Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility
Simple Summary
Abstract
1. Introduction
1.1. Liquid Biopsy Analytes
1.2. Cell-Free DNA and Circulating Tumor DNA
1.3. Methods for ctDNA Detection in Peripheral Blood
2. Methodology
3. Lymphoid Leukemias
3.1. Acute Lymphoblastic Leukemia (ALL)
3.2. Chronic Lymphoid Leukemia (CLL)
4. Myeloid Leukemias
4.1. Acute Myeloid Leukemia (AML)
4.2. Chronic Myeloid Leukemia (CML)
5. Clinical Trials
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Carreira, L.; Abalde-Cela, S.; Sampaio-Marques, B.; Areias, A.C.; Ludovico, P.; Diéguez, L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers 2023, 15, 1362. [Google Scholar] [CrossRef]
- Combaluzier, S.; Quessada, J.; Abbou, N.; Arcani, R.; Tichadou, A.; Gabert, J.; Costello, R.; Loosveld, M.; Venton, G.; Berda-Haddad, Y. Cytological Diagnosis of Classic Myeloproliferative Neoplasms at the Age of Molecular Biology. Cells 2023, 12, 946. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Carretero, C.; González-Gascón-Y-Marín, I.; Rodríguez-Vicente, A.E.; Quijada-Álamo, M.; Hernández-Rivas, J.; Hernández-Sánchez, M.; Hernández-Rivas, J.M. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics 2021, 11, 853. [Google Scholar] [CrossRef]
- Savino, F.D.; Rigali, F.; Giustini, V.; D’aliberti, D.; Spinelli, S.; Piazza, R.; Sacco, A.; Roccaro, A.M. Liquid Biopsy in Cancer: Focus on Lymphoproliferative Disorders. Cancers 2022, 14, 5378. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef]
- Caputo, V.; Ciardiello, F.; Della Corte, C.M.; Martini, G.; Troiani, T.; Napolitano, S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. Explor. Target. Anti-Tumor Ther. 2023, 4, 102–138. [Google Scholar] [CrossRef]
- Kurniali, P.C.; Storandt, M.H.; Jin, Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J. Pers. Med. 2023, 13, 694. [Google Scholar] [CrossRef]
- Birkó, Z.; Nagy, B.; Klekner, Á.; Virga, J. Novel Molecular Markers in Glioblastoma—Benefits of Liquid Biopsy. Int. J. Mol. Sci. 2020, 21, 7522. [Google Scholar] [CrossRef]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ’t Veer, L.J.; Magbanua, M.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef]
- Quirico, L.; Orso, F. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies. Cancer Drug Resist. 2020, 3, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Buhagiar, A.; Borg, J.; Ayers, D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Non-Coding RNA Res. 2020, 5, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-T.; Zhang, G.-X.; Gao, S.-S. The Potential Diagnostic Accuracy of Circulating MicroRNAs for Leukemia: A Meta-Analysis. Technol. Cancer Res. Treat. 2021, 20, 15330338211011958. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.; Enderle, D.; Noerholm, M.; Breakefield, X.; Skog, J. Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann. Oncol. 2021, 32, 466–477. [Google Scholar] [CrossRef]
- Trino, S.; Lamorte, D.; Caivano, A.; De Luca, L.; Sgambato, A.; Laurenzana, I. Clinical relevance of extracellular vesicles in hematological neoplasms: From liquid biopsy to cell biopsy. Leukemia 2021, 35, 661–678. [Google Scholar] [CrossRef]
- Wang, W.; Rong, Z.; Wang, G.; Hou, Y.; Yang, F.; Qiu, M. Cancer metabolites: Promising biomarkers for cancer liquid biopsy. Biomark. Res. 2023, 11, 66. [Google Scholar] [CrossRef]
- Krishnan, S.; Kanthaje, S.; Punchappady, D.R.; Mujeeburahiman, M.; Ratnacaram, C.K. Circulating metabolite biomarkers: A game changer in the human prostate cancer diagnosis. J. Cancer Res. Clin. Oncol. 2022, 149, 951–967. [Google Scholar] [CrossRef]
- Fettke, H.; Kwan, E.M.; Azad, A.A. Cell-free DNA in cancer: Current insights. Cell. Oncol. 2018, 42, 13–28. [Google Scholar] [CrossRef]
- Snyder, M.W.; Kircher, M.; Hill, A.J.; Daza, R.M.; Shendure, J. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 2016, 164, 57–68. [Google Scholar] [CrossRef]
- Fleischhacker, M.; Schmidt, B. Circulating nucleic acids (CNAs) and cancer—A survey. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2007, 1775, 181–232. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Kemper, M.; Krekeler, C.; Menck, K.; Lenz, G.; Evers, G.; Schulze, A.B.; Bleckmann, A. Liquid Biopsies in Lung Cancer. Cancers 2023, 15, 1430. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N.; Dhillon, S. Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn. Ther. 2017, 21, 225–232. [Google Scholar] [CrossRef]
- de Abreu, A.R.; de Beeck, K.O.; Laurent-Puig, P.; Taly, V.; Benhaim, L. The Position of Circulating Tumor DNA in the Clinical Management of Colorectal Cancer. Cancers 2023, 15, 1284. [Google Scholar] [CrossRef]
- de Freitas, A.J.A.; Causin, R.L.; Varuzza, M.B.; Calfa, S.; Filho, C.M.T.H.; Komoto, T.T.; Souza, C.d.P.; Marques, M.M.C. Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 9952. [Google Scholar] [CrossRef]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy with Disease Recurrence in Patients with Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1410–1415. [Google Scholar] [CrossRef]
- Davis, A.A.; Jacob, S.; Gerratana, L.; Shah, A.N.; Wehbe, F.; Katam, N.; Zhang, Q.; Flaum, L.; Siziopikou, K.P.; Platanias, L.C.; et al. Landscape of circulating tumour DNA in metastatic breast cancer. eBioMedicine 2020, 58, 102914. [Google Scholar] [CrossRef]
- Ogawa, M.; Yokoyama, K.; Imoto, S.; Tojo, A. Role of Circulating Tumor DNA in Hematological Malignancy. Cancers 2021, 13, 2078. [Google Scholar] [CrossRef]
- Yuwono, N.L.; Boyd, M.A.A.; Henry, C.E.; Werner, B.; Ford, C.E.; Warton, K. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form. Clin. Chem. Lab. Med. (CCLM) 2022, 60, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Diefenbach, R.J.; Lee, J.H.; Kefford, R.F.; Rizos, H. Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet. 2018, 228–229, 21–27. [Google Scholar] [CrossRef]
- Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid biopsy of cancer: A multimodal diagnostic tool in clinical oncology. Ther. Adv. Med. Oncol. 2018, 10, 1758835918794630. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Cardona, A.F.; Cristofanilli, M.; Paz-Ares, L.; Mochon, J.J.D.; Duran, I.; Raez, L.E.; Russo, A.; Lorente, J.A.; Malapelle, U.; et al. Challenges and opportunities of cfDNA analysis implementation in clinical practice: Perspective of the International Society of Liquid Biopsy (ISLB). Crit. Rev. Oncol. 2020, 151, 102978. [Google Scholar] [CrossRef]
- Sonnenberg, A.; Marciniak, J.Y.; Rassenti, L.; Ghia, E.M.; A Skowronski, E.; Manouchehri, S.; McCanna, J.; Widhopf, G.F.; Kipps, T.J.; Heller, M.J. Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood. Clin. Chem. 2014, 60, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Soscia, R.; Della Starza, I.; De Novi, L.A.; Ilari, C.; Ansuinelli, M.; Cavalli, M.; Bellomarino, V.; Cafforio, L.; Di Trani, M.; Cazzaniga, G.; et al. Circulating cell-free DNA for target quantification in hematologic malignancies: Validation of a protocol to overcome pre-analytical biases. Hematol. Oncol. 2022, 41, 50–60. [Google Scholar] [CrossRef]
- Beagan, J.J.; Drees, E.E.; Stathi, P.; Eijk, P.P.; Meulenbroeks, L.; Kessler, F.; Middeldorp, J.M.; Pegtel, D.M.; Zijlstra, J.M.; Sie, D.; et al. PCR-Free Shallow Whole Genome Sequencing for Chromosomal Copy Number Detection from Plasma of Cancer Patients Is an Efficient Alternative to the Conventional PCR-Based Approach. J. Mol. Diagn. 2021, 23, 1553–1563. [Google Scholar] [CrossRef]
- Sampathi, S.; Chernyavskaya, Y.; Haney, M.G.; Moore, L.H.; Snyder, I.A.; Cox, A.H.; Fuller, B.L.; Taylor, T.J.; Yan, D.; Badgett, T.C.; et al. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front. Oncol. 2022, 12, 958673. [Google Scholar] [CrossRef]
- Wang, T.T.; Abelson, S.; Zou, J.; Li, T.; Zhao, Z.; E Dick, J.; I Shlush, L.; Pugh, T.J.; Bratman, S.V. High efficiency error suppression for accurate detection of low-frequency variants. Nucleic Acids Res. 2019, 47, e87. [Google Scholar] [CrossRef]
- Nakamura, K.; Sawada, K.; Yoshimura, A.; Kinose, Y.; Nakatsuka, E.; Kimura, T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol. Cancer 2016, 15, 48. [Google Scholar] [CrossRef]
- Pozniak, T.; Shcharbin, D.; Bryszewska, M. Circulating microRNAs in Medicine. Int. J. Mol. Sci. 2022, 23, 3996. [Google Scholar] [CrossRef] [PubMed]
- Pero-Gascon, R.; Sanz-Nebot, V.; Berezovski, M.V.; Benavente, F. Analysis of Circulating microRNAs and Their Post-Transcriptional Modifications in Cancer Serum by On-Line Solid-Phase Extraction–Capillary Electrophoresis–Mass Spectrometry. Anal. Chem. 2018, 90, 6618–6625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ma, D.; Shi, M.; Bai, J.; Li, Y.; Yang, J.; Yang, R. A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum. Chem. Commun. 2015, 51, 16271–16274. [Google Scholar] [CrossRef]
- Li, C.; Zhou, M.; Wang, H.; Wang, J.; Huang, L. Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes. Talanta 2022, 245, 123444. [Google Scholar] [CrossRef]
- Yin, P.; Li, G.; Zhang, B.; Farjana, H.; Zhao, L.; Qin, H.; Hu, B.; Ou, J.Z.; Tian, J. Facile PEG-based isolation and classification of cancer extracellular vesicles and particles with label-free surface-enhanced Raman scattering and pattern recognition algorithm. Analyst 2021, 146, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Chen, Y.; Wen, Y.; Abhange, K.; Zhang, W.; Cheng, G.; Quinn, Z.; Mao, W.; Wan, Y. Isolation of extracellular vesicles with multivalent aptamers. Analyst 2020, 146, 253–261. [Google Scholar] [CrossRef]
- Swellam, M.; Hashim, M.; Mahmoud, M.S.; Ramadan, A.; Hassan, N.M. Aberrant Expression of Some Circulating miRNAs in Childhood Acute Lymphoblastic Leukemia. Biochem. Genet. 2018, 56, 283–294. [Google Scholar] [CrossRef]
- Shahid, S.; Shahid, W.; Shaheen, J.; Akhtar, M.W.; Sadaf, S. Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia. Sci. Rep. 2021, 11, 22783. [Google Scholar] [CrossRef]
- Luna-Aguirre, C.M.; Martinez-Fierro, M.d.l.L.; Mar-Aguilar, F.; Garza-Veloz, I.; Treviño-Alvarado, V.; Rojas-Martinez, A.; Jaime-Perez, J.C.; Malagon-Santiago, G.I.; Gutierrez-Aguirre, C.H.; Gonzalez-Llano, O.; et al. Circulating microRNA expression profile in B-cell acute lymphoblastic leukemia. Cancer Biomark. 2015, 15, 299–310. [Google Scholar] [CrossRef]
- George, N.G.; Rishi, B.; Singh, A.; Vishmaya, S.; Kumar, R.; Kushwaha, N.; Kaur, M.; Bhardwaj, R.; Jain, A.; Jain, A.; et al. Early prognosis prediction in acute myeloid and acute lymphoid leukemia patients using cell-free DNA concentration ratios. Front. Mol. Biosci. 2024, 10, 1333943. [Google Scholar] [CrossRef]
- Luskin, M.R.; Discenza, M.N.; Easter, S.R.; Dal Cin, P.; Owen, R.; Ilagan, B.; Masiello, M.; Lane, A.A. Maternal iAMP21 acute lymphoblastic leukemia detected on prenatal cell-free DNA genetic screening. Blood Adv. 2017, 1, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Lei, C.; Wu, Y.; Huang, C.J.; Yasumoto, A.; Jona, M.; Li, W.; Wu, Y.; Yalikun, Y.; Jiang, Y.; et al. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab A Chip 2019, 19, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Medinger, M.; Junker, T.; Heim, D.; Tzankov, A.; Jermann, P.M.; Bobadilla, M.; Vigolo, M.; Lehal, R.; Vogl, F.D.; Bauer, M.; et al. CB-103: A novel CSL-NICD inhibitor for the treatment of NOTCH-driven T-cell acute lymphoblastic leukemia: A case report of complete clinical response in a patient with relapsed and refractory T-ALL. eJHaem 2022, 3, 1009–1012. [Google Scholar] [CrossRef]
- Aljurf, M.; Abalkhail, H.; Alseraihy, A.; Mohamed, S.Y.; Ayas, M.; Alsharif, F.; Alzahrani, H.; Al-Jefri, A.; Aldawsari, G.; Al-Ahmari, A.; et al. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies. Biotechnol. Res. Int. 2016, 2016, 8589270. [Google Scholar] [CrossRef]
- Arthur, C.; Rezayee, F.; Mogensen, N.; Saft, L.; Rosenquist, R.; Nordenskjöld, M.; Harila-Saari, A.; Tham, E.; Barbany, G. Patient-Specific Assays Based on Whole-Genome Sequencing Data to Measure Residual Disease in Children With Acute Lymphoblastic Leukemia: A Proof of Concept Study. Front. Oncol. 2022, 12, 899325. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Jia, S.; Takalkar, S.; Chang, T.-C.; Ma, X.; Szlachta, K.; Xu, K.; Cheng, Z.; Hui, Y.; Koo, S.C.; et al. Genomic profiling of circulating tumor DNA for childhood cancers. Leukemia 2024, 39, 420–430. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Sun, M.; Yang, L.; Long, F.; Qi, S.; Luo, L.; Lv, X.; Wang, C.; Wu, X.; et al. Molecular characterization and biomarker identification in pediatric B-cell acute lymphoblastic leukemia. J. Clin. Oncol. 2024, 42, 6524. [Google Scholar] [CrossRef]
- Rzepiel, A.; Kutszegi, N.; Gézsi, A.; Sági, J.C.; Egyed, B.; Péter, G.; Butz, H.; Nyírő, G.; Müller, J.; Kovács, G.T.; et al. Circulating microRNAs as minimal residual disease biomarkers in childhood acute lymphoblastic leukemia. J. Transl. Med. 2019, 17, 372. [Google Scholar] [CrossRef]
- Rzepiel, A.; Horváth, A.; Kutszegi, N.; Gézsi, A.; Sági, J.C.; Almási, L.; Egyed, B.; Lőrincz, P.; Visnovitz, T.; Kovács, G.T.; et al. MiR-128-3p as blood based liquid biopsy biomarker in childhood acute lymphoblastic leukemia. Mol. Cell. Probes 2023, 67, 101893. [Google Scholar] [CrossRef]
- Egyed, B.; Horváth, A.; Semsei, Á.F.; Szalai, C.; Müller, J.; Erdélyi, D.J.; Kovács, G.T. Co-Detection of VEGF-A and Its Regulator, microRNA-181a, May Indicate Central Nervous System Involvement in Pediatric Leukemia. Pathol. Oncol. Res. 2022, 28, 1610096. [Google Scholar] [CrossRef]
- Egyed, B.; Kutszegi, N.; Sági, J.C.; Gézsi, A.; Rzepiel, A.; Visnovitz, T.; Lőrincz, P.; Müller, J.; Zombori, M.; Szalai, C.; et al. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J. Transl. Med. 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Totoń-Żurańska, J.; Sulicka-Grodzicka, J.; Seweryn, M.T.; Pitera, E.; Kapusta, P.; Konieczny, P.; Drabik, L.; Kołton-Wróż, M.; Chyrchel, B.; Nowak, E.; et al. MicroRNA composition of plasma extracellular vesicles: A harbinger of late cardiotoxicity of doxorubicin. Mol. Med. 2022, 28, 156. [Google Scholar] [CrossRef]
- Kumar, R.; Katare, P.B.; Lentz, S.R.; Modi, A.J.; Sharathkumar, A.A.; Dayal, S. Thrombotic potential during pediatric acute lymphoblastic leukemia induction: Role of cell-free DNA. Res. Pract. Thromb. Haemost. 2021, 5, e12557. [Google Scholar] [CrossRef]
- Lenaerts, L.; Vandenberghe, P.; Brison, N.; Che, H.; Neofytou, M.; Verheecke, M.; Leemans, L.; Maggen, C.; Dewaele, B.; Dehaspe, L.; et al. Genomewide copy number alteration screening of circulating plasma DNA: Potential for the detection of incipient tumors. Ann. Oncol. 2019, 30, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Casabonne, D.; Benavente, Y.; Seifert, J.; Costas, L.; Armesto, M.; Arestin, M.; Besson, C.; Hosnijeh, F.S.; Duell, E.J.; Weiderpass, E.; et al. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int. J. Cancer 2020, 147, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Hemenway, G.; Tierno, M.B.; Nejati, R.; Sosa, R.; Zibelman, M. Clinical Utility of Liquid Biopsy to Identify Genomic Heterogeneity and Secondary Cancer Diagnoses: A Case Report. Case Rep. Oncol. 2022, 15, 78–85. [Google Scholar] [CrossRef]
- Di Giosaffatte, N.; Bottillo, I.; Laino, L.; Iaquinta, G.; Ferraris, A.; Garzia, M.; Bargiacchi, S.; Mulargia, C.; Angelitti, M.R.; Palumbo, F.; et al. Discordant cfDNA-NIPT result unraveling a trisomy 12 chronic lymphocytic leukemia in a 37 years old pregnant woman. Prenat. Diagn. 2022, 42, 1000–1003. [Google Scholar] [CrossRef]
- Yeh, P.; Hunter, T.; Sinha, D.; Ftouni, S.; Wallach, E.; Jiang, D.; Chan, Y.C.; Wong, S.Q.; Silva, M.J.; Vedururu, R.; et al. Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat. Commun. 2017, 8, 14756. [Google Scholar] [CrossRef]
- Albitar, A.; Ma, W.; DeDios, I.; Estella, J.; Ahn, I.; Farooqui, M.; Wiestner, A.; Albitar, M. Using high-sensitivity sequencing for the detection of mutations in BTK and PLCγ2 genes in cellular and cell-free DNA and correlation with progression in patients treated with BTK inhibitors. Oncotarget 2017, 8, 17936–17944. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Esfahani, M.S.; Scherer, F.; Soo, J.; Jin, M.C.; Liu, C.L.; Newman, A.M.; Dührsen, U.; Hüttmann, A.; Casasnovas, O.; et al. Dynamic risk profiling using serial tumor biomarkers for personalized outcome Prediction. Cell 2019, 178, 699–713e19. [Google Scholar] [CrossRef]
- Stamatopoulos, B.; Van Damme, M.; Crompot, E.; Dessars, B.; Housni, H.E.; Mineur, P.; Meuleman, N.; Bron, D.; Lagneaux, L. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol. Med. 2015, 21, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wang, S.; West-Szymanski, D.; Karpus, J.; Shah, S.; Ganguly, S.; Smith, J.; Zu, Y.; He, C.; Li, Z. Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia. Sci. Rep. 2022, 12, 12410. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lin, C.; Peng, M.; Ren, J.; Jing, Y.; Lei, L.; Tao, Y.; Huang, J.; Yang, J.; Sun, M.; et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front. Oncol. 2022, 12, 1033143. [Google Scholar] [CrossRef]
- Ruan, M.; Liu, L.; Qi, B.; Chen, X.; Chang, L.; Zhang, A.; Guo, Y.; Zou, Y.; Zhang, Y.; Chen, Y.; et al. Targeted Next-Generation Sequencing of Circulating Tumor DNA, Bone Marrow, and Peripheral Blood Mononuclear Cells in Pediatric AML. Front. Oncol. 2021, 11, 666470. [Google Scholar] [CrossRef]
- Shao, J.; Shah, S.; Ganguly, S.; Zu, Y.; He, C.; Li, Z. Classification of Acute Myeloid Leukemia by Cell-Free DNA 5-Hydroxymethylcytosine. Genes 2023, 14, 1180. [Google Scholar] [CrossRef]
- Barzegar, M.; Farsani, M.A.; Rafiee, M.; Amiri, V.; Parkhihdeh, S.; Rad, F.; Mohammadi, M.H. Acute promyelocytic leukemia derived extracellular vesicles conserve PML-RARα transcript from storage-inflicted degradation: A stable diagnosis tool in APL patients. Ann. Hematol. 2021, 100, 2241–2252. [Google Scholar] [CrossRef]
- Nkosi, D.; Miller, C.A.; Jajosky, A.N.; Oltvai, Z.N. Incidental discovery of acute myeloid leukemia during liquid biopsy of a lung cancer patient. Cold Spring Harb. Mol. Case Stud. 2022, 8, a006201. [Google Scholar] [CrossRef] [PubMed]
- Kerle, I.A.; Jägerhuber, L.; Secci, R.; Pfarr, N.; Blüm, P.; Roesch, R.; Götze, K.S.; Weichert, W.; Bassermann, F.; Ruland, J.; et al. Circulating Tumor DNA Profiling of a Diffuse Large B Cell Lymphoma Patient with Secondary Acute Myeloid Leukemia. Cancers 2022, 14, 1371. [Google Scholar] [CrossRef]
- Koutova, L.; Sterbova, M.; Pazourkova, E.; Pospisilova, S.; Svobodova, I.; Horinek, A.; Lysak, D.; Korabecna, M. The impact of standard chemotherapy on miRNA signature in plasma in AML patients. Leuk. Res. 2015, 39, 1389–1395. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Ridinger, M.; Lin, T.L.; Becker, P.S.; Schiller, G.J.; Patel, P.A.; Spira, A.I.; Tsai, M.L.; Samuëlsz, E.; Silberman, S.L.; et al. A Phase Ib Study of Onvansertib, a Novel Oral PLK1 Inhibitor, in Combination Therapy for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin. Cancer Res. 2020, 26, 6132–6140. [Google Scholar] [CrossRef]
- Zhou, X.; Lang, W.; Mei, C.; Ren, Y.; Ma, L.; Jiang, L.; Ye, L.; Xu, G.; Luo, Y.; Liu, L.; et al. Serial monitoring of circulating tumour DNA on clinical outcome in myelodysplastic syndromes and acute myeloid leukaemia. Clin. Transl. Med. 2023, 13, e1349. [Google Scholar] [CrossRef]
- Yadav, M.; Liu, J.; Song, F.; Mo, X.; Jacob, N.R.; Xu-Welliver, M.; Chakravarti, A.; Jacob, N.K. Utility of Circulating MicroRNA-150 for Rapid Evaluation of Bone Marrow Depletion After Radiation and Efficiency of Bone Marrow Reconstitution. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-J.; He, Y.-J.; Yang, Z.-L.; Shao, H.-Y.; Zuo, Y.; Bai, Y.; Chen, H.; Chen, X.C.; Qin, F.X.; Tan, S.; et al. Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia. Clin. Chem. Lab. Med. 2010, 48, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Chen, J.; Huang, X.; Li, Y.; Jiang, T. Monitoring immunoglobulin heavy chain and T-cell receptor gene rearrangement in cfDNA as minimal residual disease detection for patients with acute myeloid leukemia. Oncol. Lett. 2018, 16, 2279–2288. [Google Scholar] [CrossRef]
- Short, N.J.; Patel, K.P.; Albitar, M.; Franquiz, M.; Luthra, R.; Kanagal-Shamanna, R.; Wang, F.; Assi, R.; Montalban-Bravo, G.; Matthews, J.; et al. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020, 4, 1670–1677. [Google Scholar] [CrossRef]
- Rausch, C.; Rothenberg-Thurley, M.; Buerger, S.A.; Tschuri, S.; Dufour, A.; Neusser, M.; Schneider, S.; Spiekermann, K.; Metzeler, K.H.; Ziemann, F. Double Drop-Off Droplet Digital PCR: A Novel, Versatile Tool for Mutation Screening and Residual Disease Monitoring in Acute Myeloid Leukemia Using Cellular or Cell-Free DNA. J. Mol. Diagn. 2021, 23, 975–985. [Google Scholar] [CrossRef]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia With Genomic Evidence of Residual Disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Mata, D.A.; Lee, J.K.; Shanmugam, V.; Marcus, C.B.; Schrock, A.B.; Williams, E.A.; Ritterhouse, L.L.; Hickman, R.A.; Janovitz, T.; Patel, N.R.; et al. Liquid biopsy-based circulating tumor (ct)DNA analysis of a spectrum of myeloid and lymphoid malignancies yields clinically actionable results. Histopathology 2024, 84, 1224–1237. [Google Scholar] [CrossRef]
- Yegin, Z.A.; Can, F.; Gökçen, S.; Sadioğlu, R.E.; Özkurt, Z.N.; İlhan, Ç.; Yağcı, M. The Impact of Pre-transplant Cell-free DNA Levels on Leukemia Relapse and Transplant-related Complications in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Balk. Med. J. 2020, 37, 138–143. [Google Scholar] [CrossRef]
- Nakamura, S.; Yokoyama, K.; Shimizu, E.; Yusa, N.; Kondoh, K.; Ogawa, M.; Takei, T.; Kobayashi, A.; Ito, M.; Isobe, M.; et al. Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS. Blood 2019, 133, 2682–2695. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, L.; Li, X.; Zhang, Y.; Li, J.; Chen, L. Low miR-192 expression predicts poor prognosis in pediatric acute myeloid leukemia. Cancer Biomark. 2018, 22, 209–215. [Google Scholar] [CrossRef]
- Liu, L.; Chen, R.; Zhang, Y.; Fan, W.; Xiao, F.; Yan, X. Low expression of circulating microRNA-328 is associated with poor prognosis in patients with acute myeloid leukemia. Diagn. Pathol. 2015, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Purhonen, A.-K.; Juutilainen, A.; Vänskä, M.; Lehtikangas, M.; Lakkisto, P.; Hämäläinen, S.; Koivula, I.; Jantunen, E.; Pulkki, K. Human plasma cell-free DNA as a predictor of infectious complications of neutropenic fever in hematological patients. Infect. Dis. 2015, 47, 255–259. [Google Scholar] [CrossRef]
- Anyanwu, N.C.J.; Ella, E.E.; Aminu, M.; Kazeem, H.M. Detection of NRAS G12D and NRAS G13C mutant genes among apparently healthy and haematologic malignant individuals in Federal Capital Territory, Nigeria. J. Immunoass. Immunochem. 2019, 40, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.L.; Shang, M.; Ng, C.H.; Lim, C.T.; Chng, W.J.; Han, J. Liquid biopsy for minimal residual disease detection in leukemia using a portable blast cell biochip. Npj Precis. Oncol. 2019, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Dueck, M.E.; Lin, R.; Zayac, A.; Gallagher, S.; Chao, A.K.; Jiang, L.; Datwani, S.S.; Hung, P.; Stieglitz, E. Precision cancer monitoring using a novel, fully integrated, microfluidic array partitioning digital PCR platform. Sci. Rep. 2019, 9, 19606. [Google Scholar] [CrossRef]
- Ferreira, L.A.M.; Capannacci, J.; Hokama, N.K.; Nogueira, C.R.; Ceccarelli, M.; Cerulo, L.; D’Angelo, F.; Hokama, P.O.M. Circulating microRNAs expression profile in newly diagnosed and imatinib treated chronic phase—Chronic myeloid leukemia. Leuk. Lymphoma 2019, 60, 805–811. [Google Scholar] [CrossRef]
- Martins, J.R.B.; de Moraes, L.N.; Cury, S.S.; Dadalto, J.; Capannacci, J.; Carvalho, R.F.; Nogueira, C.R.; Hokama, N.K.; Hokama, P.O.M. Comparison of microRNA Expression Profile in Chronic Myeloid Leukemia Patients Newly Diagnosed and Treated by Allogeneic Hematopoietic Stem Cell Transplantation. Front. Oncol. 2020, 10, 1544. [Google Scholar] [CrossRef]
- Bernardi, S.; Foroni, C.; Zanaglio, C.; Re, F.; Polverelli, N.; Turra, A.; Morello, E.; Farina, M.; Cattina, F.; Gandolfi, L.; et al. Feasibility of tumor-derived exosome enrichment in the onco-hematology leukemic model of chronic myeloid leukemia. Int. J. Mol. Med. 2019, 44, 2133–2144. [Google Scholar] [CrossRef]
- Institut Curie. Molecular and Immunological Characterisation of High Risk CHildhood Cancer at DiagnOsis, Treatment and Follow-Up—Biological Evaluation in Children, Adolescents and Young Adults—[Internet]. Clinicaltrials.Gov. Report No.: NCT03496402; 2023. Available online: https://clinicaltrials.gov/study/NCT03496402 (accessed on 11 June 2023).
- Ziegler, D.D. A Multicenter Prospective Study of the Feasibility and Clinical Value of a Diagnostic Service for Identifying Therapeutic Targets and Recommending Personalised Treatment for Children and Adolescents with High-Risk Cancer [Internet]. Clinicaltrials.Gov. Report No.: NCT03336931; 2023. Available online: https://clinicaltrials.gov/study/NCT03336931 (accessed on 11 June 2023).
- Australian & New Zealand Children’s Haematology/Oncology Group. Precision Medicine for Every Child with Cancer [Internet]. Clinicaltrials.Gov. Report No.: NCT05504772; 2023. Available online: https://clinicaltrials.gov/study/NCT05504772 (accessed on 11 June 2023).
- University Health Network, Toronto. Liquid Biopsy Evaluation and Repository Development at Princess Margaret [Internet]. Clinicaltrials.Gov. Report No.: NCT03702309; 2023. Available online: https://clinicaltrials.gov/study/NCT03702309 (accessed on 11 June 2023).
- Adela, Inc. cfDNA Assay Multicenter Prospective Observational Validation for Early Cancer Detection, Minimal Residual Disease, and Relapse [Internet]. Clinicaltrials.Gov. Report No.: NCT05366881; 2023. Available online: https://clinicaltrials.gov/study/NCT05366881 (accessed on 11 June 2023).
- Gustave Roussy, Cancer Campus, Grand Paris. MoleculAr Profiling for Pediatric and Young Adult Cancer Treatment Stratification 2 [Internet]. Clinicaltrials.Gov. Report No.: NCT05691608; 2023. Available online: https://clinicaltrials.gov/study/NCT05691608 (accessed on 11 June 2023).
- Centre Leon Berard. A Prospective Longitudinal Profiling Program of Cancer Patients with Sequential Tumor and Liquid Biopsies [Internet]. Clinicaltrials.Gov. Report No.: NCT05099068; 2022. Available online: https://clinicaltrials.gov/study/NCT05099068 (accessed on 11 June 2023).
- Bond, D. A Phase I Study of Duvelisib in Combination with Nivolumab for Patients With Richter’s Syndrome and Transformed Follicular Lymphoma [Internet]. Clinicaltrials.Gov. Report No.: NCT03892044; 2023. Available online: https://clinicaltrials.gov/study/NCT03892044 (accessed on 11 June 2023).
- Cyclacel Pharmaceuticals, Inc. A Phase 1/2, Open Label, Multicenter Study to Investigate the Safety and Efficacy of Fadraciclib (CYC065), an Oral CDK 2/9 Inhibitor, in Subjects with Leukemias or Myelodysplastic Syndrome (MDS) [Internet]. Clinicaltrials.Gov. Report No.: NCT05168904; 2022. Available online: https://clinicaltrials.gov/study/NCT05168904 (accessed on 11 June 2023).
- Ghia, P. Lymph Node Microenvironment Modifications in Patients with CLL Treated with Venetoclax-Based Regimens [Internet]. Clinicaltrials.Gov. Report No.: NCT04790045; 2022. Available online: https://clinicaltrials.gov/study/NCT04790045 (accessed on 11 June 2023).
- St. Jude Children’s Research Hospital. A Phase I and Expansion Cohort Study of Selinexor and Venetoclax in Combination with Chemotherapy in Pediatric and Young Adult Patients with Refractory or Relapsed Acute Myeloid Leukemia [Internet]. Clinicaltrials.Gov. Report No.: NCT04898894; 2023. Available online: https://clinicaltrials.gov/study/NCT04898894 (accessed on 11 June 2023).
- Cramer, P. A Prospective, Open-label, Multicenter Phase-II Trial to Evaluate the Efficacy and Safety of a Sequential Regimen of Bendamustine Followed by GA101 (Obinutuzumab), Acalabrutinib (ACP-196) and ABT-199 (Venetoclax) in Patients with Relapsed/Refractory CLL (CLL2-BAAG Protocol) [Internet]. Clinicaltrials.Gov. Report No.: NCT03787264; 2025. Available online: https://clinicaltrials.gov/study/nct03787264 (accessed on 1 July 2024).
- Rossi, D. Prospective, Observational, Multi-Centred, Non-Interventional Study on the Identification of Biomarkers That Are Predictive of Early Ibrutinib Treatment Failure in High Risk TP53 Mutated Chronic Lymphocytic Leukemia [Internet]. Clinicaltrials.Gov. Report No.: NCT02827617; 2023. Available online: https://clinicaltrials.gov/study/NCT02827617 (accessed on 11 June 2023).
- Qian, L. Monitoring Circulating Tumor DNA After Chemotherapy in Elderly Patients with Acute Leukemia [Internet]. Clinicaltrials.Gov. Report No.: NCT04157569; 2020. Available online: https://clinicaltrials.gov/study/NCT04157569 (accessed on 11 June 2023).
- Della Starza, I.; De Novi, L.A.; Elia, L.; Bellomarino, V.; Beldinanzi, M.; Soscia, R.; Cardinali, D.; Chiaretti, S.; Guarini, A.; Foà, R. Optimizing Molecular Minimal Residual Disease Analysis in Adult Acute Lymphoblastic Leukemia. Cancers 2023, 15, 374. [Google Scholar] [CrossRef]
- Tüfekçi, Ö.; Evim, M.S.; Güneş, A.M.; Celkan, T.; Karapinar, D.Y.; Kaya, Z.; Baysal, B.; Baytan, B.; Koçak, Ü.; Yilmaz, Ş.; et al. Assessment of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia: A Multicenter Study From Turkey. J. Pediatr. Hematol. 2022, 44, e396–e402. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.R.; Mo, C.C.; Karp, J.E.; Hourigan, C.S. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J. Clin. Med. 2015, 4, 665–695. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, I.; Raponi, S.; Della Starza, I.; De Propris, M.S.; Cavalli, M.; De Novi, L.A.; Cappelli, L.V.; Ilari, C.; Cafforio, L.; Guarini, A.; et al. Minimal Residual Disease in Chronic Lymphocytic Leukemia: A New Goal? Front. Oncol. 2019, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Pihlak, R.; Fong, C.; Starling, N. Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers 2023, 15, 3248. [Google Scholar] [CrossRef]
- Luceno, C.F.; Jeon, W.J.; Samaeekia, R.; Shin, J.; Sonpavde, G.P. Precision Medicine to Treat Urothelial Carcinoma—The Way Forward. Cancers 2023, 15, 3024. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Lobo, A.; Mishra, S.K.; Cheng, L. Precision Medicine in Bladder Cancer: Present Challenges and Future Directions. J. Pers. Med. 2023, 13, 756. [Google Scholar] [CrossRef]
- Upadhyay Banskota, S.; Khanal, N.; Marar, R.I.; Dhakal, P.; Bhatt, V.R. Precision Medicine in Myeloid Malignancies: Hype or Hope? Curr. Hematol. Malig. Rep. 2022, 17, 217–227. [Google Scholar] [CrossRef]
Reference | Disease | Key Points |
---|---|---|
Beagan et al., 2021 [37] | AML | PCR-free sWGS can satisfactorily detect somatic mutations in cfDNA. |
Li et al., 2022 [44] | AML | Colorimetric biosensor can distinguish healthy and leukemia patients through exosome detection. |
Pero-Gascon et al., 2018 [42] | CLL | SPE-CE-MS method was able to differentiate CLL patients and control through microRNA detection. |
Sampathi et al., 2022 [38] | ALL | Nanopore IGH detection workflow is a simple and inexpensive assay for cfDNA monitoring in ALL. |
Sonnenberg et al., 2014 [35] | CLL | cfDNA was rapidly isolated from peripheral blood through a DEP device. |
Soscia et al., 2022 [36] | ALL, AML, CML, CLL | An amplification system was proved to be free of analytical biases and efficient at increasing ctDNA amounts at diagnosis and in follow-up samples. |
Wang et al., 2019 [39] | AML | The Singleton Correction method can be incorporated into UMI-based error suppression workflows to increase accuracy. |
Xue et al., 2021 [46] | ALL | Biotin-labeled multivalent aptamers can be used to efficiently and specifically isolate EVs derived from malignant lymphocytes. |
Yin et al., 2021 [45] | AML | PEG-based isolation of extracellular vesicles is a simple and low-cost assay for exosome detection in peripheral blood. |
Zheng et al., 2015 [43] | CLL | An enzyme-free quadratic signal amplification strategy via target miRNA-triggered hybridization chain reaction and ions-mediated cascade amplification is able to detect circulating miRNA in CLL patient serum. |
Reference | Diseases | Analyte | N | Method | Key Points | Application |
---|---|---|---|---|---|---|
Aljurf et al., 2016 [54] | ALL, AML, and CML | ctDNA | 126 | STR-PCR | cfDNA-based chimerism testing in patients after HSCT might be more reliable than standard cell subset testing method. | Minimal residual disease |
Arthur et al., 2022 [55] | ALL | ctDNA | 6 | WGS and ddPCR | cfDNA extracted from blood and cerebrospinal fluid was used to monitor MRD with sensitivity comparable to that in bone marrow. | Minimal residual disease |
Du et al., 2024 [57] | ALL | ctDNA | 146 | NGS | cfDNA from peripheral blood and bone marrow. MRD measured on day 19. Novel fusions found. Elevated mutation counts and maximum variant allele frequency in baseline BM were associated with significantly poorer chemotherapy response. | Minimal residual disease |
Egyed et al., 2022 [60]; Egyed et al., 2020 [61] | ALL | miRNA | 9 | ELISA | VEGF-A and miR-181a expression were increased in CNS compromised patients; joint quantification of miR-181a and VEGF-A might provide a novel tool to precisely diagnose CNS involvement. | CNS involvement |
George et al., 2024 [50] | ALL/AML | cfDNA | 25 | cfDNA levels (ratio baseline: follow-up) | cfDNA ratio score of 2.6 or higher at diagnosis/remission predicted poor outcomes with higher accuracy than conventional MRD detection by flow cytometry. | Outcome, treatment response |
Kobayashi et al., 2019 [52] | ALL | CTCs | 3 | Whole-blood imaging flow cytometry | The developed method was able to accurately evaluate drug susceptibility via dose-dependent morphological changes in WBCs. | Treatment selection |
Kumar et al., 2021 [63] | ALL | cfDNA | 17 | Fluorometric DNA quantitation | cfDNA contributes to increased thrombogenic potential in ALL patients. | Thromboembolism |
Lei et al., 2025 [56] | Childhood leukemias | ctDNA | 177 | Pen-Seq (deep sequencing) for somatic genomic variants | Somatic variants (sequence mutations, copy number variations, and structural variations responsible for oncogenic fusions) from ctDNA correlated with minimal residual disease. | Diagnosis and minimal residual disease |
Luna-Aguirre et al., 2015 [49] | ALL | miRNA | 39 | qPCR | hsa-miR-511, -222, and -34a were overexpressed, whereas hsa-miR-199a-3p, -223, -221, and -26a were underexpressed in ALL samples. | Diagnosis |
Luskin et al., 2017 [51] | ALL | cfDNA | 1 | Massively Parallel Shotgun Sequencing | Normalized DNA copy number estimations on chromosome 21 from cfDNA derived from maternal plasma demonstrated an amplification that was later correlated with iAMP21 B-cell ALL. | Diagnosis |
Medinger et al., 2022 [53] | ALL | ctDNA | 1 | NGS | NGS of the ctDNA indicated residual disease before allo-HSCT, and non-detectable gene variants suggested disease control after allo-HSCT. | Treatment monitoring |
Rzepiel et al., 2019 [58] | ALL | miRNA | 20 | qPCR | MiR-128-3p and miR-222-3p in blood predict day 15 flow cytometry MRD results 7 days earlier. | Minimal residual disease |
Rzepiel et al., 2023 [59] | ALL | miRNA | 13 | qPCR | miR-128-3p expression positively correlates with bone marrow MRD on the 15th day of treatment, so it might be a valuable biomarker for following the bone marrow function or the therapy response in ALL. | Minimal residual disease |
Shahid et al., 2021 [48] | ALL | miRNA | 66 | qPCR | Circulating miR-146a is upregulated in ALL, and its expression level significantly decreased after treatment. | Diagnosis and treatment monitoring |
Swellam et al., 2018 [47] | ALL | miRNA | 43 | qPCR | miRNA-125b-1 is overexpressed, and miRNA-203 is downregulated in childhood ALL with high diagnostic value. | Diagnosis |
Totoń-Żurańska et al., 2022 [62] | ALL | Exosomal miRNAs | 66 | NGS | miRNA levels reflect doxorubicin-induced myocardial injury and preceded development of late-onset cardiomyopathy phenotype. | Prognosis |
Reference | Disease | Analyte | N | Method | Key Points | Application |
---|---|---|---|---|---|---|
Albitar et al., 2017 [69] | CLL | ctDNA | 16 | HS assay with WTB-PCR, Sanger sequencing and NGS | HS assay detected resistance-related mutations; plasma cfDNA more sensitive than cellular DNA or serum cfDNA. | Treatment monitoring |
Casabonne et al., 2020 [65] | CLL | miRNA | 224 | qPCR | Circulating hsa-miRNA-29a-3p, hsa-miR-150-5p, and hsa-miR-155-5p deregulated up to 10 years before CLL diagnosis. | Evaluating the role of miRNAs in CLL pathogenesis |
Di Giosaffatte et al., 2022 [67] | CLL | cfDNA | 1 | NIPT | NIPT result and hemogram contributed to CLL diagnosis of pregnant woman. | Diagnosis |
Hemenway et al., 2022 [66] | HCL | ctDNA | 1 | NGS | RAF V600E and CHEK2 mutations identified by liquid biopsy had a key role in HCL diagnosis. | Diagnosis |
Kurtz et al., 2019 [70] | CLL | ctDNA | 1426 | Naïve Bayes | A risk index was developed and validated to improve accuracy of prognostic models and facilitate treatment choice. | Prognosis |
Lenaerts et al., 2019 [64] | CLL | ctDNA | 1002 healthy individuals | WGS and GIPseq | Out of the 1002 screened participants, 5 were diagnosed with hematological cancer after cfDNA CNA analysis. | Screening |
Stamatopoulos et al., 2015 [71] | CLL | miRNA | 273/252 | qPCR | Cellular and serum levels of miR-150 are associated with opposite clinical prognoses and could be used to molecularly monitor disease evolution in CLL. | Prognosis |
Yeh et al., 2017 [68] | CLL | ctDNA | 32 | TS and dPCR | ctDNA dynamics reflect changes in disease burden across different tissue compartments. | Treatment monitoring |
Reference | Disease | Analyte | N | Method | Key Points | Application |
---|---|---|---|---|---|---|
Anyanwu et al., 2019 [94] | Multiple | cfDNA | 200 | Multiplex allele-specific PCR | cfDNA was used to detect NRAS G12D and NRAS G13C mutations in Federal Capital Territory, Nigeria. | Mutation studies |
Barzegar et al., 2021 [76] | APL | Extracellular vesicles | 22 | RT-PCR, qPCR, and flow cytometry | Plasma-derived EVs contain PML-RARα fusion transcript. | Diagnosis |
Gao et al., 2010 [83] | ALL and AML | ctDNA | 44 (AML) 16 (ALL) | qPCR | DNA concentrations and integrity were significantly higher in cancer patients, and DNA integrity at CR had a distinct reduction and then an increase at relapse. | Minimal residual disease |
George et al., 2024 [50] | ALL/AML | cfDNA | 25 | cfDNA levels (ratio baseline/follow-up) | cfDNA ratio score of 2.6 or higher at diagnosis/remission predicted poor outcomes with higher accuracy than conventional MRD detection by flow cytometry. | Outcome, treatment response |
Hourigan et al., 2020 [87] | AML | ctDNA | 190 | NGS | Liquid biopsy was used to evaluate MRD. | Minimal residual disease |
Kerle et al., 2022 [78] | AML | ctDNA | 1 | Targeted NGS and ddPCR | NGS and ddPCR combination was able to detect AML onset through specific mutations. | Diagnosis |
Khoo et al., 2019 [95] | AML | Blast cells | 15 | BCB | Enrichment of blast cells was achieved from blood with a one-step microfluidic blast cell biochip (BCB) sorting system. | Minimal residual disease |
Koutova et al., 2015 [79] | AML | miRNA | 8 | qPCR | miR-199b-5p, miR-301b, miR-326, miR-361-5p, miR-625, and miR-655 levels were sensitive to therapy. | Treatment monitoring |
Liu et al., 2015 [92] | AML | miRNA | 176 | qPCR | Serum miRNA-328 was significantly downregulated in AML patients compared with healthy controls and was an independent prognostic factor for OS and RFS. | Prognosis |
Mata et al., 2024 [88] | AML | ctDNA | 10 | NGS | Alterations found in FLT3, IDH2, and NPM1. Across the study, 75% of samples showed alterations only in liquid biopsy (in comparison with paired buffy coats, marrow, or tissues). | Minimal residual disease, existence of treatment-resistant clones |
Nakamura et al., 2019 [90] | AML | ctDNA | 37 | NGS and ddPCR | Patients with persistent ctDNA+ status at 1 or 3 post-alloSCT had a significantly higher risk of relapse; increasing ctDNA levels between 1 month and 3 months post-alloSCT was the precise predictor of relapse. | Prognosis |
Nkosi et al., 2022 [77] | AML | ctDNA | 1 | NGS | Lung cancer patient was diagnosed with AML after liquid biopsy results showed suggestive mutations. | Diagnosis |
Purhonen et al., 2015 [93] | AML | cfDNA | 32 | qPCR | cfDNA/leukocyte ratio on d0 predicted complicated course of neutropenic fever (p = 0.019) with area under the curve (AUC) 0.76 and 95% confidence interval (CI 0.54–0.98). | Complications |
Rausch et al., 2021 [86] | AML | ctDNA | 12 | DDO-ddPCR | Novel ddPCR assay design was able to detect AML mutations with sensitivity equal to qPCR. | Minimal residual disease |
Ruan et al., 2021 [74] | AML | cfDNA | 20 | NGS | Consistency analysis showed that ctDNA can mirror the genomic information from the bone marrow, and a subset of mutations was exclusively detected in ctDNA. | Diagnosis |
Shao et al., 2022 [72] | AML | ctDNA | 103 | nano-hmC-Seal-Seq | Plasma cfDNA 5hmC levels change dynamically with disease burden in AML. | Diagnosis and prognosis |
Shao et al., 2023 [75] | AML | cfDNA | 54 | NGS | 5hmC levels in the regions of H3K4me3 in cfDNA were used to group AML patients in 3 groups with particular characteristics. | Patient stratification |
Short et al., 2020 [85] | AML | ctDNA | 22 | NGS | Sequencing cfDNA can identify clinically relevant mutations not detected in the bone marrow. | Minimal residual disease |
Tian et al., 2018 [91] | AML | miRNA | 97 | qPCR | Serum miRNA-192 could be a reliable biomarker for AML diagnosis and prognosis. | Prognosis |
Xiao et al., 2022 [73] | AML | Exosomal lncRNAs | 65 | qPCR | LINC00265, LINC00467, UCA1, and SNHG1 were able to distinguish AML patients from control, and their combined use exhibited the most powerful diagnostic accuracy. | Diagnosis and treatment monitoring |
Yadav et al., 2022 [82] | AML | miRNA | 22 | qPCR | miR150 levels were decreased after radiation and exhibited an inverse correlation with recurrence. | Treatment monitoring |
Yegin et al., 2020 [89] | AML and ALL | ctDNA | 99 (AML) 74 (ALL) | Spectrophotometry | Lower levels of pre-transplant cfDNA seem to be associated with transplant-related morbidities. | Prognosis |
Zeidan et al., 2020 [80] | AML | ctDNA | 40 | NGS and ddPCR | Decrease in mutant ctDNA during therapy was associated with clinical response. | Treatment monitoring |
Zhong et al., 2018 [84] | AML | ctDNA | 235 | qPCR | Monoclonal IGH and TCR rearrangement were detected in cfDNA. | Minimal residual disease |
Zhou et al., 2023 [81] | AML | ctDNA | 14 | NGS | Serial plasma-derived ctDNA assessments can reflect treatment response, survival, and clonal evolution in AML. | Treatment monitoring |
ClinicalTrials.gov Identifier | Disease | N | Recruitment Status | Brief Summary | Liquid Biopsy Application |
---|---|---|---|---|---|
NCT03892044, 2019 [107] | CLL | 7 | Active, not recruiting | Will determine the maximum tolerated dose (MTD) of duvelisib in combination with nivolumab for patients with Richter’s syndrome or transformed follicular lymphoma. | Response to duvelisib in combination with nivolumab will be correlated with DNA mutation of CLL and lymphoma and assessed in tumor samples and cell-free DNA. |
NCT05504772, 2022 [102] | AML and ALL | 3500 | Recruiting | Aims to improve outcomes for childhood cancer patients through the implementation of precision medicine. | Liquid biopsy will be investigated as a non-invasive method for diagnosis of tumors that are difficult to biopsy directly. |
NCT05168904, 2021 [108] | AML and CLL | 210 | Recruiting | Two-part, phase 1/2, open-label, multicenter study designed to evaluate the safety and efficacy of fadraciclib administered orally BID. | To investigate plasma cell-free DNA mutation and copy number variation profile of fadraciclib as determined by NGS. |
NCT03702309, 2018 [103] | Leukemia | 2500 | Recruiting | Means to develop an institution-wide liquid biopsy protocol for future research studies at the University Health Network’s Princess Margaret Cancer Centre. | Peripheral blood samples will be incorporated into research protocols. |
NCT03496402, 2018 [100] | AML | 600 | Recruiting | Means to identify and characterize meaningful molecular genetic alterations and immunological features of high-risk childhood, adolescent, and young adult cancers at diagnosis, during patient treatment, and at follow-up. | Molecular biology techniques will be used to identify potential prognostic biomarkers on samples collected during patients’ treatment and follow-up based on changes in ctDNA. |
NCT03336931, 2017 [101] | AML and ALL | 550 | Recruiting | Multicenter prospective study of the feasibility and clinical value of a diagnostic service for identifying therapeutic targets and recommending personalized treatment for children and adolescents with high-risk cancer. | Laboratory analysis will include liquid biopsy. |
NCT04790045, 2021 [109] | CLL | 30 | Not yet recruiting | Will evaluate lymph node changes in CLL patients treated with venetoclax-based regimens at molecular and ultrasound levels. | Peripheral blood samples will be drawn for pharmacodynamics studies, MRD assessment, and cfDNA evaluation. |
NCT05366881, 2022 [104] | Leukemia | 7000 | Recruiting | Observational case–control study to train and validate a genome-wide methylome enrichment platform to detect multiple cancer types and to differentiate among cancer types. | cfDNA analysis will be used to differentiate cancer signals from specific cancer types and identify the correct tissue of origin. |
NCT04898894, 2021 [110] | AML | 42 | Recruiting | Will determine the safety and tolerability of selinexor and venetoclax in combination with chemotherapy in pediatric patients with relapsed or refractory AML or ALAL. | Will explore associations between leukemia cell genomics, BCL2 family member protein quantification, BH3 profiling, and response to therapy as assessed by MRD and variant clearance using cfDNA. |
NCT05691608, 2023 [105] | Leukemia | 1800 | Recruiting | Means to provide clinical therapeutic recommendations based on molecular profiling. | ctDNA analysis will be used to guide treatment strategy. |
NCT02827617, 2016 [112] | CLL | 56 | Active, not recruiting | Means to identify molecular markers that can help the early and real-time prediction of response to ibrutinib treatment in CLL harboring TP53 mutations. | cfDNA for the identification of BTK and PLCγ2 resistance mutations will be compared with tumor genomic DNA genotyping. |
NCT05099068, 2021 [106] | CLL | 500 | Recruiting | Prospective, multi-cohort study aiming to decipher molecular profiles/biological characteristics of advanced cancer patients during their disease with longitudinal and sequential analyses of tumor and liquid biopsies. | Means to identify potential prognostic and predictive biomarkers based on changes in ctDNA. |
NCT04157569, 2019 [113] | AML | 200 | Recruiting | This study will monitor ctDNA through the ddPCR method in elderly acute leukemia patients after chemotherapy. | Will evaluate the clinical value of ctDNA. |
NCT03787264, 2024 [111] | CLL | 46 | Active, not recruiting | This study evaluates the measurable residual disease (MRD)–guided triple combination of acalabrutinib, venetoclax, and obinutuzumab after optional bendamustine debulking in 45 patients with relapsed/refractory CLL. | The integration of ctDNA-based analyses into flow cytometry for MRD assessment is expected to enhance the early detection of relapses. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollanda, C.N.; Gualberto, A.C.M.; Motoyama, A.B.; Pittella-Silva, F. Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility. Cancers 2025, 17, 1438. https://doi.org/10.3390/cancers17091438
Hollanda CN, Gualberto ACM, Motoyama AB, Pittella-Silva F. Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility. Cancers. 2025; 17(9):1438. https://doi.org/10.3390/cancers17091438
Chicago/Turabian StyleHollanda, Cíntia Nogueira, Ana Cristina Moura Gualberto, Andréa Barretto Motoyama, and Fabio Pittella-Silva. 2025. "Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility" Cancers 17, no. 9: 1438. https://doi.org/10.3390/cancers17091438
APA StyleHollanda, C. N., Gualberto, A. C. M., Motoyama, A. B., & Pittella-Silva, F. (2025). Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility. Cancers, 17(9), 1438. https://doi.org/10.3390/cancers17091438