Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Overview of Transarterial Radioembolization
2.1. TARE Technique
2.2. Outcomes in TARE Therapy
2.3. Patient Selection
2.4. Safety of TARE
3. Radiation Segmentectomy and Lobectomy Techniques
3.1. Radiation Segmentectomy
3.2. Radiation Lobectomy
3.3. Comparative Considerations and Clinical Implications
3.4. Outcomes
3.5. Safety
4. Personalized Dosimetry
4.1. Clinical Trial Data on Patients with HCC
4.2. Outcomes Across BCLC Stages
4.3. Safety and Adverse Events
5. Combination Therapies with TARE
5.1. Clinical Trials Evaluating Y90 TARE and Immunotherapy Synergy
5.2. Clinical Safety Considerations
5.3. Implications for Clinical Practice
6. Imageable Microspheres
7. Pressure-Enabled Y90 Delivery Systems
8. Y90 Surrogates
8.1. Current Use in Clinical Practice
8.2. Future Directions for Ho-166
9. Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, Q.; Khanjyan, M.; Fidelman, N.; Pillai, A. Contemporary Applications of Y90 for the Treatment of Hepatocellular Carcinoma. Hepatol. Commun. 2023, 7, e0288. [Google Scholar] [CrossRef] [PubMed]
- Zane, K.E.; Nagib, P.B.; Jalil, S.; Mumtaz, K.; Makary, M.S. Emerging Curative-Intent Minimally-Invasive Therapies for Hepatocellular Carcinoma. World J. Hepatol. 2022, 14, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Jipa, A.M.; Makary, M.S. Locoregional Therapies for Hepatobiliary Tumors: Contemporary Strategies and Novel Applications. Cancers 2024, 16, 1271. [Google Scholar] [CrossRef] [PubMed]
- Fite, E.L.; Makary, M.S. Transarterial Chemoembolization Treatment Paradigms for Hepatocellular Carcinoma. Cancers 2024, 16, 2430. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Y.; Ge, S.; Xiong, B.; Zhou, G.; Feng, G.; Song, S.; Zheng, C. Transarterial Chemoembolization in Treatment-Naïve and Recurrent Hepatocellular Carcinoma: A Propensity-Matched Outcome and Risk Signature Analysis. Front. Oncol. 2021, 11, 662408. [Google Scholar] [CrossRef]
- International Society of Multidisciplinary Interventional Oncology (ISMIO); Lu, J.; Zhao, M.; Arai, Y.; Zhong, B.-Y.; Zhu, H.-D.; Qi, X.-L.; Baere, T.D.; Pua, U.; Yoon, H.K.; et al. Clinical Practice of Transarterial Chemoembolization for Hepatocellular Carcinoma: Consensus Statement from an International Expert Panel of International Society of Multidisciplinary Interventional Oncology (ISMIO). Hepatobiliary Surg. Nutr. 2021, 10, 661–671. [Google Scholar] [CrossRef]
- Makary, M.S.; Ramsell, S.; Miller, E.; Beal, E.W.; Dowell, J.D. Hepatocellular Carcinoma Locoregional Therapies: Outcomes and Future Horizons. World J. Gastroenterol. 2021, 27, 7462–7479. [Google Scholar] [CrossRef]
- Salem, R.; Lewandowski, R.J.; Sato, K.T.; Atassi, B.; Ryu, R.K.; Ibrahim, S.; Nemcek, A.A.; Omary, R.A.; Madoff, D.C.; Murthy, R. Technical Aspects of Radioembolization with 90Y Microspheres. Tech. Vasc. Interv. Radiol. 2007, 10, 12–29. [Google Scholar] [CrossRef]
- Riaz, A.; Gates, V.L.; Atassi, B.; Lewandowski, R.J.; Mulcahy, M.F.; Ryu, R.K.; Sato, K.T.; Baker, T.; Kulik, L.; Gupta, R.; et al. Radiation Segmentectomy: A Novel Approach to Increase Safety and Efficacy of Radioembolization. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 163–171. [Google Scholar] [CrossRef]
- Mikell, J.K.; Dewaraja, Y.K.; Owen, D. Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models. Semin. Radiat. Oncol. 2020, 30, 68–76. [Google Scholar] [CrossRef]
- Stella, M.; Braat, A.J.A.T.; Van Rooij, R.; De Jong, H.W.A.M.; Lam, M.G.E.H. Holmium-166 Radioembolization: Current Status and Future Prospective. Cardiovasc. Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Hickey, R.; Lewandowski, R.J.; Salem, R. Transarterial Radioembolization (TARE). In IR Playbook; Keefe, N.A., Haskal, Z.J., Park, A.W., Angle, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 389–396. ISBN 978-3-319-71299-4. [Google Scholar]
- Criss, C.R.; Makary, M.S. Recent Advances in Image-Guided Locoregional Therapies for Primary Liver Tumors. Biology 2023, 12, 999. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, C. Radioembolization with Yttrium-90 Microspheres in Hepatocellular Carcinoma: Role and Perspectives. World J. Hepatol. 2015, 7, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Gaba, R. Planning Arteriography for Yttrium-90 Microsphere Radioembolization. Semin. Interv. Radiol. 2015, 32, 428–438. [Google Scholar] [CrossRef]
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Edeline, J.; De Baere, T.; Assenat, E.; Tacher, V.; Robert, C.; Terroir-Cassou-Mounat, M.; et al. Personalised versus Standard Dosimetry Approach of Selective Internal Radiation Therapy in Patients with Locally Advanced Hepatocellular Carcinoma (DOSISPHERE-01): A Randomised, Multicentre, Open-Label Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2021, 6, 17–29. [Google Scholar] [CrossRef]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International Recommendations for Personalised Selective Internal Radiation Therapy of Primary and Metastatic Liver Diseases with Yttrium-90 Resin Microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef]
- Edeline, J.; Gilabert, M.; Garin, E.; Boucher, E.; Raoul, J.-L. Yttrium-90 Microsphere Radioembolization for Hepatocellular Carcinoma. Liver Cancer 2015, 4, 16–25. [Google Scholar] [CrossRef]
- Salem, R.; Gabr, A.; Riaz, A.; Mora, R.; Ali, R.; Abecassis, M.; Hickey, R.; Kulik, L.; Ganger, D.; Flamm, S.; et al. Institutional Decision to Adopt Y90 as Primary Treatment for Hepatocellular Carcinoma Informed by a 1,000-patient 15-year Experience. Hepatology 2018, 68, 1429–1440. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, H.-C. Radioembolization for Hepatocellular Carcinoma: What Clinicians Need to Know. J. Liver Cancer 2022, 22, 4–13. [Google Scholar] [CrossRef]
- Kallini, J.R.; Gabr, A.; Salem, R.; Lewandowski, R.J. Transarterial Radioembolization with Yttrium-90 for the Treatment of Hepatocellular Carcinoma. Adv. Ther. 2016, 33, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.M.; Geller, B.S.; Pepin, E.W.; Shah, J.L.; Kapp, M.; Toskich, B.B. Safety of Radioembolization in the Setting of Angiographically Apparent Arterioportal Shunting. J. Vasc. Interv. Radiol. 2018, 29, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.; Ludwig, J.M.; Leyh, C.; Pabst, K.M.; Weber, M.; Theysohn, J.M.; Lange, C.M.; Herrmann, K.; Schmidt, H.H.-J.; Jochheim, L.S. Bilobar Radioembolization Carries the Risk of Radioembolization-Induced Liver Disease in the Treatment of Advanced Hepatocellular Carcinoma: Safety and Efficacy Comparison to Systemic Therapy with Atezolizumab/Bevacizumab. Cancers 2023, 15, 4274. [Google Scholar] [CrossRef] [PubMed]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.-P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and Safety of Selective Internal Radiotherapy with Yttrium-90 Resin Microspheres Compared with Sorafenib in Locally Advanced and Inoperable Hepatocellular Carcinoma (SARAH): An Open-Label Randomised Controlled Phase 3 Trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Gabr, A.; Abouchaleh, N.; Ali, R.; Baker, T.; Caicedo, J.; Katariya, N.; Abecassis, M.; Riaz, A.; Lewandowski, R.J.; Salem, R. Outcomes of Surgical Resection after Radioembolization for Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2018, 29, 1502–1510.e1. [Google Scholar] [CrossRef]
- Johnson, G.E.; Padia, S.A. Yttrium-90 Radiation Segmentectomy. Semin. Interv. Radiol. 2020, 37, 537–542. [Google Scholar] [CrossRef]
- Serhal, M.; Dadrass, F.; Kim, E.; Lewandowski, R.J. Radiation Segmentectomy for Hepatocellular Carcinoma. Curr. Oncol. 2024, 31, 617–628. [Google Scholar] [CrossRef]
- Lewandowski, R.J.; Gabr, A.; Abouchaleh, N.; Ali, R.; Al Asadi, A.; Mora, R.A.; Kulik, L.; Ganger, D.; Desai, K.; Thornburg, B.; et al. Radiation Segmentectomy: Potential Curative Therapy for Early Hepatocellular Carcinoma. Radiology 2018, 287, 1050–1058. [Google Scholar] [CrossRef]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Lewandowski, R.J.; Donahue, L.; Chokechanachaisakul, A.; Kulik, L.; Mouli, S.; Caicedo, J.; Abecassis, M.; Fryer, J.; Salem, R.; Baker, T. 90Y Radiation Lobectomy: Outcomes Following Surgical Resection in Patients with Hepatic Tumors and Small Future Liver Remnant Volumes. J. Surg. Oncol. 2016, 114, 99–105. [Google Scholar] [CrossRef]
- Salem, R.; Lewandowski, R.J.; Kulik, L.; Wang, E.; Riaz, A.; Ryu, R.K.; Sato, K.T.; Gupta, R.; Nikolaidis, P.; Miller, F.H.; et al. Radioembolization Results in Longer Time-to-Progression and Reduced Toxicity Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2011, 140, 497–507.e2. [Google Scholar] [CrossRef] [PubMed]
- Chow, P.K.H.; Gandhi, M.; Tan, S.-B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Crane, C.H.; Koay, E.J. Solutions That Enable Ablative Radiotherapy for Large Liver Tumors: Fractionated Dose Painting, Simultaneous Integrated Protection, Motion Management, and Computed Tomography Image Guidance. Cancer 2016, 122, 1974–1986. [Google Scholar] [CrossRef] [PubMed]
- Garin, E.; Palard, X.; Rolland, Y. Personalised Dosimetry in Radioembolisation for HCC: Impact on Clinical Outcome and on Trial Design. Cancers 2020, 12, 1557. [Google Scholar] [CrossRef]
- Kim, E.; Sher, A.; Abboud, G.; Schwartz, M.; Facciuto, M.; Tabrizian, P.; Knešaurek, K.; Fischman, A.; Patel, R.; Nowakowski, S.; et al. Radiation Segmentectomy for Curative Intent of Unresectable Very Early to Early Stage Hepatocellular Carcinoma (RASER): A Single-Centre, Single-Arm Study. Lancet Gastroenterol. Hepatol. 2022, 7, 843–850. [Google Scholar] [CrossRef]
- Vouche, M.; Habib, A.; Ward, T.J.; Kim, E.; Kulik, L.; Ganger, D.; Mulcahy, M.; Baker, T.; Abecassis, M.; Sato, K.T.; et al. Unresectable Solitary Hepatocellular Carcinoma Not Amenable to Radiofrequency Ablation: Multicenter Radiology-Pathology Correlation and Survival of Radiation Segmentectomy. Hepatology 2014, 60, 192–201. [Google Scholar] [CrossRef]
- Kennedy, A.S.; Brown, D.B.; Fakih, M.; Jeyarajah, R.; Jones, S.; Liu, D.; Pinato, D.J.; Sangro, B.; Sharma, N.K.; Sze, D.Y.; et al. Multidisciplinary Delphi Consensus on Safety of Combining Transarterial Radioembolization with Yttrium-90 Microspheres with Systemic Anticancer Agents for the Treatment of Liver Malignancy. J. Vasc. Interv. Radiol. 2024, 35, 1253–1267.e1. [Google Scholar] [CrossRef]
- Garin, E.; Rolland, Y.; Laffont, S.; Edeline, J. Clinical Impact of 99mTc-MAA SPECT/CT-Based Dosimetry in the Radioembolization of Liver Malignancies with 90Y-Loaded Microspheres. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 559–575. [Google Scholar] [CrossRef]
- Knight, G.M.; Gordon, A.C.; Gates, V.; Talwar, A.; Riaz, A.; Salem, R.; Lewandowski, R. Evolution of Personalized Dosimetry for Radioembolization of Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2023, 34, 1214–1225. [Google Scholar] [CrossRef]
- Villalobos, A.; Soliman, M.M.; Majdalany, B.S.; Schuster, D.M.; Galt, J.; Bercu, Z.L.; Kokabi, N. Yttrium-90 Radioembolization Dosimetry: What Trainees Need to Know. Semin. Interv. Radiol. 2020, 37, 543–554. [Google Scholar] [CrossRef]
- Wang, D.; Rao, W. Bench-to-Bedside Development of Multifunctional Flexible Embolic Agents. Theranostics 2023, 13, 2114–2139. [Google Scholar] [CrossRef] [PubMed]
- Romero, D. Combination Set to Transform HCC Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 389. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Zhan, C.; Ruohoniemi, D.; Shanbhogue, K.P.; Wei, J.; Welling, T.H.; Gu, P.; Park, J.S.; Dagher, N.N.; Taslakian, B.; Hickey, R.M. Safety of Combined Yttrium-90 Radioembolization and Immune Checkpoint Inhibitor Immunotherapy for Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2020, 31, 25–34. [Google Scholar] [CrossRef]
- Villalobos, A.; Dabbous, H.H.; Little, O.; Gbolahan, O.B.; Akce, M.; Lilly, M.A.; Bercu, Z.; Kokabi, N. Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 10100–10110. [Google Scholar] [CrossRef]
- Lee, Y.B.; Nam, J.Y.; Cho, E.J.; Lee, J.-H.; Yu, S.J.; Kim, H.-C.; Paeng, J.C.; Yoon, J.-H.; Kim, Y.J. A Phase I/IIa Trial of Yttrium-90 Radioembolization in Combination with Durvalumab for Locally Advanced Unresectable Hepatocellular Carcinoma. Clin. Cancer Res. 2023, 29, 3650–3658. [Google Scholar] [CrossRef]
- Tai, D.; Loke, K.; Gogna, A.; Kaya, N.A.; Tan, S.H.; Hennedige, T.; Ng, D.; Irani, F.; Lee, J.; Lim, J.Q.; et al. Radioembolisation with Y90-Resin Microspheres Followed by Nivolumab for Advanced Hepatocellular Carcinoma (CA 209-678): A Single Arm, Single Centre, Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2021, 6, 1025–1035. [Google Scholar] [CrossRef]
- Iyer, R.; Noonan, A.; Spieler, B.; White, S.; Kulik, L.; Underwood, D.; Heilbron, E.; Nguyen, B.; Wetherill, G.; Salem, R. EMERALD-Y90: A Phase 2 Study to Evaluate Transarterial Radioembolization Followed by Durvalumab and Bevacizumab for the Treatment of Unresectable Hepatocellular Carcinoma Eligible for Embolization. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, e487. [Google Scholar] [CrossRef]
- Brandi, N.; Renzulli, M. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 8598. [Google Scholar] [CrossRef]
- Balaban Genc, Z.C.; Soydemır, E.; Ersoy, S.A.; Ones, T. Combining Immunotherapy with Transarterial Radioembolization. Indian J. Nucl. Med. 2023, 38, 145–147. [Google Scholar] [CrossRef]
- Taswell, C.S.; Studenski, M.; Pennix, T.; Stover, B.; Georgiou, M.; Venkat, S.; Jones, P.; Zikria, J.; Thornton, L.; Yechieli, R.; et al. For Hepatocellular Carcinoma Treated with Yttrium-90 Microspheres, Dose Volumetrics on Post-Treatment Bremsstrahlung SPECT/CT Predict Clinical Outcomes. Cancers 2023, 15, 645. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, M.; Chiesa, C.; Strigari, L.; Ferrari, M.; Botta, F.; Guerriero, F.; De Cicco, C.; Bonomo, G.; Orsi, F.; Bodei, L.; et al. Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective. Front. Oncol. 2014, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, R.; Salem, R. Yttrium-90 Radioembolization of Hepatocellular Carcinoma and Metastatic Disease to the Liver. Semin. Interv. Radiol. 2006, 23, 064–072. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Van Valkenburgh, J.; Chen, A.Z.; Chen, Q.; Li, J.; Zuo, C.; Chen, K. Recent Advances and Applications of Microspheres and Nanoparticles in Transarterial Chemoembolization for Hepatocellular Carcinoma. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1749. [Google Scholar] [CrossRef]
- He, Q.; Chen, J.; Yan, J.; Cai, S.; Xiong, H.; Liu, Y.; Peng, D.; Mo, M.; Liu, Z. Tumor Microenvironment Responsive Drug Delivery Systems. Asian J. Pharm. Sci. 2020, 15, 416–448. [Google Scholar] [CrossRef]
- Roosen, J.; Westlund Gotby, L.E.L.; Arntz, M.J.; Fütterer, J.J.; Janssen, M.J.R.; Konijnenberg, M.W.; Van Wijk, M.W.M.; Overduin, C.G.; Nijsen, J.F.W. Intraprocedural MRI-Based Dosimetry during Transarterial Radioembolization of Liver Tumours with Holmium-166 Microspheres (EMERITUS-1): A Phase I Trial towards Adaptive, Image-Controlled Treatment Delivery. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4705–4715. [Google Scholar] [CrossRef]
- Kao, Y.-H.; Steinberg, J.D.; Tay, Y.-S.; Lim, G.K.; Yan, J.; Townsend, D.W.; Budgeon, C.A.; Boucek, J.A.; Francis, R.J.; Cheo, T.S.; et al. Post-Radioembolization Yttrium-90 PET/CT—Part 2: Dose-Response and Tumor Predictive Dosimetry for Resin Microspheres. EJNMMI Res. 2013, 3, 57. [Google Scholar] [CrossRef]
- Abraham, R.J.; Arepally, A.; Liu, D.; Lewandowski, R.; Kappadath, S.C.; Verma, A.; Dobrowski, D.; Holden, A. Imageable Radioembolization Microspheres for Treatment of Unresectable Hepatocellular Carcinoma: Interim Results from a First-in-Human Trial. J. Vasc. Interv. Radiol. 2024, 35, 1464–1473.e1. [Google Scholar] [CrossRef]
- Giammarile, F.; Paez, D.; Zimmermann, R.; Cutler, C.S.; Jalilian, A.; Korde, A.; Knoll, P.; Ayati, N.; Lewis, J.S.; Lapi, S.E.; et al. Production and Regulatory Issues for Theranostics. Lancet Oncol. 2024, 25, e260–e269. [Google Scholar] [CrossRef]
- Kappadath, S.C.; Henry, E.C.; Lopez, B.P.; Mahvash, A. Quantitative Evaluation of 90Y-PET/CT and 90Y-SPECT/CT-based Dosimetry Following Yttrium-90 Radioembolization. Med. Phys. 2024, 51, 6061–6074. [Google Scholar] [CrossRef]
- Bertolet, A.; Wehrenberg-Klee, E.; Bobić, M.; Grassberger, C.; Perl, J.; Paganetti, H.; Schuemann, J. Pre- and Post-Treatment Image-Based Dosimetry in 90Y-Microsphere Radioembolization Using the TOPAS Monte Carlo Toolkit. Phys. Med. Biol. 2021, 66, 244002. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.A.; Hesketh, R.; Kong, D.S.; Wicky, S.; Oklu, R. Barriers to Drug Delivery in Interventional Oncology. J. Vasc. Interv. Radiol. 2013, 24, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.-H.; Rubin, K.; Pietras, K.; Östman, A. High Interstitial Fluid Pressure—An Obstacle in Cancer Therapy. Nat. Rev. Cancer 2004, 4, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Titano, J.J.; Fischman, A.M.; Cherian, A.; Tully, M.; Stein, L.L.; Jacobs, L.; Rubin, R.A.; Bosley, M.; Citron, S.; Joelson, D.W.; et al. End-Hole Versus Microvalve Infusion Catheters in Patients Undergoing Drug-Eluting Microspheres-TACE for Solitary Hepatocellular Carcinoma Tumors: A Retrospective Analysis. Cardiovasc. Interv. Radiol. 2019, 42, 560–568. [Google Scholar] [CrossRef]
- Jaroch, D.B.; Liu, Y.; Kim, A.Y.; Katz, S.C.; Cox, B.F.; Hullinger, T.G. Intra-Arterial Pressure-Enabled Drug Delivery Significantly Increases Penetration of Glass Microspheres in a Porcine Liver Tumor Model. J. Vasc. Interv. Radiol. 2024, 35, 1525–1533.e4. [Google Scholar] [CrossRef]
- Rose, S.C.; Narsinh, K.H.; Newton, I.G. Quantification of Blood Pressure Changes in the Vascular Compartment When Using an Anti-Reflux Catheter during Chemoembolization versus Radioembolization: A Retrospective Case Series. J. Vasc. Interv. Radiol. 2017, 28, 103–110. [Google Scholar] [CrossRef]
- Cook, K.; Gupta, D.; Liu, Y.; Miller-Rosales, C.; Wei, F.; Tuttle, E.; Katz, S.C.; Marshak, R.; Kim, A.Y. Real-World Evidence of Pressure-Enabled Drug Delivery for Trans-Arterial Chemoembolization and Radioembolization among Patients with Hepatocellular Carcinoma and Liver Metastases. Curr. Med. Res. Opin. 2024, 40, 591–598. [Google Scholar] [CrossRef]
- Salem, R.; Padia, S.A.; Lam, M.; Chiesa, C.; Haste, P.; Sangro, B.; Toskich, B.; Fowers, K.; Herman, J.M.; Kappadath, S.C.; et al. Clinical, Dosimetric, and Reporting Considerations for Y-90 Glass Microspheres in Hepatocellular Carcinoma: Updated 2022 Recommendations from an International Multidisciplinary Working Group. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 328–343. [Google Scholar] [CrossRef]
- Serafin, Z.; Dudeck, O.; Powerski, M.; Wolf, F.; Drewes, R.; Pech, M. Efficacy and Safety of Guidewireless Catheterization with a Steerable Microcatheter in Patients Scheduled for Yttrium-90 Radioembolization: A Prospective Multicenter Trial. Videosurg. Other Miniinvasive Tech. 2020, 15, 503–510. [Google Scholar] [CrossRef]
- Agirrezabal, I.; Pereira Grillo Junior, L.S.; Nasser, F.; Brennan, V.K.; Bugano, D.; Galastri, F.L.; da-Silva, A.L.F.D.A.-; Shergill, S.; Da Motta-Leal-Filho, J.M. Cost-Effectiveness of Selective Internal Radiation Therapy with Y-90 Resin Microspheres for Intermediate- and Advanced-Stage Hepatocellular Carcinoma in Brazil. J. Med. Econ. 2023, 26, 731–741. [Google Scholar] [CrossRef]
- Pollock, R.F.; Colaone, F.; Guardiola, L.; Shergill, S.; Brennan, V.K. A Cost Analysis of SIR-Spheres Yttrium-90 Resin Microspheres versus Tyrosine Kinase Inhibitors in the Treatment of Unresectable Hepatocellular Carcinoma in France, Italy, Spain and the UK. J. Med. Econ. 2020, 23, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Marqueen, K.E.; Kim, E.; Ang, C.; Mazumdar, M.; Buckstein, M.; Ferket, B.S. Cost-Effectiveness Analysis of Selective Internal Radiotherapy With Yttrium-90 Versus Sorafenib in Locally Advanced Hepatocellular Carcinoma. JCO Oncol. Pract. 2021, 17, e266–e277. [Google Scholar] [CrossRef] [PubMed]
- Capacio, B.A.; Shankara Narayanan, J.S.; Vicente, D.A.; Liu, Y.; LaPorte, J.P.; Cox, B.F.; Jaroch, D.B.; Katz, S.C.; White, R.R. Pressure-Enabled Drug Delivery (PEDD) of a Class C TLR9 Agonist in Combination with Checkpoint Inhibitor Therapy in a Murine Pancreatic Cancer Model. Surgery 2023, 174, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Reinders, M.T.M.; Van Erpecum, K.J.; Smits, M.L.J.; Braat, A.J.A.T.; Bruijne, J.D.; Bruijnen, R.; Sprengers, D.; Man, R.A.D.; Vegt, E.; IJzermans, J.N.M.; et al. Safety and Efficacy of166 Ho Radioembolization in Hepatocellular Carcinoma: The HEPAR Primary Study. J. Nucl. Med. 2022, 63, 1891–1898. [Google Scholar] [CrossRef]
- Radosa, C.G.; Radosa, J.C.; Grosche-Schlee, S.; Zöphel, K.; Plodeck, V.; Kühn, J.P.; Kotzerke, J.; Hoffmann, R.-T. Holmium-166 Radioembolization in Hepatocellular Carcinoma: Feasibility and Safety of a New Treatment Option in Clinical Practice. Cardiovasc. Interv. Radiol. 2019, 42, 405–412. [Google Scholar] [CrossRef]
- Hendriks, P.; Rietbergen, D.D.D.; Van Erkel, A.R.; Coenraad, M.J.; Arntz, M.J.; Bennink, R.J.; Braat, A.E.; Crobach, S.; Van Delden, O.M.; Dibbets-Schneider, P.; et al. Adjuvant Holmium-166 Radioembolization after Radiofrequency Ablation in Early-Stage Hepatocellular Carcinoma Patients: A Dose-Finding Study (HORA EST HCC Trial). Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2085–2097. [Google Scholar] [CrossRef]
- d’Abadie, P.; Hesse, M.; Louppe, A.; Lhommel, R.; Walrand, S.; Jamar, F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021, 26, 3966. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; Smits, M.L.J.; Van Roekel, C.; Braat, A.J.A.T. Holmium-166 Microsphere Radioembolization of Hepatic Malignancies. Semin. Nucl. Med. 2019, 49, 237–243. [Google Scholar] [CrossRef]
- Smits, M.L.; Nijsen, J.F.; Van Den Bosch, M.A.; Lam, M.G.; Vente, M.A.; Mali, W.P.; Van Het Schip, A.D.; Zonnenberg, B.A. Holmium-166 Radioembolisation in Patients with Unresectable, Chemorefractory Liver Metastases (HEPAR Trial): A Phase 1, Dose-Escalation Study. Lancet Oncol. 2012, 13, 1025–1034. [Google Scholar] [CrossRef]
- Kühnel, C.; Köhler, A.; Brachwitz, T.; Seifert, P.; Gühne, F.; Aschenbach, R.; Freudenberg, R.; Freesmeyer, M.; Drescher, R. Clinical Results of Holmium-166 Radioembolization with Personalized Dosimetry for the Treatment of Hepatocellular Carcinoma. J. Pers. Med. 2024, 14, 747. [Google Scholar] [CrossRef]
- Lawhn-Heath, C.; Hope, T.A.; Martinez, J.; Fung, E.K.; Shin, J.; Seo, Y.; Flavell, R.R. Dosimetry in Radionuclide Therapy: The Clinical Role of Measuring Radiation Dose. Lancet Oncol. 2022, 23, e75–e87. [Google Scholar] [CrossRef] [PubMed]
- Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F.F.R. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef] [PubMed]
- Haste, P.; Tann, M.; Persohn, S.; LaRoche, T.; Aaron, V.; Mauxion, T.; Chauhan, N.; Dreher, M.R.; Johnson, M.S. Correlation of Technetium-99m Macroaggregated Albumin and Yttrium-90 Glass Microsphere Biodistribution in Hepatocellular Carcinoma: A Retrospective Review of Pretreatment Single Photon Emission CT and Posttreatment Positron Emission Tomography/CT. J. Vasc. Interv. Radiol. 2017, 28, 722–730.e1. [Google Scholar] [CrossRef]
- Hare, A.E.; Makary, M.S. Locoregional Approaches in Cholangiocarcinoma Treatment. Cancers 2022, 14, 5853. [Google Scholar] [CrossRef]
- Helmberger, T.; Golfieri, R.; Pech, M.; Pfammatter, T.; Arnold, D.; Cianni, R.; Maleux, G.; Munneke, G.; Pellerin, O.; Peynircioglu, B.; et al. Clinical Application of Trans-Arterial Radioembolization in Hepatic Malignancies in Europe: First Results from the Prospective Multicentre Observational Study CIRSE Registry for SIR-Spheres Therapy (CIRT). Cardiovasc. Interv. Radiol. 2021, 44, 21–35. [Google Scholar] [CrossRef]
- Alonso, J.; Casans, I.; González, F.; Fuster, D.; Rodríguez, A.; Sánchez, N.; Oyagüez, I.; Williams, A.; Espinoza, N. Economic Evaluations of Radioembolization with Yttrium-90 Microspheres in Liver Metastases of Colorectal Cancer: A Systematic Review. BMC Gastroenterol. 2023, 23, 181. [Google Scholar] [CrossRef]
- Pan, L.-H.; Zhao, C.; Ma, Y.-L. Is Y90 Radioembolization Superior or Comparable to Transarterial Chemoembolization for Treating Hepatocellular Carcinoma? Gastroenterology 2017, 152, 1627–1628. [Google Scholar] [CrossRef]
- Keane, G.; Lam, M.; De Jong, H. Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles. Semin. Interv. Radiol. 2021, 38, 542–553. [Google Scholar] [CrossRef]
- Azadinejad, H.; Farhadi Rad, M.; Shariftabrizi, A.; Rahmim, A.; Abdollahi, H. Optimizing Cancer Treatment: Exploring the Role of AI in Radioimmunotherapy. Diagnostics 2025, 15, 397. [Google Scholar] [CrossRef]
- Hsieh, C.; Laguna, A.; Ikeda, I.; Maxwell, A.W.P.; Chapiro, J.; Nadolski, G.; Jiao, Z.; Bai, H.X. Using Machine Learning to Predict Response to Image-Guided Therapies for Hepatocellular Carcinoma. Radiology 2023, 309, e222891. [Google Scholar] [CrossRef]
Selection Criterion | Details |
---|---|
Liver Function | Preserved hepatic function, typically characterized by Child–Pugh class A or early B, without significant portal hypertension or ascites [20]. |
Tumor Burden | Predominantly liver-dominant disease with minimal extrahepatic dissemination and no significant biliary obstruction [9]. |
Vascular Anatomy | Favorable hepatic arterial anatomy to enable precise tumor targeting and mitigate the risk of non-target radiation exposure. |
Performance Status | ECOG performance status of 0–2 [7]. |
Contraindications | Uncorrectable arteriovenous shunting, substantial pulmonary shunting, or severe renal or hepatic insufficiency [10]. |
Villalobos et al. [46] | Lee YB et al. [47] | Tai et al. [48] | |
---|---|---|---|
Patient Population | Advanced HCC patients receiving Y90 TARE with immune checkpoint inhibitors (nivolumab, atezolizumab/bevacizumab). | Advanced, unresectable HCC (Child–Pugh < 7, BCLC stage B or C). | Advanced HCC patients receiving Y90 TARE with nivolumab. |
Study Comparisons | Y90 TARE + immunotherapy vs. immunotherapy alone. | Y90 TARE + durvalumab. | Y90 TARE + nivolumab vs. historical control data. |
Key Findings | Median OS: 12.9 months for the entire cohort, 16.4 months for nivolumab, and 10.7 months for atezolizumab/bevacizumab). | Median PFS: 6.9 months (95% CI, 5.4–15.2). ORR: 83.3% (95% CI, 62.6–95.3). | ORR: 30.6% (95% CI, 16.4–48.1), DCR: 61.1%, median PFS: 3.6 months, OS: 16.9 months. Supports TARE-mediated immune modulation. |
Safety Data | Well tolerated; main AEs included fatigue, hepatic transaminase elevations, and GI disturbances. Grade 3 + toxicities < 10%. | 47.8% (n = 11) experienced any-grade treatment-related events. 8.7% (n = 2) experienced grade 3 treatment-related adverse events (neutropenia and fever). No serious events reported. | Immune-mediated toxicities: dermatologic reactions (10%), hepatic inflammation (7%). RILD in <5%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fite, E.L.; Makary, M.S. Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma. Cancers 2025, 17, 1494. https://doi.org/10.3390/cancers17091494
Fite EL, Makary MS. Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma. Cancers. 2025; 17(9):1494. https://doi.org/10.3390/cancers17091494
Chicago/Turabian StyleFite, Elliott L., and Mina S. Makary. 2025. "Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma" Cancers 17, no. 9: 1494. https://doi.org/10.3390/cancers17091494
APA StyleFite, E. L., & Makary, M. S. (2025). Advances and Emerging Techniques in Y-90 Radioembolization for Hepatocellular Carcinoma. Cancers, 17(9), 1494. https://doi.org/10.3390/cancers17091494