Targeted Therapies in Epithelial Ovarian Cancer
Abstract
:1. Introduction
2. Antiangiogenic Therapy in Ovarian Cancer
2.1. Bevacizumab (Avastin)
Regimen | Dose | Patient Number | Platinum sensitivity (%) | Response by RECIST (%) | Median Survival (months) | ||
---|---|---|---|---|---|---|---|
Partial Response | Stable Disease | PFS | OS | ||||
Bevacizumab Cannistra et al., 2007[29] | 15 mg/kg q3w | 44 | 0 | 16 | 61 | 4.4 | 10.7 |
Bevacizumab Burger et al., 2007 [32] | 15 mg/kg q3w | 62 | 58 | 21 (CRR) | 52 | 4.7 | 17 |
Bevacizumab + cyclophosphamide Garcia et al., 2008 [33] | 10 mg/kg q2w 50 mg/d | 70 | 60 | 24 | 63 | 7.2 | 16.9 |
Bevacizumab + Cyclophosphamide Chura et al., 2007 [39] | 10 mg/kg q2w 50 mg/d | 15 | 0 | 53 (13 CRR) | 20 | 3.9 | NR |
Bevacizumab + carboplatin + paclitaxel Micha et al., 2007 [40] | 15 mg/kg q3w AUC 5 q3w 175 mg/m2 q3w | 20 | First line | 80 (CRR) | 5 | NR | NR |
Bevacizumab + carboplatin + paclitaxel Campos et al., 2007 [41] | 15 mg/kg q3w AUC 5 q3w 175 mg/m2 q3w | 58 | First line | 75 | NR | 11 | NR |
Aflibercept Tew et al., 2007 [43] | 2 or 4 mg/kg q2w | 162 | 0 | 11 | NR | NR | NR |
2.1.1. Single Agent Bevacizumab in Patients with Recurrent Ovarian Cancer
2.1.2. Bevacizumab in Combination with Chemotherapy in Patients with Recurrent Ovarian Cancer
2.1.3. Bevacizumab combination with Carboplatin and Paclitaxel in the first-line setting
2.2. Other anti-VEGF Agents
2.2.1. Aflibercept
2.2.2. Receptor Tyrosine Kinase Inhibitors
Regimen | Dose | Patient Number | Platinum Resistant (%) | Efficacy (%) (CR+PR+SD) |
---|---|---|---|---|
Sunitinib Biagi et al., 2008 [44] | 50 mg o.d. 28 days, 6-weekly cycle | 17 | NR | 71 |
Cediranib Matulonis et al., 2008 [45] | 45 mg o.d. reduced to 30 mg o.d. (n=18) | 29 (27 evaluable) | 57 | 30 |
Sorafenib Matei et al., 2008 [46] | 400 mg b.i.d. | 73 (59 evaluable) | NR | 37 |
Pazopanib Friedlander et al., 2007 [47] | 800 mg o.d. | 17 (15 evaluable) | 26 | 27 47 (CA-125 response) |
Imatinib Coleman et al., 2006 [48] | 600 mg o.d. | 28 | 100 | 33 |
Imatinib Posadas et al., 2007 [49] | 400 mg b.i.d. 16 patients dosed at 600 mg o.d | 23 | NS | 9 |
Cediranib Hirte et al., 2008 [50] | 45 mg o.d. reduced to 30 mg o.d. (n=8) and 20 mg o.d. (n=8) | 60 | 57 | 70 |
Regimen | Reference | Toxicities (CTCAE) |
---|---|---|
Bevacizumab | Cannistra et al., 2007 [29] | 16% proteinuria, 11% GIP, 9% HT, 7% ATE, 5% pain, 5% fatigue |
Bevacizumab | Burger et al., 2007 [32] | 10% HT, 0% GIP |
Bevacizumab + cyclophosphamide | Garcia et al., 2008 [33] | 11% HT, 16% proteinurea, 6% GIP |
Bevacizumab + carboplatin + paclitaxel (first line) | Micha et al., 2007 [40] | 48% NP, 10% HT, 10% VTE (1 prior to bevacizumab, 1 with portacath), 10% neuropathy |
Bevacizumab + carboplatin + paclitaxel | Campos et al 2007 [51] | 22% NP, 16% VTE, 4% HT, 8% pain, 3% GIP |
Aflibercept | Tew et al 2007 [43] | 18% HT, 1% GIP |
Cediranib | Matulonis et al., 2008 [45] | HT (45%), fatigue (17%), diarrhoea (10%) |
Imatinib | Coleman et al., 2006 [48] | Fatigue (17%), Nausea and vomiting (7%) Ascites (7%) |
Imatinib | Posadas et al., 2007 [49] | 26% ascites, 17% pleural effusion, 13% fatigue, 13% cytopenia |
Cediranib | Hirte et al., 2008 [50] | HT(33%), fatigue (20%) |
Sunitinib | Biagi et al., 2008 [44] | Fatigue, hand – foot syndrome, neutropenia, Thrombocytopenia, pleural effusion. |
Sorafenib | Matei et al., 2008 [46] | Rash (17%), metabolic, (15%), gastrointestinal (4%) |
Pazopanib | Friedlander et al., 2007 [47] | Diarrhoea (12%), ALT elevation (12%) |
Bevacizumab + sorafenib | Azad et al., 2008 [51] | 26% HT, 8% GIP, 5% proteinurea, 11% LFT abnormality |
2.3. Combination Anti-VEGF and Multi-target Therapy
2.4. Vascular Disrupting Agents
2.5. Safety Profile of Antiangiogenic Agents
3. Epidermal Growth Factor Receptor
Reference | Regimen | Patient Number | Phase | RR (%) | SD (%) | PFS (mo) | Side effects- G3/4 toxicity |
---|---|---|---|---|---|---|---|
A: Anti-EGFR Monoclonal Antibodies: Anti-Human Epidermal Growth Factor Receptor 2 (Her-2)/neu | |||||||
Bookman et al., 2003 [75] | Trastuzumab (4 mg/kg loading, 2 mg/kg q7d) | 41 | II | 7.3 | 39 | 2 | Gastrointestinal, 6%; neuropathy, 9% and fatigue, 8% |
B. Anti-EGFR Monoclonal Antibodies: Anti-Human Epidermal Growth Factor Receptor 1 (anti ErbB1/EGFR/HER1) | |||||||
Agus et al., 2005 [119] | Pertuzumab (0.5–15 mg/kg q3w) | 21 (3 ovarian cancer) | I | 10 (33) | 29 (33) | NS (10) | Abdominal pain 14%, dyspnoea 10% , vomiting 5%, nausea 5%, diarrhoea 5% |
Seiden et al., 2007 [68] | Matuzumab/EMD 72000 800 mg q7d | 37 | II | 0 | 16 | 54 | Nausea 6%, headache 3%, abdominal pain 3%, diarrhoea 3%, vomiting 3%, myalgia 3%, acute pancreatitis 3%, intestinal obstruction 3%, |
Aghajanian et al., 2005 [71] | Cetuximab 400 mg/m2 loading then 250 mg/m2 q7d (+ paclitaxel 175 mg/m2 and carboplatin AUC6 q3w) | 17 Chemo-naïve, stage III-IV | II | 87 (uCR) | NR | Febrile neutropenia (12%), diarrhea (6%), and hypersensitivity (6%) | |
Finkler et al., 2001 [70] | Erlotinib 150 mg o.d. | 34 refractory to taxane- and/or platinum-therapy | II | 9 | 44 (U) | NR | Acneiform rash 88%, diarrhea 4%. |
Vasey et al., 2004 [120] | Erlotinib 50–150 mg o.d. (+docetaxel 75 mg/m2 and carboplatin AUC5 q3w) | 39 with surgical cytoreduction but chemo-naïve, 18 evaluable | Ib | 61 (18 evaluable patients) | NR | NR | Skin rash 33%, diarrhea 8%, Plantar-palmer erythro-dysesthesia (PPE) 8% |
Blank et al., 2006 [121] | Erlotinib 150 mg o.d. (paclitaxel 175 mg/m2 and carboplatin AUC6 q3w) | 47 (29 optimal cytoreduction [Op], 18 sub-optimal [S]), all chemo-naïve | II | 53 had pCR in the Op group, 28had good response in the S group | NR | NR | skin rash (grade was not reported) |
Slomovitz et al., 2006 [122] | Gefitinib 250 mg o.d.(+ topotecan 2–4 mg/m2 d1, 8, 15 q28d) | 13 (measurable disease after platinum + paclitaxel) | I | 0 (11 evaluable patients) | 36 | NR | Thrombocytopenia 17% |
Hariprasad et al., 2006 [123] | Gefitinib 250 mg o.d. | 32 advanced and recurrent epithelial ovarian carcinoma | II | NR | NR | 56 (at 6 months) | Skin rash 16 %, |
Mavroudis et al., 2004 [124] | Gefitinib 250 mg o.d.(+ vinorelbine 20–25 mg/m2 and oxaliplatin 40–50 mg/m2) | 33 recurrent or refractory ovarian cancer | I/II | 48 | NR | 4.1 (CDDP-sensitive 8.6 (CDDP-resistant) | Neutropenia 48%, febrile neutropenia 12%, anemia 3%, diarrhea 9%, neurotoxicity 3%, rash 3% and transaminitis 3%. |
Krasner et al., 2005 [125] | Anastrazole 1 mg o.d.and gefitinib 250 mg o.d. | 35, asymptomatic recurrent mullerian cancer | II | 4 (CR), (23 evaluable patients) | 61 | NR | Rash 3%, diarrhea 3% |
Minami et al., 2004 [126] | Lapatinib 900–1800 mg/day Dual ErbB1 (EGFR) and ErbB2 (HER2) TKI | 24, patients with solid tumours including cervical and ovarian cancers | I | 8 | 50 | NR | Diarrhea 33%, elevation of GGT 33%.% |
Campos et al., 2007 [127] | Canertinib 50 or 200 mg o.d for 21 days q28d Pan-ErbB TKI | 105 Platinum resistant patients | II | 0 | 28 (50 mg) 34 (200 mg) | 0 and 9 (1-year PFS in 50 and 200 mg dose respectively) | G2/3 toxicities: diarrhea 85%, stomatitis 69%, rash 58%. |
4. PARP Inhibitors
5. PI3K-PTEN-Akt-mTOR Pathway
5.1. PI3K-PTEN-Akt-mTOR Aberrations in Ovarian Cancer
6. Immunologic Agents
7. Conclusions
References
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer statistics, 2008. CA Cancer J. Clin. 2008, 58, 71–96. [Google Scholar] [CrossRef]
- Dinh, P.; Harnett, P.; Piccart-Gebhart, M.J.; Awada, A. New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. Crit. Rev. Oncol. Hematol. 2008, 67, 103–112. [Google Scholar] [CrossRef]
- Greenlee, R.T.; Hill-Harmon, M.B.; Murray, T.; Thun, M. Cancer statistics, 2001. CA Cancer J. Clin. 2001, 51, 15–36. [Google Scholar] [CrossRef]
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M; Baergen, R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar]
- Biagi, J.J.; Eisenhauer, E.A. Systemic treatment policies in ovarian cancer: the next 10 years. Int. J. Gynecol. Cancer 2003, 13 (Suppl 2), 231–240. [Google Scholar]
- Sandercock, J.; Parmar, M.K.; Torri, V.; Qian, W. First-line treatment for advanced ovarian cancer: paclitaxel, platinum and the evidence. Br. J. Cancer 2002, 87, 815–824. [Google Scholar] [CrossRef]
- Cannistra, S.A. Cancer of the ovary. N. Engl. J. Med. 2004, 351, 2519–2529. [Google Scholar] [CrossRef]
- Agarwal, R.; Kaye, S.B. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 2003, 3, 502–516. [Google Scholar] [CrossRef]
- Demetri, G.D.; von Mehren, M.; Blanke, C.D.; van den Abbeele, A.D.; Eisenberg, B.; Roberts, P.J.; Heinrich, M.C.; Tuveson, D.A.; Singer, S.; Janicek, M.; et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002, 347, 472–480. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar]
- Zondor, S.D.; Medina, P.J. Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother. 2004, 38, 1258–1264. [Google Scholar] [CrossRef]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef]
- Sandler, A.; Herbst, R. Combining Targeted Agents: Blocking the Epidermal Growth Factor and Vascular Endothelial Growth Factor Pathways. Clin. Cancer Res. 2006, 12, 4421–4425s. [Google Scholar] [CrossRef]
- Llovet, J.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Raoul, J.; Zeuzern, S.; Poulin-Costello, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib improves survival in advanced Hepatocellular Carcinoma (HCC): Result of a Phase III randomised placebo-controlled trial (SHARP trial). J. Clin. Oncol. 2007, 25 (18S), Abstr. LBA1. [Google Scholar]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef]
- Martin, L.; Schilder, R. Novel approaches in advancing the treatment of epithelial ovarian cancer: the role of angiogenesis inhibition. J. Clin. Oncol. 2007, 25, 2894–901. [Google Scholar] [CrossRef]
- Stone, P.J.; Goodheart, M.J.; Rose, S.L.; DeYoung, B.R.; Buller, R.E. The influence of microvessel density on ovarian carcinogenesis. Gynecol. Oncol. 2003, 90, 566–571. [Google Scholar] [CrossRef]
- Goodheart, M.J.; Ritchie, J.M.; Rose, S.L.; Fruehauf, J.P.; DeYoung, B.R.; Buller, R.E. The relationship of molecular markers of p53 function and angiogenesis to prognosis of stage I epithelial ovarian cancer. Clin. Cancer Res. 2005, 11, 3733–3742. [Google Scholar] [CrossRef]
- Hefler, L.A.; Mustea, A.; Konsgen, D.; Concin, N.; Tanner, B.; Strick, R.; Heinze, G.; Grimm, C.; Schuster, E.; Tempfer, C.; et al. Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clin. Cancer Res. 2007, 13, 898–901. [Google Scholar] [CrossRef]
- Byrne, A.T.; Ross, L.; Holash, J.; Nakanishi, M.; Hu, L.; Hofmann, J.I.; Yancopoulos, G.D.; Jaffe, R.B. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res. 2003, 9, 5721–5728. [Google Scholar]
- Schumacher, J.J.; Dings, R.P.; Cosin, J.; Subramanian, I.V.; Auersperg, N.; Ramikrishnan, S. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res. 2007, 67, 3683–3690. [Google Scholar] [CrossRef]
- Spannuth, W.A.; Sood, A.K.; Coleman, R.L. Angiogenesis as a strategic target for ovarian cancer therapy. Nat. Clin. Pract. Oncol. 2008, 5, 194–204. [Google Scholar] [CrossRef]
- Rosa, D.D.; Clamp, A.R.; Collinson, F.; Jayson, G.C. Antiangiogenic therapy for ovarian cancer. Curr. Opin. Oncol. 2007, 19, 497–505. [Google Scholar] [CrossRef]
- Mesiano, S.; Ferrara, N.; Jaffe, R.B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol. 1998, 153, 1249–1256. [Google Scholar] [CrossRef]
- Hu, L.; Hofmann, J.; Lu, Y.; Mills, G.B.; Jaffe, R.B. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in vitro and in vivo ovarian cancer models. Cancer Res. 2002, 62, 1087–1092. [Google Scholar]
- Mabuchi, S.; Terai, Y.; Morishige, K.; Tanabe-Kimura, A.; Sasaki, H.; Kanemura, M.; Tsunetoh, S.; Tanaka, Y.; Sakata, M.; Burger, R.A.; et al. Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clin. Cancer Res. 2008, 14, 7781–7789. [Google Scholar] [CrossRef]
- Cannistra, S.A.; Matulonis, U.A.; Penson, R.T.; Hambleton, J.; Dupont, J.; Mackey, H.; Douglas, J.; Burger, R.A.; Armstrong, D.; Wenham, R.; et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol. 2007, 25, 5180–5186. [Google Scholar] [CrossRef]
- Numnum, T.M.; Rocconi, R.P.; Whitworth, J.; Barnes, M.N. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol. Oncol. 2006, 102, 425–428. [Google Scholar] [CrossRef]
- Monk, B.J.; Han, E.; Josephs-Cowan, C.A.; Pugmire, G.; Burger, R.A. Salvage bevacizumab (rhuMAB VEGF)-based therapy after multiple prior cytotoxic regimens in advanced refractory epithelial ovarian cancer. Gynecol. Oncol. 2006, 102, 140–144. [Google Scholar] [CrossRef]
- Burger, R.A.; Sill, M.W.; Monk, B.J.; Greer, B.E.; Sorosky, J.I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 5165–5171. [Google Scholar] [CrossRef]
- Garcia, A.A.; Hirte, H.; Fleming, G.; Yang, D.; Tsao-Wei, D.D.; Roman, L.; Groshen, S.; Swenson, S.; Markland, F.; Gandara, D.; et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J. Clin. Oncol. 2008, 26, 76–82. [Google Scholar] [CrossRef]
- Wright, J.D.; Secord, A.A.; Numnum, T.M.; Rocconi, R.P.; Powell, M.A.; Berchuck, A.; Alvarez, R.D.; Gibb, R.K.; Trinkaus, K.; Rader, J.S.; et al. A multi-institutional evaluation of factors predictive of toxicity and efficacy of bevacizumab for recurrent ovarian cancer. Int. J. Gynecol. Cancer 2008, 18, 400–406. [Google Scholar] [CrossRef]
- Fukumura, D.; Jain, R.K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J. Cell Biochem. 2007, 101, 937–949. [Google Scholar] [CrossRef]
- Hanahan, D.; Bergers, G.; Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 2000, 105, 1045–1047. [Google Scholar] [CrossRef]
- Klement, G.; Baruchel, S.; Rak, J.; Man, S.; Clark, K.; Hicklin, D.J.; Bohlen, P.; Kerbel, R.S. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 2000, 105, R15–R24. [Google Scholar] [CrossRef]
- Kamat, A.A.; Kim, T.J.; Landen, C.N., Jr.; Lu, C.; Han, L.Y.; Lin, Y.G.; Merritt, W.M.; Thaker, P.H.; Gershenson, D.M.; Bischoff, F.Z.; et al. Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res. 2007, 67, 281–288. [Google Scholar] [CrossRef]
- Chura, J.C.; van Iseghem, K.; Downs, L.S., Jr.; Carson, L.F.; Judson, P.L. Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol. Oncol. 2007, 107, 326–330. [Google Scholar] [CrossRef]
- Micha, J.P.; Goldstein, B.H.; Rettenmaier, M.A.; Genesen, M.; Graham, C.; Bader, K.; Lopez, K.L.; Nickle, M.; Brown, J.V., III. A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. Int. J. Gynecol. Cancer 2007, 17, 771–776. [Google Scholar]
- Campos, S.M.; Dizon, D.S.; Cannistra, S.A.; Roche, M.; Krasner, C.N.; Berlin, S.T.; Horowitz, N.S.; DiSilvestro, P.; Matulonis, U.A.; Penson, R.T. Safety of maintenance bevacizumab after first-line chemotherapy for advanced ovarian and müllerian cancers. J. Clin. Oncol. 2007, 25 (18S), Abstr. 5517. [Google Scholar]
- Kabbinavar, F.; Hurwitz, H.I.; Fehrenbacher, L.; Meropol, N.J.; Novotny, W.F.; Lieberman, G.; Griffing, S.; Bergsland, E. Phase II, Randomized Trial Comparing Bevacizumab Plus Fluorouracil (FU)/Leucovorin (LV) With FU/LV Alone in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2003, 21, 60–65. [Google Scholar] [CrossRef]
- Tew, W.P.; Colombo, N.; Ray-Coquard, I.; Oza, A.; del Campo, J.; Scambia, G.; Spriggs, D. VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): Preliminary results of a randomized, multicenter phase II study. J. Clin. Oncol. 2007, 25 (18S), Abstr. 5508. [Google Scholar]
- Biagi, J.J.; Oza, A.M.; Grimshaw, R.; Ellard, S.L.; Lee, U.; Sederias, J.; Ivy, S.P.; Eisenhauer, E.A. A phase II study of sunitinib (SU11248) in patients (pts) with recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma - NCIC CTG IND 185. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5522. [Google Scholar]
- Matulonis, U.A.; Berlin, S.T.; Krasner, C.N.; Tyburski, K.; Lee, J.; Roche, M.; Ivy, S.P.; Lenahan, C.; King, M.; Penson, R.T. Cediranib (AZD2171) is an active agent in recurrent epithelial ovarian cancer. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5501. [Google Scholar]
- Matei, D.; Sill, M.W.; DeGeest, K.; Bristow, R.E. Phase II trial of sorafenib in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): A Gynecologic Oncology Group (GOG) study. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5537. [Google Scholar]
- Friedlander, M.; Hancock, K.C.; Benigno, B.; Rischin, D.; Messing, M.; Stringer, C.A.; Tay, E.H.; Kathman, S.; Matthys, G.; Lager, J.J. Pazopanib (GW786034) is active in women with advanced epithelial ovarian, fallopian tube and peritoneal cancers: Initial results of a phase II study. J. Clin. Oncol. 2007, 25 (18S), Abstr. 5561. [Google Scholar]
- Coleman, R.L.; Broaddus, R.R.; Bodurka, D.C.; Wolf, J.K.; Burke, T.W.; Kavanagh, J.J.; Levenback, C.F.; Gershenson, D.M. Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecol. Oncol. 2006, 101, 126–131. [Google Scholar] [CrossRef]
- Posadas, E.M.; Kwitkowski, V.; Kotz, H.L.; Espina, V.; Minasian, L.; Tchabo, N.; Premkumar, A.; Hussain, M.M.; Chang, R.; Steinberg, S.M.; et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer 2007, 110, 309–317. [Google Scholar] [CrossRef]
- Hirte, H.W.; Vidal, L.; Fleming, G.F.; Sugimoto, A.K.; Morgan, R.J.; Biagi, J.J.; Wang, L.; McGill, S.; Ivy, S.P.; Oza, A.M. A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: Final results of a PMH, Chicago and California consortia trial. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5521. [Google Scholar]
- Azad, N.S.; Posadas, E.M.; Kwitkowski, V.E.; Steinberg, S.M.; Jain, L.; Annunziata, C.M.; Minasian, L.; Sarosy, G.; Kotz, H.L.; Premkumar, A.; et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J. Clin. Oncol. 2008, 26, 3709–3714. [Google Scholar] [CrossRef]
- Sandler, A.; Herbst, R. Combining targeted agents: blocking the epidermal growth factor and vascular endothelial growth factor pathways. Clin. Cancer Res. 2006, 12, 4421s–4425s. [Google Scholar] [CrossRef]
- Nimeiri, H.S.; Oza, A.M.; Morgan, R.J.; Friberg, G.; Kasza, K.; Faoro, L.; Salgia, R.; Stadler, W.M.; Vokes, E.E.; Fleming, G.F. Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: a trial of the Chicago, PMH, and California Phase II Consortia. Gynecol. Oncol. 2008, 110, 49–55. [Google Scholar] [CrossRef]
- Hecht, J.R.; Mitchell, E.; Chidiac, T.; Scroggin, C.; Hagenstad, C.; Spigel, D.; Marshall, J.; Cohn, A.; McCollum, D.; Stella, P; et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 2009, 27, 672–680. [Google Scholar]
- Nathan, P.D.; Judson, I.; Padhani, A.; Harris, A.; Carden, C.P.; Smythe, J.; Collins, D.; Leach, M.; Walicke, P.; Rustin, G.J. A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 3550. [Google Scholar]
- Shaked, Y.; Ciarrocchi, A.; Franco, M.; Lee, C.R.; Man, S.; Cheung, A.M.; Hicklin, D.J.; Chaplin, D.; Foster, F.S.; Benezra, R.; et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006, 313, 1785–1787. [Google Scholar] [CrossRef]
- Gridelli, C.; Rossi, A.; Maione, P.; Rossi, E.; Castaldo, V.; Sacco, P.C.; Colantuoni, G. Vascular disrupting agents: a novel mechanism of action in the battle against non-small cell lung cancer. Oncologist 2009, 14, 612–620. [Google Scholar] [CrossRef]
- Zweifel, M.; Jayson, G.; Reed, N.; Osborne, R.; Hassan, B.; Shrreves, G.; Poupard, L.; Walicke, A.; Balkissoon, J.; Chaplin, D.; et al. Combretastatin A-4 phosphate (CA4P) carboplatin and paclitaxel in patients with platinum-resistant ovarian cancer: Final phase II trial results. J. Clin. Oncol. 2009, 27 (15S), Abstr. 5502. [Google Scholar]
- Hapani, S.; Chu, D.; Wu, S. Risk of gastrointestinal perforation in patients with cancer treated with bevacizumab: a meta-analysis. Lancet Oncol. 2009, 10, 559–568. [Google Scholar] [CrossRef]
- Han, E.S.; Monk, B.J. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol. Oncol. 2007, 105, 3–6. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, S.; Dahut, W.L.; Parikh, C.R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. Am. J. Kidney Dis. 2007, 49, 186–193. [Google Scholar] [CrossRef]
- Yang, J.C.; Haworth, L.; Sherry, R.M.; Hwu, P.; Schwartzentruber, D.J.; Topalian, S.L.; Steinberg, S.M.; Chen, H.X.; Rosenberg, S.A. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 2003, 349, 427–434. [Google Scholar] [CrossRef]
- Veronese, M.L.; Mosenkis, A.; Flaherty, K.T.; Gallagher, M.; Stevenson, J.P.; Townsend, R.R.; O'Dwyer, P.J. Mechanisms of hypertension associated with BAY 43-9006. J. Clin. Oncol. 2006, 24, 1363–1369. [Google Scholar] [CrossRef]
- Alper, O.; Bergmann-Leitner, E.S.; Bennett, T.A.; Hacker, N.F.; Stromberg, K.; Stetler-Stevenson, W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Nat. Cancer Inst. 2001, 93, 1375–1384. [Google Scholar] [CrossRef]
- Skirnisdottir, I.; Sorbe, B.; Seidal, T. The growth factor receptors HER-2/neu and EGFR, their relationship, and their effects on the prognosis in early stage (FIGO I-II) epithelial ovarian carcinoma. Int. J. Gynecol. Cancer 2001, 11, 119–129. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 2003, 21, 2787–2799. [Google Scholar] [CrossRef]
- Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1995, 1, 1311–1318. [Google Scholar]
- Seiden, M.V.; Burris, H.A.; Matulonis, U.; Hall, J.B.; Armstrong, D.K.; Speyer, J.; Weber, J.D.; Muggia, F. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol. Oncol. 2007, 104, 727–731. [Google Scholar] [CrossRef]
- Calvo, E.; Tolcher, A.W.; Hammond, L.A.; Patnaik, A.; de Bono, J.S.; Eiseman, I.A.; Olson, S.C.; Lenehan, P.F.; McCreery, H.; Lorusso, P.; et al. Administration of CI-1033, an Irreversible Pan-erbB Tyrosine Kinase Inhibitor, Is Feasible on a 7-Day On, 7-Day Off Schedule. Clin. Cancer Res. 2004, 10, 7112–7120. [Google Scholar] [CrossRef]
- Finkler, N.; Gordon, A.; Crozier, M.; Edwards, R.; Figueroa, J.; Garcia, A.; Hainsworth, J.; Irwin, D.; Silberman, S.; Allen, L.; et al. Phase 2 Evaluation of OSI-774, a Potent Oral Antagonist of the EGFR-TK in Patients with Advanced Ovarian Carcinoma. J. Clin. Oncol. 2001, 20, (Proc ASCO 2001). Abstr. 831. [Google Scholar]
- Aghajanian, C.; Sabbatini, P.; Derosa, F.; Gerst, S.; Spriggs, D.R.; Dupont, J.; Hensley, M.L.; Pezzulli, S.; Konner, J.; Schilder, R.J. A Phase II Study of Cetuximab/Paclitaxel/Carboplatin for the Initial Treatment of Advanced Stage Ovarian, Primary Peritoneal, and Fallopian Tube Cancer. J. Clin. Oncol. 2005, 23 (16S), Abstr. 2047. [Google Scholar]
- Amado, R.G.; Wolf, M.; Peeters, M.; van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 1626–1634. [Google Scholar] [CrossRef]
- Shih, I.M.; Kurman, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol 2004, 164, 1511–1518. [Google Scholar] [CrossRef]
- Schilder, R.J.; Sill, M.W.; Chen, X.; Darcy, K.M.; Decesare, S.L.; Lewandowski, G.; Lee, R.B.; Arciero, C.A.; Wu, H.; Godwin, A.K. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin. Cancer Res. 2005, 11, 5539–5548. [Google Scholar] [CrossRef]
- Bookman, M.A.; Darcy, K.M.; Clarke-Pearson, D.; Boothby, R.A.; Horowitz, I.R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol. 2003, 21, 283–90. [Google Scholar] [CrossRef]
- Gordon, M.S.; Matei, D.; Aghajanian, C.; Matulonis, U.A.; Brewer, M.; Fleming, G.F.; Hainsworth, J.D.; Garcia, A.A.; Pegram, M.D.; Schilder, R.J.; et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J. Clin. Oncol. 2006, 24, 4324–4332. [Google Scholar] [CrossRef]
- Amler, L.; Makhija, S.; Januario, T.; Matulonis, U.A.; Strauss, A.; Dizon, D.S.; Sliwkowski, M.X.; Dolezal, M.; Tong, B.; Paton, V. HER pathway gene expression analysis in a phase II study of pertuzumab + gemcitabine vs. gemcitabine + placebo in patients with platinum-resistant epithelial ovarian cancer. J. Clin. Oncol. 2008, 26 (15S), Abstr. 5522. [Google Scholar]
- Schreiber, V.; Dantzer, F.; Ame, J.C.; de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006, 7, 517–528. [Google Scholar] [CrossRef]
- Ame, J.C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. Bioessays 2004, 26, 882–893. [Google Scholar] [CrossRef]
- Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434, 913–917. [Google Scholar] [CrossRef]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef]
- Hay, T.; Jenkins, H.; Sansom, O.J.; Martin, N.M.; Smith, G.C.; Clarke, A.R. Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy. Cancer Res. 2005, 65, 10145–10148. [Google Scholar] [CrossRef]
- Fong, P.C.; Spicer, J.; Reade, S.; Reid, A.; Vidal, L.; Schellens, J.H.; Tutt, A.; Harris, P.A.; Kaye, S.; DeBono, J.S. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of Poly ADP-Ribose Polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours. J. Clin. Oncol. 2006, 24 (18S), Abstr. 3022. [Google Scholar]
- Tutt, A.N.; Lord, C.J.; McCabe, N.; Farmer, H.; Turner, N.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 139–148. [Google Scholar] [CrossRef]
- Fong, P.C.; Boss, D.S.; Carden, C.P.; Roelvink, M.; De Greve, J.; Gourley, C.M.; Carmichael, J.; De Bono, J.S.; Schellens, J.H.; Kaye, S.B. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a phase I study. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5510. [Google Scholar]
- Audeh, M.W.; Penson, R.T.; Friedlander, M.; Powell, B.; Bell-McGuinn, K.M.; Scott, C.; Weitzel, J.N.; Carmichael, J.; Tutt, A. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J. Clin. Oncol. 2009, 27 (15S), Abstr. 5500. [Google Scholar]
- Turner, N.; Tutt, A.; Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer 2004, 4, 814–819. [Google Scholar] [CrossRef]
- Press, J.Z.; De Luca, A.; Boyd, N.; Young, S.; Troussard, A.; Ridge, Y.; Kaurah, P.; Kalloger, S.E.; Blood, K.A.; Smith, M.; et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008, 8, 17. [Google Scholar] [CrossRef]
- Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 2009, 27, 2278–2287. [Google Scholar] [CrossRef]
- Shayesteh, L.; Lu, Y.; Kuo, W.L.; Baldocchi, R.; Godfrey, T.; Collins, C.; Pinkel, D.; Powell, B.; Mills, G.B.; Gray, J.W. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 1999, 21, 99–102. [Google Scholar] [CrossRef]
- Campbell, I.G.; Russell, S.E.; Choong, D.Y.; Montgomery, K.G.; Ciavarella, M.L.; Hooi, C.S.; Cristiano, B.E.; Pearson, R.B.; Phillips, W.A. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004, 64, 7678–7681. [Google Scholar] [CrossRef]
- Obata, K.; Morland, S.J.; Watson, R.H.; Hitchcock, A.; Chenevix-Trench, G.; Thomas, E.J.; Campbell, I.G. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998, 58, 2095–2097. [Google Scholar]
- Wolf, J.; Slomovitz, B.M. Novel biologic terapies for the treatment of endometrial cancer. Int. J. Gynecol. Cancer 2005, 15, 411. [Google Scholar] [CrossRef]
- Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005, 8, 179–83. [Google Scholar] [CrossRef]
- Altomare, D.A.; Wang, H.Q.; Skele, K.L.; De Rienzo, A.; Klein-Szanto, A.J.; Godwin, A.K.; Testa, J.R. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004, 23, 5853–5857. [Google Scholar] [CrossRef]
- Trinh, X.B.; Tjalma, W.A.; Vermeulen, P.B.; van den Eynden, G.; van der Auwera, I.; van Laere, S.J.; Helleman, J.; Berns, E.M.; Dirix, L.Y.; van Dam, P.A. The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. Br. J. Cancer 2009, 100, 971–978. [Google Scholar] [CrossRef]
- Xing, H.; Weng, D.; Chen, G.; Tao, W.; Zhu, T.; Yang, X.; Meng, L.; Wang, S.; Lu, Y.; Ma, D. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett. 2008, 261, 108–119. [Google Scholar] [CrossRef]
- Fraser, M.; Bai, T.; Tsang, B.K. Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int. J. Cancer 2008, 122, 534–546. [Google Scholar] [CrossRef]
- Mondesire, W.H.; Jian, W.; Zhang, H.; Ensor, J.; Hung, M.C.; Mills, G.B.; Meric-Bernstam, F. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res. 2004, 10, 7031–7042. [Google Scholar] [CrossRef]
- Thomassin-Naggara, I.; Darai, E.; Cuenod, C.A.; Rouzier, R.; Callard, P.; Bazot, M. Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J. Magn. Reson. Imaging 2008, 28, 111–120. [Google Scholar] [CrossRef]
- Bast, R.C., Jr.; Klug, T.L.; St John, E.; Jenison, E.; Niloff, J.M.; Lazarus, H.; Berkowitz, R.S.; Leavitt, T.; Griffiths, C.T.; Parker, L.; et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 1983, 309, 883–887. [Google Scholar] [CrossRef]
- Berek, J.S.; Schultes, B.C.; Nicodemus, C.F. Biologic and immunologic therapies for ovarian cancer. J. Clin. Oncol. 2003, 21 (10S), 168s–174s. [Google Scholar]
- Madiyalakan, R.; Sykes, T.R.; Dharampaul, S.; Sykes, C.J.; Baum, R.P.; Hör, G.; Noujaim, A.A. Antiidiotype induction therapy: evidence for the induction of immune response through the idiotype network in patients with ovarian cancer after administration of anti-CA125 murine monoclonal antibody B43.13. Hybridoma 1995, 14, 199–203. [Google Scholar] [CrossRef]
- Ehlen, T.G.; Hoskins, P.J.; Miller, D.; Whiteside, T.L.; Nicodemus, C.F.; Schultes, B.C.; Swenerton, K.D. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. Int. J. Gynecol.Cancer 2005, 15, 1023–1034. [Google Scholar] [CrossRef]
- Gordon, A.N.; Schultes, B.C.; Gallion, H.; Edwards, R.; Whiteside, T.L.; Cermak, J.M.; Nicodemus, C.F. CA125- and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients. Gynecol. Oncol 2004, 94, 340–351. [Google Scholar] [CrossRef]
- Berek, J.S.; Taylor, P.T.; Gordon, A.; Cunningham, M.J.; Finkler, N.; Orr, J., Jr.; Rivkin, S.; Schultes, B.C.; Whiteside, T.L.; Nicodemus, C.F. Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J. Clin. Oncol. 2004, 22, (17). 3507–3516. [Google Scholar]
- Braly, P.; Chu, C.; Collins, Y.; Edwards, R.; Gordon, A.; McGuire, W.; Smith, L.M.; Nicodemus, C.; Method, M. Prospective evaluation of front-line chemo-immunotherapy (C-IT) with oregovomab (2 alternative dosing schedules) carboplatin-paclitaxel (C-P) in advanced ovarian cancer (OC). J. Clin. Oncol. 2007, 25 (18S), Abstr. 3024. [Google Scholar]
- Parsons, S.; Murawa, P.X.; Koralewski, P.; Kutarska, E.; Kolesnik, O.O.; Stroehlein, M.A.; Lahr, A.; Jaeger, M.; Heiss, M.M. Intraperitoneal treatment of malignant ascites due to epithelial tumors with catumaxomab, A phase II/III study. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 3000. [Google Scholar]
- Elnakat, H.; Ratnam, M. Role of folate receptor genes in reproduction and related cancers. Front. Biosci. 2006, 11, 506–519. [Google Scholar] [CrossRef]
- Ebel, W.; Routhier, E.L.; Foley, B.; Jacob, S.; McDonough, J.M.; Patel, R.K.; Turchin, H.A.; Chao, Q.; Kline, J.B.; Old, L.J.; et al. Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-alpha. Cancer Immun. 2007, 7, 6. [Google Scholar]
- Armstrong, D.K.; Bicher, A.; Coleman, R.L.; Gibbon, D.G.; Glenn, D.; Old, L.; Senzer, N.N.; Schneeweiss, A.; Verheijen, R.H.; White, A.J.; Weil, S. Exploratory phase II efficacy study of MORAb-003, a monoclonal antibody against folate receptor alpha, in platinum-sensitive ovarian cancer in first relapse. J. Clin. Oncol. 2008, 26 (suppl), Abstr. 5500. [Google Scholar]
- Gibbs, D.D.; Theti, D.S.; Wood, N.; Green, M.; Raynaud, F.; Valenti, M.; Forster, M.D.; Mitchell, F.; Bavetsias, V.; Henderson, E.; et al. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res. 2005, 65, 11721–11728. [Google Scholar] [CrossRef]
- Weinstein, I.B.; Joe, A. Oncogene addiction. Cancer Res. 2008, 68, 3077–3080. [Google Scholar] [CrossRef]
- Lacroix, L.; Pautier, P.; Duvillard, P.; Motté, N.; Saulnier, P.; Bidart, J.M.; Soria, J.C. Response of ovarian carcinomas to gefitinib-carboplatin-paclitaxel combination is not associated with EGFR kinase domain somatic mutations. Int. J. Cancer 2006, 118, 1068–1069. [Google Scholar] [CrossRef]
- Stella, G.; Rojas Llimpe, F.L.; Barone, C.; Falcone, A.; Di Fabio, F.; Lamba, S.; Martoni, A.A.; Siena, S.; Bardelli, A.; Pinto, C. KRAS and BRAF mutational status and response to cetuximab combination therapy in advanced gastric cancer (GC) patients. In 2009 Gastrointestinal Cancers Symposium, San Francisco, CA, USA, 15–17 January 2009; p. Abstr. 34.
- Zhang, S.; Balch, C.; Chan, M.W.; Lai, H.C.; Matei, D.; Schilder, J.M.; Yan, P.S.; Huang, T.H.; Nephew, K.P. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008, 68, 4311–4320. [Google Scholar] [CrossRef]
- Marrer, E.; Dieterle, F. Biomarkers in oncology drug development: rescuers or troublemakers? Expert Opin. Drug Metab. Toxicol. 2008, 4, 1391–1402. [Google Scholar] [CrossRef]
- Agus, D.B.; Gordon, M.S.; Taylor, C.; Natale, R.B.; Karlan, B.; Mendelson, D.S.; Press, M.F.; Allison, D.E.; Sliwkowski, M.X.; Lieberman, G.; et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 2534–2543. [Google Scholar] [CrossRef]
- Vasey, P.; Kaye, S.; Paul, J.; Rustin, G.; Wilson, R.; Guastalla, J.P.; Pujade-Lauraine, E.; Gore, M.; Gabra, H.; Carty, K. A phase Ib trial of erlotinib (E) in combination with docetaxel (D) and carboplatin (C) in untreated ovarian, fallopian tube and primary peritoneal cancers. J. Clin. Oncol. 2004, 22 (14S), Abstr. 5017. [Google Scholar]
- Blank, S.V.; Curtin, J.P.; Goldman, N.A.; Runowicz, C.D.; Speyer, J.L.; Tiersten, A.D.; Dancey, J.; Wadler, S.; Muggia, F.M. Report of first-stage accrual for NCI 5886, a phase II study of erlotinib, carboplatin and paclitaxel as first-line treatment of ovarian cancer. J. Clin. Oncol. 2006, 24 (18S), Abstr. 5076. [Google Scholar]
- Slomovitz, B.M.; Coleman, R.L.; Levenback, C.; Jung, M.; Gershenson, D.M.; Wolf, J. Phase I study of weekly topotecan and gefitinib in patients with platinum-resistant ovarian, peritoneal, or fallopian tube cancer. J. Clin. Oncol. 2006, 24 (18S), Abstr. 5090. [Google Scholar]
- Hariprasad, R.; Kumar, L.; Patnaik, R.; Gupta, A.; Kumar, S. Maintenance therapy in epithelial ovarian cancer (EOC): Could EGFR inhibitor- gefitinib be a candidate drug? A pilot study. J. Clin. Oncol. 2006, 24 (18S), Abstr. 15046. [Google Scholar]
- Mavroudis, D.; Efstathiou, E.; Polyzos, A.; Athanasiadis, A.; Milaki, G.; Kastritis, E.; Kalykaki, A.; Saridaki, Z.; Dimopoulos, A.; Georgoulias, V. A phase I-II trial of gefitinib in combination with vinorelbine and oxaliplatin as salvage therapy in women with advanced ovarian cancer (AOC). J. Clin. Oncol. 2004, 22 (14S), Abstr. 5020. [Google Scholar]
- Krasner, C.N.; Debernardo, R.L.; Findley, M.; Penson, R.; Matulonis, U.; Atkinson, T.; Roche, M.; Seiden, M.V. Phase II trial of anastrazole in combination with gefitinib in women with asymptomatic mullerian cancer. J. Clin. Oncol. 2005, 23 (16S), Abstr. 5063. [Google Scholar]
- Minami, H.; Nakagawa, K.; Kawada, K.; Mukai, H.; Tahara, M.; Kurata, T.; Uejima, H.; Nogami, T.; Sasaki, Y.; Fukuoka, M. A phase I study of GW572016 in patients with solid tumors. J. Clin. Oncol. 2004, 22 (14S), Abstr. 3048. [Google Scholar]
- Campos, S.M.; Seiden, M.V.; Oza, A.; Plante, M.; Potkul, R.; Hamid, O.; Lenehan, P.; Kaldjian, E.; Jordan, C.; Hirte, H. A phase 2, single agent study of CI-1033 administered at two doses in ovarian cancer patients who failed platinum therapy. J. Clin. Oncol. 2004, 22 (14S), Abstr. 5054. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dean, E.; El-Helw, L.; Hasan, J. Targeted Therapies in Epithelial Ovarian Cancer. Cancers 2010, 2, 88-113. https://doi.org/10.3390/cancers2010088
Dean E, El-Helw L, Hasan J. Targeted Therapies in Epithelial Ovarian Cancer. Cancers. 2010; 2(1):88-113. https://doi.org/10.3390/cancers2010088
Chicago/Turabian StyleDean, Emma, Loaie El-Helw, and Jurjees Hasan. 2010. "Targeted Therapies in Epithelial Ovarian Cancer" Cancers 2, no. 1: 88-113. https://doi.org/10.3390/cancers2010088
APA StyleDean, E., El-Helw, L., & Hasan, J. (2010). Targeted Therapies in Epithelial Ovarian Cancer. Cancers, 2(1), 88-113. https://doi.org/10.3390/cancers2010088