Extreme Thrombocytosis in Patients with Overt Myelofibrosis and Its Clinical Associations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and the Methodology
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 who classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Chee, A.; Mead, A.J. Molecular profiling in mpn: Who should have it and why? Hematol. Am. Soc. Hematol. Educ. Program. 2024, 2024, 524–534. [Google Scholar] [CrossRef]
- Mendez Luque, L.F.; Blackmon, A.L.; Ramanathan, G.; Fleischman, A.G. Key role of inflammation in myeloproliferative neoplasms: Instigator of disease initiation, progression. And symptoms. Curr. Hematol. Malig. Rep. 2019, 14, 145–153. [Google Scholar] [CrossRef]
- Vachhani, P.; Loghavi, S.; Bose, P. Soho state of the art updates and next questions|diagnosis, outcomes, and management of prefibrotic myelofibrosis. Clin. Lymphoma Myeloma Leuk. 2024, 24, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Palmer, J. Soho state of the art updates and next questions|updates on myelofibrosis with cytopenia. Clin. Lymphoma Myeloma Leuk. 2024, 25, 293–303. [Google Scholar] [CrossRef]
- Thiele, J.; Kvasnicka, H.M.; Gianelli, U.; Arber, D.A.; Tefferi, A.; Vannucchi, A.M.; Barbui, T.; Orazi, A. Evolution of who diagnostic criteria in classical myeloproliferative neoplasms compared with the international consensus classification. Blood Cancer J. 2025, 15, 31. [Google Scholar] [CrossRef]
- Lucijanic, M.; Krecak, I.; Soric, E.; Sabljic, A.; Galusic, D.; Holik, H.; Perisa, V.; Moric Peric, M.; Zekanovic, I.; Kusec, R. Patients with post polycythemia vera myelofibrosis might experience increased thrombotic risk in comparison to primary and post essential thrombocythemia myelofibrosis. Leuk. Res. 2022, 119, 106905. [Google Scholar] [CrossRef] [PubMed]
- Peroni, E.; Calistri, E.; Amato, R.; Gottardi, M.; Rosato, A. Spatial-transcriptomic profiling: A new lens for understanding myelofibrosis pathophysiology. Cell Commun. Signal. 2024, 22, 510. [Google Scholar] [CrossRef]
- Krecak, I.; Lucijanic, M.; Verstovsek, S. Advances in risk stratification and treatment of polycythemia vera and essential thrombocythemia. Curr. Hematol. Malig. Rep. 2022, 17, 155–169. [Google Scholar] [CrossRef]
- Jones, E.; Dillon, B.; Swan, D.; Thachil, J. Practical management of the haemorrhagic complications of myeloproliferative neoplasms. Br. J. Haematol. 2022, 199, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Kc, D.; Falchi, L.; Verstovsek, S. The underappreciated risk of thrombosis and bleeding in patients with myelofibrosis: A review. Ann. Hematol. 2017, 96, 1595–1604. [Google Scholar] [CrossRef]
- Krečak, I.; Holik, H.; Morić Perić, M.; Zekanović, I.; Coha, B.; Valovičić Krečak, M.; Gverić-Krečak, V.; Lucijanić, M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as prognostic biomarkers in polycythemia vera. Int. J. Lab. Hematol. 2022, 44, e145–e148. [Google Scholar] [CrossRef]
- Mughal, T.I.; Vaddi, K.; Sarlis, N.J.; Verstovsek, S. Myelofibrosis-associated complications: Pathogenesis, clinical manifestations, and effects on outcomes. Int. J. Gen. Med. 2014, 7, 89–101. [Google Scholar] [CrossRef]
- Marcellino, B.K.; Verstovsek, S.; Mascarenhas, J. The myelodepletive phenotype in myelofibrosis: Clinical relevance and therapeutic implication. Clin. Lymphoma Myeloma Leuk. 2020, 20, 415–421. [Google Scholar] [CrossRef]
- Gangat, N.; Caramazza, D.; Vaidya, R.; George, G.; Begna, K.; Schwager, S.; Van Dyke, D.; Hanson, C.; Wu, W.; Pardanani, A.; et al. Dipss plus: A refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011, 29, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Sastow, D.; Mascarenhas, J.; Tremblay, D. Thrombocytopenia in patients with myelofibrosis: Pathogenesis, prevalence, prognostic impact, and treatment. Clin. Lymphoma Myeloma Leuk. 2022, 22, e507–e520. [Google Scholar] [CrossRef]
- Tefferi, A.; Szuber, N.; Pardanani, A.; Hanson, C.A.; Vannucchi, A.M.; Barbui, T.; Gangat, N. Extreme thrombocytosis in low-risk essential thrombocythemia: Retrospective review of vascular events and treatment strategies. Am. J. Hematol. 2021, 96, E182–E184. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Carobbio, A.; Thiele, J.; Passamonti, F.; Rumi, E.; Ruggeri, M.; Rodeghiero, F.; Randi, M.L.; Bertozzi, I.; Vannucchi, A.M.; et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 who criteria. Leukemia 2012, 26, 716–719. [Google Scholar] [CrossRef]
- Gangat, N.; Szuber, N.; Jawaid, T.; Hanson, C.A.; Pardanani, A.; Tefferi, A. Young platelet millionaires with essential thrombocythemia. Am. J. Hematol. 2021, 96, E93–E95. [Google Scholar] [CrossRef]
- Awada, H.; Voso, M.T.; Guglielmelli, P.; Gurnari, C. Essential thrombocythemia and acquired von willebrand syndrome: The shadowlands between thrombosis and bleeding. Cancers 2020, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrán, A.; Sant’Antonio, E.; Harrison, C.; Kiladjian, J.J.; Griesshammer, M.; Mesa, R.; Ianotto, J.C.; Palandri, F.; Hernández-Boluda, J.C.; Birgegård, G.; et al. Unmet clinical needs in the management of calr-mutated essential thrombocythaemia: A consensus-based proposal from the european leukemianet. Lancet Haematol. 2021, 8, e658–e665. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the world health organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International consensus classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Thiele, J.; Kvasnicka, H.M.; Facchetti, F.; Franco, V.; van der Walt, J.; Orazi, A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005, 90, 1128–1132. [Google Scholar] [PubMed]
- Passamonti, F.; Cervantes, F.; Vannucchi, A.M.; Morra, E.; Rumi, E.; Pereira, A.; Guglielmelli, P.; Pungolino, E.; Caramella, M.; Maffioli, M.; et al. A dynamic prognostic model to predict survival in primary myelofibrosis: A study by the iwg-mrt (international working group for myeloproliferative neoplasms research and treatment). Blood 2010, 115, 1703–1708. [Google Scholar] [CrossRef]
- Passamonti, F.; Giorgino, T.; Mora, B.; Guglielmelli, P.; Rumi, E.; Maffioli, M.; Rambaldi, A.; Caramella, M.; Komrokji, R.; Gotlib, J.; et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017, 31, 2726–2731. [Google Scholar] [CrossRef]
- Piskač Živković, N.; Lucijanić, M.; Bušić, N.; Jurin, I.; Atić, A.; Andrilović, A.; Penović, T.; Domić, I.; Gnjidić, J.; Demaria, M.; et al. The associations of age, sex, and comorbidities with survival of hospitalized patients with coronavirus disease 2019: Data from 4014 patients from a tertiary-center registry. Croat. Med. J. 2022, 63, 36–43. [Google Scholar] [CrossRef]
- Lucijanic, M.; Skelin, M.; Lucijanic, T. Survival analysis, more than meets the eye. Biochem. Med. 2017, 27, 14–18. [Google Scholar] [CrossRef]
- Bazdaric, K.; Sverko, D.; Salaric, I.; Martinovic, A.; Lucijanic, M. The abc of linear regression analysis: What every author and editor should know. Eur. Sci. Ed. 2021, 47, e63780. [Google Scholar] [CrossRef]
- Lucijanić, M. Survival analysis in clinical practice: Analyze your own data using an excel workbook. Croat. Med. J. 2016, 57, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Wright, K.L.; Epling-Burnette, P.K.; Reuther, G.W. Metabolic vulnerabilities and epigenetic dysregulation in myeloproliferative neoplasms. Front. Immunol. 2020, 11, 604142. [Google Scholar] [CrossRef]
- Guo, B.B.; Allcock, R.J.; Mirzai, B.; Malherbe, J.A.; Choudry, F.A.; Frontini, M.; Chuah, H.; Liang, J.; Kavanagh, S.E.; Howman, R.; et al. Megakaryocytes in myeloproliferative neoplasms have unique somatic mutations. Am. J. Pathol. 2017, 187, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Melo-Cardenas, J.; Migliaccio, A.R.; Crispino, J.D. The role of megakaryocytes in myelofibrosis. Hematol. Oncol. Clin. N. Am. 2021, 35, 191–203. [Google Scholar] [CrossRef]
- Nam, A.S.; Kim, K.T.; Chaligne, R.; Izzo, F.; Ang, C.; Taylor, J.; Myers, R.M.; Abu-Zeinah, G.; Brand, R.; Omans, N.D.; et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 2019, 571, 355–360. [Google Scholar] [CrossRef]
- Becker, I.C.; Barrachina, M.N.; Camacho, V.; Roweth, H.G.; Tilburg, J.; Chua, B.; Nagy, Z.; Englert, M.; Machlus, K.R.; Signer, R.; et al. Tgfβ1 secretion in megakaryocytes is autophagy-dependent and its inhibition ameliorates myelofibrosis in mice. Blood 2023, 142, 744. [Google Scholar] [CrossRef]
- Yu, J.; Bland, E.; Schuler, T.; Cordaro, T.; Braunstein, E. Real-world use of ruxolitinib in patients with myelofibrosis and anemia or thrombocytopenia at diagnosis. Acta Haematol. 2024, 1–11. [Google Scholar] [CrossRef]
- Kuykendall, A.T.; Mo, Q.; Sallman, D.A.; Ali, N.A.; Chan, O.; Yun, S.; Sweet, K.L.; Padron, E.; Lancet, J.E.; Komrokji, R.S. Disease-related thrombocytopenia in myelofibrosis is defined by distinct genetic etiologies and is associated with unique prognostic correlates. Cancer 2022, 128, 3495–3501. [Google Scholar] [CrossRef]
- Yang, X.; Chen, D.; Long, H.; Zhu, B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell. Mol. Life Sci. 2020, 77, 2723–2738. [Google Scholar] [CrossRef]
- Ghosh, K.; Shome, D.K.; Kulkarni, B.; Ghosh, M.K.; Ghosh, K. Fibrosis and bone marrow: Understanding causation and pathobiology. J. Transl. Med. 2023, 21, 703. [Google Scholar] [CrossRef]
- Song, M.K.; Park, B.B.; Uhm, J.E. Understanding splenomegaly in myelofibrosis: Association with molecular pathogenesis. Int. J. Mol. Sci. 2018, 19, 898. [Google Scholar] [CrossRef]
- Gagelmann, N.; Badbaran, A.; Salit, R.B.; Schroeder, T.; Gurnari, C.; Pagliuca, S.; Panagiota, V.; Rautenberg, C.; Cassinat, B.; Thol, F.; et al. Impact of tp53 on outcome of patients with myelofibrosis undergoing hematopoietic stem cell transplantation. Blood 2023, 141, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Verstovsek, S. Prognosis of primary myelofibrosis in the genomic era. Clin. Lymphoma Myeloma Leuk. 2016, 16, S105–S113. [Google Scholar] [CrossRef]
- Jain, A.G.; Zhang, L.; Bennett, J.M.; Komrokji, R. Myelodysplastic syndromes with bone marrow fibrosis: An update. Ann. Lab. Med. 2022, 42, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.; Schwarzmeier, J.D.; Hilgarth, M.; Hubmann, R.; Duechler, M.; Gisslinger, H. Tgf-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J. Clin. Investig. 2004, 113, 676–685. [Google Scholar] [CrossRef]
- Mangaonkar, A.A.; Gupta, H.R.; Bera, B.M.; Barmare, S. Bone marrow fibrosis and metastatic prostate adenocarcinoma. BMJ Case Rep. 2012, 2012, brc20122007348. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, J.; Zhao, S.; Wang, R.; Shi, L.; Fang, Y.; Zhang, Z.; Song, L.; Wu, D.; Chang, C. Bone marrow fibrosis at diagnosis and during the course of disease is associated with tp53 mutations and adverse prognosis in primary myelodysplastic syndrome. Cancers 2022, 14, 2984. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J.; Bain, B.; Mufti, G.; Bagg, A.; Hasserjian, R.P. Bone marrow fibrosis: Pathophysiology and clinical significance of increased bone marrow stromal fibres. Br. J. Haematol. 2007, 139, 351–362. [Google Scholar] [CrossRef]
- Napolitano, M.; Saccullo, G.; Marietta, M.; Carpenedo, M.; Castaman, G.; Cerchiara, E.; Chistolini, A.; Contino, L.; De Stefano, V.; Falanga, A.; et al. Platelet cut-off for anticoagulant therapy in thrombocytopenic patients with blood cancer and venous thromboembolism: An expert consensus. Blood Transfus. 2019, 17, 171–180. [Google Scholar] [CrossRef]
- Price, G.L.; Pohl, G.M.; Xie, J.; Walgren, R.A. A retrospective observational comparison of comorbidities between myeloproliferative neoplasm (mpn) patients and matched controls in a commercially insured us population. Blood 2011, 118, 3140. [Google Scholar] [CrossRef]
- Gangat, N.; Szuber, N.; Jadoon, Y.; Farrukh, F.; Begna, K.; Elliott, M.A.; Wolanskyj-Spinner, A.P.; Hanson, C.A.; Pardanani, A.D.; De Stefano, V.; et al. 1.5 million platelet count limit at essential thrombocythemia diagnosis: Correlations and relevance to vascular events. Blood Adv. 2022, 6, 3835–3839. [Google Scholar] [CrossRef] [PubMed]
- Rottenstreich, A.; Kleinstern, G.; Krichevsky, S.; Varon, D.; Lavie, D.; Kalish, Y. Factors related to the development of acquired von willebrand syndrome in patients with essential thrombocythemia and polycythemia vera. Eur. J. Intern. Med. 2017, 41, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Barbui, T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Koren-Michowitz, M.; Lavi, N.; Ellis, M.H.; Vannucchi, A.M.; Mesa, R.; Harrison, C.N. Management of extreme thrombocytosis in myeloproliferative neoplasms: An international physician survey. Ann. Hematol. 2017, 96, 87–92. [Google Scholar] [CrossRef]
- Lucijanic, M.; Krecak, I.; Soric, E.; Sedinic, M.; Sabljic, A.; Derek, L.; Jaksic, O.; Kusec, R. Thrombocytosis in COVID-19 patients without myeloproliferative neoplasms is associated with better prognosis but higher rate of venous thromboembolism. Blood Cancer J. 2021, 11, 189. [Google Scholar] [CrossRef]
- Enblom Larsson, A.E.L.; Renlund, H.; Andreasson, B.; Holmberg, H.; Liljeholm, M.; Själander, A. Myelofibrosis therapies and risk of major bleeding, thrombotic events and mortality, a matched nationwide population-based study. Blood 2024, 144, 4543. [Google Scholar] [CrossRef]
- Kaifie, A.; Kirschner, M.; Wolf, D.; Maintz, C.; Hänel, M.; Gattermann, N.; Gökkurt, E.; Platzbecker, U.; Hollburg, W.; Göthert, J.R.; et al. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (mpn): Analysis from the German sal-mpn-registry. J. Hematol. Oncol. 2016, 9, 18. [Google Scholar] [CrossRef]
- Masarova, L.; Bose, P.; Daver, N.; Pemmaraju, N.; Newberry, K.J.; Manshouri, T.; Cortes, J.; Kantarjian, H.M.; Verstovsek, S. Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis. Leuk. Res. 2017, 59, 110–116. [Google Scholar] [CrossRef]
Platelets > 1000 × 109/L | Platelets ≤ 1000 × 109/L | p Value | |
---|---|---|---|
Nm. of patients | 10 (5.8%) | 162 (94.2%) | - |
Age (years) | 72 IQR (70.25–80) | 68 IQR (61–76) | 0.010 * |
Male sex | 6/10 (60%) | 95/162 (58.6%) | 1.000 |
Etiology of myelofibrosis PMF Post-PV SMF Post-ET SMF | 5/10 (50%) 0/10 (0%) 5/10 (50%) | 96/162 (59.3%) 37/162 (22.8%) 29/162 (17.9%) | 0.025 * |
BM fibrosis Grade II Grade III | 8/10 (80%) 2/10 (20%) | 104/162 (64.2%) 58/162 (35.8%) | 0.497 |
JAK2mutated | 7/9 (77.8%) | 113/153 (73.9%) | 1.000 |
CALRmutated | 0/7 (0%) | 11/128 (8.6%) | 1.000 |
MPLmutated | 1/7 (14.3%) | 3/126 (2.4%) | 0.197 |
Constitutional symptoms | 3/10 (30%) | 86/162 (53.1%) | 0.200 |
Transfusion dependency | 5/10 (50%) | 46/162 (28.4%) | 0.164 |
Massive splenomegaly | 1/10 (10%) | 48/150 (32%) | 0.286 |
Spleen size under left costal margin (cm) | 0.5 IQR (0–1.75) | 5 IQR (1–10) | 0.015 * |
WBC (×109/L) | 15.1 IQR (11.18–24.65) | 10.6 IQR (6.03–19.08) | 0.119 |
Circulatory blasts ≥1% | 3/10 (30%) | 73/162 (45.1%) | 0.515 |
ANC (×109/L) | 11.2 IQR (9.45–21.14) | 7.2 IQR (3.3–13.46) | 0.075 |
ALC (×109/L) | 1.6 IQR (1.38–2.53) | 1.4 IQR (1–2.15) | 0.202 |
Abs. mono. (×109/L) | 0.6 IQR (0.48–1.53) | 0.4 IQR (0.21–0.81) | 0.114 |
Abs. basophils (×109/L) | 0.2 IQR (0.1–0.3) | 0.1 IQR (0.05–0.3) | 0.643 |
NLR | 5.8 IQR (4.49–8.31) | 4.3 IQR (2.36–8.6) | 0.205 |
Hemoglobin level (g/L) | 108.5 IQR (80.25–110.75) | 102.5 IQR (88.25–123) | 0.862 |
MCV (fL) | 94.2 IQR (89–96) | 88 IQR (82.05–93.15) | 0.137 |
MCHC (g/L) | 313 IQR (293–315) | 318.5 IQR (307–329.25) | 0.013 * |
RDW (%) | 19.3 IQR (17.3–25.4) | 19.6 IQR (18.25–21.75) | 0.912 |
Platelets (×109/L) | 1214.5 IQR (1147.25–1504.5) | 298.5 IQR (172.5–472.5) | <0.001 * |
MPV (fL) | 9 IQR (8.25–9.83) | 9.7 IQR (8.5–10.63) | 0.304 |
LDH (U/L) | 391 IQR (317.25–837.5) | 504.5 IQR (348–742.25) | 0.701 |
CRP (mg/L) | 6.7 IQR (2.7–9.7) | 5.9 IQR (2.3–13.3) | 0.763 |
Albumin (g/L) | 42.5 IQR (36.75–47) | 42 IQR (39–44.33) | 0.966 |
Uric acid (mmol/L) | 513 IQR (418–594.5) | 383.5 IQR (319–467) | 0.055 |
Ferritin (mcg/L) | 147 IQR (61.5–245.48) | 211 IQR (77–488.5) | 0.502 |
Serum creatinine (mcmol/L) | 112 IQR (96.25–142.75) | 84 IQR (71–101.25) | 0.007 * |
Charlson comorbidity index | 3 IQR (3–4) | 3 IQR (2–5) | 0.455 |
CV risk factors | 10/10 (100%) | 99/145 (68.3%) | 0.034 * |
Chronic kidney disease | 2/5 (40%) | 19/116 (16.4%) | 0.207 |
Arterial hypertension | 9/10 (90%) | 84/147 (57.1%) | 0.049 |
Diabetes mellitus | 0/10 (0%) | 24/149 (16.1%) | 0.361 |
Hyperlipoproteinemia | 2/10 (20%) | 22/140 (15.7%) | 0.662 |
Obesity | 0/8 (0%) | 6/115 (5.2%) | 1.000 |
Active smoking | 1/8 (12.5%) | 18/120 (15%) | 1.000 |
History of thrombosis | 1/10 (10%) | 28/162 (17.3%) | 1.000 |
DIPSS (PMF) Low risk Intermediate-1 risk Intermediate-2 risk High risk | 0/5 (0%) 2/5 (40%) 1/5 (20%) 2/5 (40%) | 4/96 (4.2%) 29/96 (30.2%) 53/96 (55.2%) 10/96 (10.4%) | 0.174 |
MYSEC-PM (SMF) Low risk Intermediate-1 risk Intermediate-2 risk High risk | 0/3 (0%) 2/3 (66.7%) 1/3 (33.3%) 0/3 (0%) | 8/57 (14%) 20/57 (35.1%) 14/57 (24.6%) 15/57 (26.3%) | 0.557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucijanic, M.; Krecak, I.; Soric, E.; Sabljic, A.; Galusic, D.; Holik, H.; Perisa, V.; Moric Peric, M.; Zekanovic, I.; Budimir, L.; et al. Extreme Thrombocytosis in Patients with Overt Myelofibrosis and Its Clinical Associations. Cancers 2025, 17, 1390. https://doi.org/10.3390/cancers17091390
Lucijanic M, Krecak I, Soric E, Sabljic A, Galusic D, Holik H, Perisa V, Moric Peric M, Zekanovic I, Budimir L, et al. Extreme Thrombocytosis in Patients with Overt Myelofibrosis and Its Clinical Associations. Cancers. 2025; 17(9):1390. https://doi.org/10.3390/cancers17091390
Chicago/Turabian StyleLucijanic, Marko, Ivan Krecak, Ena Soric, Anica Sabljic, Davor Galusic, Hrvoje Holik, Vlatka Perisa, Martina Moric Peric, Ivan Zekanovic, Leonardo Budimir, and et al. 2025. "Extreme Thrombocytosis in Patients with Overt Myelofibrosis and Its Clinical Associations" Cancers 17, no. 9: 1390. https://doi.org/10.3390/cancers17091390
APA StyleLucijanic, M., Krecak, I., Soric, E., Sabljic, A., Galusic, D., Holik, H., Perisa, V., Moric Peric, M., Zekanovic, I., Budimir, L., & Kusec, R. (2025). Extreme Thrombocytosis in Patients with Overt Myelofibrosis and Its Clinical Associations. Cancers, 17(9), 1390. https://doi.org/10.3390/cancers17091390