Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information?
Simple Summary
Abstract
1. Introduction
2. Review of Rate Constants in the Biological Systems
3. Structure, Decomposition, and Study of Spatio-Temporal Data Sets
4. Identification of Limiting Sampling Rate in the Clinical Practice of Diagnostic Imaging
5. Recommendations
5.1. Low-Frequency, Temporally Delocalized Diagnostic Information Harmonizes with Clinical Imaging
5.2. High-Frequency, Temporally Localized Diagnostic Information Harmonizes with Personalized Monitoring and Wearable Devices Coupled with Machine Learning and Artificial Intelligence
5.3. Leveraging the Existing Literature or Emerging Data Without Formal Fourier or Multi-Resolution Analyis Is an Emerging Opportunity for AI
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
MRA | Multi-Resolution Analysis |
AI | Artificial Intelligence |
LD | Linear dichroism |
References
- Cohen, R.; Harel, D. Explaining a complex living system: Dynamics, multi-scaling and emergence. J. R. Soc. Interface 2007, 4, 175–182. [Google Scholar] [CrossRef]
- van den Berg, N.I.; Machado, D.; Santos, S.; Rocha, I.; Chacón, J.; Harcombe, W.; Mitri, S.; Patil, K.R. Ecological modelling approaches for predicting emergent properties in microbial communities. Nat. Ecol. Evol. 2022, 6, 855–865. [Google Scholar] [CrossRef]
- Pepe, M.S.; Feng, Z.; Janes, H.; Bossuyt, P.M.; Potter, J.D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design. J. Natl. Cancer Inst. 2008, 100, 1432–1438. [Google Scholar] [CrossRef]
- Gammon, S.T.; Engel, B.J.; Gores, G.J.; Cressman, E.; Piwnica-Worms, D.; Millward, S.W. Mistiming Death: Modeling the Time-Domain Variability of Tumor Apoptosis and Implications for Molecular Imaging of Cell Death. Mol. Imaging Biol. 2020, 22, 1310–1323. [Google Scholar] [CrossRef]
- Palard-Novello, X.; Blin, A.L.; Le Jeune, F.; Garin, E.; Salaün, P.Y.; Devillers, A.; Gambarota, G.; Querellou, S.; Bourguet, P.; Saint-Jalmes, H. Optimization of temporal sampling for (18)F-choline uptake quantification in prostate cancer assessment. EJNMMI Res. 2018, 8, 49. [Google Scholar] [CrossRef]
- Kaleva, E.; Toyras, J.; Jurvelin, J.S.; Viren, T.; Saarakkala, S. Effects of ultrasound frequency, temporal sampling frequency, and spatial sampling step on the quantitative ultrasound parameters of articular cartilage. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1383–1393. [Google Scholar] [CrossRef]
- Renner, K.E.; Peebles, A.T.; Socha, J.J.; Queen, R.M. The impact of sampling frequency on ground reaction force variables. J. Biomech. 2022, 135, 111034. [Google Scholar] [CrossRef]
- Fallahtafti, F.; Wurdeman, S.R.; Yentes, J.M. Sampling rate influences the regularity analysis of temporal domain measures of walking more than spatial domain measures. Gait Posture 2021, 88, 216–220. [Google Scholar] [CrossRef]
- Holdaway, D.; Yang, Y. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earth’s Radiation Budget. Remote Sens. 2016, 8, 98. [Google Scholar] [CrossRef]
- Babu, M.; Franciosa, P.; Ceglarek, D. Spatio-Temporal Adaptive Sampling for effective coverage measurement planning during quality inspection of free form surfaces using robotic 3D optical scanner. J. Manuf. Syst. 2019, 53, 93–108. [Google Scholar] [CrossRef]
- Cheng, Y.; Wei, Y.; Liao, H. Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes. Reliab. Eng. Syst. Saf. 2022, 218, 108181. [Google Scholar] [CrossRef]
- Park, D.; Don, A.S.; Massamiri, T.; Karwa, A.; Warner, B.; MacDonald, J.; Hemenway, C.; Naik, A.; Kuan, K.-T.; Dilda, P.J.; et al. Noninvasive imaging of cell death using an Hsp90 ligand. J. Am. Chem. Soc. 2011, 133, 2832–2835. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Gammon, S.T.; Xiao, S.; Wang, W.; Chapman, S.; McDermott, R.; Suckow, M.A.; Johnson, J.R.; Piwnica-Worms, D.; Gokel, G.W.; et al. In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe. Mol. Pharm. 2011, 8, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res. Ther. 2020, 12, 95. [Google Scholar] [CrossRef]
- Zhao, N.; Bardine, C.; Lourenço, A.L.; Wang, Y.-H.; Huang, Y.; Cleary, S.J.; Wilson, D.M.; Oh, D.Y.; Fong, L.; Looney, M.R.; et al. In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS Cent. Sci. 2021, 7, 1638–1649. [Google Scholar] [CrossRef]
- Pisaneschi, F.; Gammon, S.T.; Paolillo, V.; Qureshy, S.A.; Piwnica-Worms, D. Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat. Biotechnol. 2022, 40, 965–973. [Google Scholar] [CrossRef]
- Zhang, J.; Ni, R.; Oke, I.; Calabrese, C.; Strouse, J.; Weinmann, S.; Ladouceur, A. Imaging in Rheumatic Immune-related Adverse Events. Rheum. Dis. Clin. N. Am. 2024, 50, 313–323. [Google Scholar] [CrossRef]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 2012, 7, 162. [Google Scholar] [CrossRef]
- van der Vegt, S.A.; Wang, Y.J.; Polonchuk, L.; Wang, K.; Waters, S.L.; Baker, R.E. A model-informed approach to assess the risk of immune checkpoint inhibitor-induced autoimmune myocarditis. Front. Pharmacol. 2022, 13, 966180. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Dulfer, E.A.; Joosten, L.A.B.; Netea, M.G. Enduring echoes: Post-infectious long-term changes in innate immunity. Eur. J. Intern. Med. 2024, 123, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Moss, B.J.; Ryter, S.W.; Rosas, I.O. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annu. Rev. Pathol. 2022, 17, 515–546. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.C.; Farid, T.A.; Chobot, S.E.; Dutton, P.L. Electron tunneling chains of mitochondria. Biochim. Biophys. Acta 2006, 1757, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Bultynck, G. Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harb. Perspect. Biol. 2020, 12, a038802. [Google Scholar] [CrossRef]
- Fojt, O.; Holcik, J. Applying nonlinear dynamics to ECG signal processing. IEEE Eng. Med. Biol. Mag. 1998, 17, 96–101. [Google Scholar] [CrossRef]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [Google Scholar] [CrossRef]
- Sampling and Multiresolution Analysis. (Rijksuniversiteit Groningen), p Book Chapter Describing MRA and Sampling Requirements. 2024. Available online: https://pure.rug.nl/ws/portalfiles/portal/3266733/c4.pdf (accessed on 13 February 2025).
- Serina, M.S.; Mosin, S.G. Digital Audio Information Compression using Wavelets. In Proceedings of the International Conference Mixed Design of Integrated Circuits and Systems, Gdynia, Poland, 22–24 June 2006; pp. 660–664. [Google Scholar] [CrossRef]
- Beyer, T.; Czernin, J.; Freudenberg, L.S. Variations in clinical PET/CT operations: Results of an international survey of active PET/CT users. J. Nucl. Med. 2011, 52, 303–310. [Google Scholar] [CrossRef]
- Clover, B. Top trust warns GPs of 15-week wait for scans. HSJ, 13 February 2024. [Google Scholar]
- Bolin, S.; Nilsson, E.; Sjodahl, R. Carcinoma of the colon and rectum—growth rate. Ann. Surg. 1983, 198, 151–158. [Google Scholar] [CrossRef]
- Dervan, P.B. Ahmed H. Zewail (1946–2016). Science 2016, 353, 1103. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Li, X.; Bai, Y.; Chen, H.; Ding, J.; Shen, C.; Hu, Z.; Liang, D.; Liu, X.; et al. Comparison between a dual-time-window protocol and other simplified protocols for dynamic total-body (18)F-FDG PET imaging. EJNMMI Phys. 2022, 9, 63. [Google Scholar] [CrossRef]
- Besson, F.L.; Faure, S. PET KinetiX-A Software Solution for PET Parametric Imaging at the Whole Field of View Level. J. Imaging Inform. Med. 2024, 37, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Witney, T.H.; Kettunen, M.I.; Hu, D.-E.; Gallagher, F.A.; Bohndiek, S.E.; Napolitano, R.; Brindle, K.M. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br. J. Cancer 2010, 103, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Pando, S.C.; Mascaro, M.; Riquelme, E.; Zoltan, M.; Zacharias, N.M.; Gammon, S.T.; Piwnica-Worms, D.; Pagel, M.D.; Sen, S.; et al. Early Detection of Pancreatic Intraepithelial Neoplasias (PanINs) in Transgenic Mouse Model by Hyperpolarized (13)C Metabolic Magnetic Resonance Spectroscopy. Int. J. Mol. Sci. 2020, 21, 3722. [Google Scholar] [CrossRef]
- Hood, D.C.; Kardon, R.H. A framework for comparing structural and functional measures of glaucomatous damage. Prog. Retin. Eye Res. 2007, 26, 688–710. [Google Scholar] [CrossRef]
- Muthu Krishnammal, P.; Raja, S.S. Deep Learning Based Image Classification and Abnormalities Analysis of MRI Brain Images. In Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 427–431. [Google Scholar]
- Mecheter, I.; Abbod, M.; Amira, A.; Zaidi, H. Deep learning with multiresolution handcrafted features for brain MRI segmentation. Artif. Intell. Med. 2022, 131, 102365. [Google Scholar] [CrossRef]
- Hernstrom, V.; Josefsson, V.; Sartor, H.; Schmidt, D.; Larsson, A.-M.; Hofvind, S.; Andersson, I.; Rosso, A.; Hagberg, O.; Lång, K. Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): A randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit. Health 2025, 7, e175–e183. [Google Scholar] [CrossRef]
- Didyuk, O.; Econom, N.; Guardia, A.; Livingston, K.; Klueh, U. Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. J. Diabetes Sci. Technol. 2021, 15, 676–683. [Google Scholar] [CrossRef]
- Anonymous. Multiresolution and Deep Neural Networks. In Wavelets in Soft Computing; World Scientific: Singapore, 2022; pp. 173–195. [Google Scholar] [CrossRef]
- Shin, N.; Park, J. The Effect of Intentional Nursing Rounds Based on the Care Model on Patients’ Perceived Nursing Quality and their Satisfaction with Nursing Services. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2018, 12, 203–208. [Google Scholar] [CrossRef]
- Levin, M.A.; Kia, A.; Timsina, P.; Cheng, F.-Y.; Nguyen, K.-A.; Kohli-Seth, R.; Lin, H.-M.S.; Ouyang, Y.; Freeman, R.R.; Reich, D.L. Real-Time Machine Learning Alerts to Prevent Escalation of Care: A Nonrandomized Clustered Pragmatic Clinical Trial. Crit. Care Med. 2024, 52, 1007–1020. [Google Scholar] [CrossRef]
- Johnson, C.; Mathew, S.J.; Oh, H.; Rufino, K.A.; Najafi, B.; Colombo, A.E.; Patriquin, M.A. Wearable technology: A promising opportunity to improve inpatient psychiatry safety and outcomes. J. Psychiatr. Res. 2021, 135, 104–106. [Google Scholar] [CrossRef]
- Anonymous. OWASP Top 10. 2025. Available online: https://owasp.org/www-project-top-ten/ (accessed on 25 March 2025).
- Anonymous. NVD. 2025. Available online: https://nvd.nist.gov/ (accessed on 25 March 2025).
- Jaime, F.J.; Munoz, A.; Rodriguez-Gomez, F.; Jerez-Calero, A. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors 2023, 23, 8944. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Granda, C.M.; Fernandez-Aleman, J.L.; Carrillo-de-Gea, J.M.; Garcia-Berna, J.A. Security vulnerabilities in healthcare: An analysis of medical devices and software. Med. Biol. Eng. Comput. 2024, 62, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Kjelle, E.; Brandsæter, I.Ø.; Andersen, E.R.; Hofmann, B.M. Cost of Low-Value Imaging Worldwide: A Systematic Review. Appl. Health Econ. Health Policy 2024, 22, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A.; Jung, T.-P. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 699–707. [Google Scholar] [CrossRef]
- Hong, N.; Kim, B.; Lee, J.; Choe, H.K.; Jin, K.H.; Kang, H. Machine learning-based high-frequency neuronal spike reconstruction from low-frequency and low-sampling-rate recordings. Nat. Commun. 2024, 15, 635. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millward, S.W.; Wei, P.; Piwnica-Worms, D.; Gammon, S.T. Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information? Cancers 2025, 17, 1387. https://doi.org/10.3390/cancers17091387
Millward SW, Wei P, Piwnica-Worms D, Gammon ST. Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information? Cancers. 2025; 17(9):1387. https://doi.org/10.3390/cancers17091387
Chicago/Turabian StyleMillward, Steven W., Peng Wei, David Piwnica-Worms, and Seth T. Gammon. 2025. "Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information?" Cancers 17, no. 9: 1387. https://doi.org/10.3390/cancers17091387
APA StyleMillward, S. W., Wei, P., Piwnica-Worms, D., & Gammon, S. T. (2025). Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information? Cancers, 17(9), 1387. https://doi.org/10.3390/cancers17091387