (p < 0.01) ↓ in patients 8 days after nephrectomy compared to ccRCC pre-surgery |
Oto (2021, Spain) [19] | 115 (45 ccRCC, 16 pRCC, 6 chRCC; 13angiomyolipomas; 48 healthy) | 179 miRNAs evaluated; 5 miRNAs (miR-200a-3p, let-7d-5p, miR-205-5p, miR-34a-5p and miR-36) went through validation | miR-200a-3p (p = 0.024), let-7d-5p (p = 0.035), miR-205-5p (p = 0.029), miR-34a-5p (p = 0.038) and miR-365a-3p (p = 0.001) ↑ in RCC compared to controls; no statistical difference (p > 0.05) between healthy controls and angiomyolipoma; let-7d-5p (p = 0.046), miR-152-3p (p = 0.023), miR-30c-5p (p = 0.042), miR-362-3p ( p = 0.03) and miR-30e-3p (p = 0.048) ↓ in patients 14 weeks after nephrectomy compared to RCC pre-surgery |
Outeiro-Pinho (2020, Portugal) [20] | 366 (224 ccRCC; 142 healthy) | miR-30a-5pme | miR-30a-5pme (p <0.0001) ↑ in ccRCC compared to controls |
Petrozza (2017, Italy) [21] | 48 (38 ccRCC; 10 healthy) | miR-21-5p, miR-210-3p and miR-221-3p | miR-210-3p (p < 0.01) ↑ in ccRCC compared to controls; miR-21-5p and miR-221-3p no statistical difference (p > 0.05) between cases and controls; miR-210-3p (p < 0.05) ↓ in patients 6 months after nephrectomy compared to ccRCC pre-surgery |
Petrozza (2020, Italy) [22] | 37 (21 ccRCC; 16 healthy) | miR-210-3p | miR-210-3p (p < 0.05) ↑ in ccRCC compared to controls; follow up: miR-210-3p (p < 0.05) ↓ in ccRCC after nephrectomy compared to ccRCC pre-surgery |
Bustos (2024) [13] | Cochetti (2020) [14] | Cochetti (2022) [15] | Fedorko (2017) [16] | Li (2017) [17] | Mytsyk (2018) [18] | Oto (2021) [19] | Outeiro-Pinho (2020) [20] | Petrozza (2017) [21] | Petrozza (2020) [22] | |
---|---|---|---|---|---|---|---|---|---|---|
Risk of bias (ROBINS-E) | ||||||||||
Domain 1 (Risk of bias due to confounding) | Some concerns 1 | Low risk | Low risk | Low risk | Some concerns 1 | Some concerns 1 | Low risk | Low risk | Some concerns 1 | Some concerns 1 |
Domain 2 (Risk of bias arising from measurement of the exposure) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Domain 3 (Risk of bias in selection of participants into the study) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Domain 4 (Risk of bias due to post-exposure interventions) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Domain 5 (Risk of bias due to missing data) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Domain 6 (Risk of bias arising from measurement of the outcome) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Domain 7 (Risk of bias in selection of the reported result) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Overall risk of bias | Some concerns | Low risk | Low risk | Low risk | Some concerns | Some concerns | Low risk | Low risk | Some concerns | Some concerns |
Certainty assessment (GRADE) | ||||||||||
Inconsistency | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious |
Indirectness | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious | Not serious |
Imprecision | Serious 2 | Serious 2 | Serious 2 | Serious 2 | Serious 2 | Serious 2 | Serious 2 | Not serious | Serious 2 | Serious 2 |
Other considerations | None | None | None | None | None | None | None | None | None | None |
Quality | Low | Moderate | Moderate | Moderate | Low | Low | Moderate | High | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cochetti, G.; Guadagni, L.; Paladini, A.; Russo, M.; La Mura, R.; Vitale, A.; Saqer, E.; Mangione, P.; Esposito, R.; Gioè, M.; et al. Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers 2025, 17, 1336. https://doi.org/10.3390/cancers17081336
Cochetti G, Guadagni L, Paladini A, Russo M, La Mura R, Vitale A, Saqer E, Mangione P, Esposito R, Gioè M, et al. Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers. 2025; 17():1336. https://doi.org/10.3390/cancers17081336
Chicago/Turabian StyleCochetti, Giovanni, Liliana Guadagni, Alessio Paladini, Miriam Russo, Raffaele La Mura, Andrea Vitale, Eleonora Saqer, Paolo Mangione, Riccardo Esposito, Manfredi Gioè, and et al. 2025. "Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review" Cancers 17, no. : 1336. https://doi.org/10.3390/cancers17081336
APA StyleCochetti, G., Guadagni, L., Paladini, A., Russo, M., La Mura, R., Vitale, A., Saqer, E., Mangione, P., Esposito, R., Gioè, M., Pastore, F., De Angelis, L., Ricci, F., Mearini, M., Vannuccini, G., & Mearini, E. (2025). Evaluation of Urinary miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers, 17(), 1336. https://doi.org/10.3390/cancers17081336