Surgery as a Double-Edged Sword: A Clinically Feasible Approach to Overcome the Metastasis-Promoting Effects of Surgery by Blunting Stress and Prostaglandin Responses
Abstract
:1. A Calculated Risk: Surgery and Metastatic Development
2. Prostaglandins and Their Impact on Tumor Progression
3. Physiological Stress Responses to Surgery and Their Impact on Tumor Progression
3.1. The Impact of CA
3.2. The Impact of Glucocorticoids (GC)
4. Anesthesia, Pain Relief and Opiates, and Their Impact on Tumor Progression
5. Does the Extent of Surgery Impact Neuroendocrine, Immune, and Clinical Outcomes of Cancer Progression?
6. Scheduling Surgery According to the Estrous Cycle
7. Using a Combination of Beta-Blockers and COX-2 Inhibitors in the Perioperative Context to Reduce the Risk of Metastatic Progression and Recurrence Rates
8. Summary
References
- Bonnema, J.; van de Velde, C.J. Sentinel lymph node biopsy in breast cancer. Ann. Oncol. 2002, 13, 1531–1537. [Google Scholar] [CrossRef]
- Fisher, B.; Bauer, M.; Wickerham, D.L.; Redmond, C.K.; Fisher, E.R.; Cruz, A.B.; Foster, R.; Gardner, B.; Lerner, H.; Margolese, R.; et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An nsabp update. Cancer 1983, 52, 1551–1557. [Google Scholar] [CrossRef]
- Veronesi, U.; Paganelli, G.; Viale, G.; Luini, A.; Zurrida, S.; Galimberti, V.; Intra, M.; Veronesi, P.; Robertson, C.; Maisonneuve, P.; Renne, G.; De Cicco, C.; De Lucia, F.; Gennari, R. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 2003, 349, 546–553. [Google Scholar] [CrossRef]
- Salem, A.A.; Douglas-Jones, A.G.; Sweetland, H.M.; Mansel, R.E. Intraoperative evaluation of axillary sentinel lymph nodes using touch imprint cytology and immunohistochemistry. Part ii. Results. Eur. J. Surg. Oncol. 2006, 32, 484–487. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Takagi, Y.; Aoki, S.; Futamura, M.; Saji, S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann. Surg. 2000, 232, 58–65. [Google Scholar] [CrossRef]
- Shariat, S.F.; Kattan, M.W.; Song, W.; Bernard, D.; Gottenger, E.; Wheeler, T.M.; Slawin, K.M. Early postoperative peripheral blood reverse transcription pcr assay for prostate-specific antigen is associated with prostate cancer progression in patients undergoing radical prostatectomy. Cancer Res. 2003, 63, 5874–5878. [Google Scholar]
- Biki, B.; Mascha, E.; Moriarty, D.C.; Fitzpatrick, J.M.; Sessler, D.I.; Buggy, D.J. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: A retrospective analysis. Anesthesiology 2008, 109, 180–187. [Google Scholar] [CrossRef]
- Demicheli, R.; Miceli, R.; Moliterni, A.; Zambetti, M.; Hrushesky, W.J.; Retsky, M.W.; Valagussa, P.; Bonadonna, G. Breast cancer recurrence dynamics following adjuvant cmf is consistent with tumor dormancy and mastectomy-driven acceleration of the metastatic process. Ann. Oncol. 2005, 16, 1449–1457. [Google Scholar] [CrossRef]
- Pascual, M.; Alonso, S.; Pares, D.; Courtier, R.; Gil, M.J.; Grande, L.; Pera, M. Randomized clinical trial comparing inflammatory and angiogenic response after open versus laparoscopic curative resection for colonic cancer. Br. J. Surg. 2010. [Google Scholar] [CrossRef]
- Abramovitch, R.; Marikovsky, M.; Meir, G.; Neeman, M. Stimulation of tumour growth by wound-derived growth factors. Br. J. Cancer 1999, 79, 1392–1398. [Google Scholar] [CrossRef]
- Ben-Eliyahu, S.; Page, G.G.; Yirmiya, R.; Shakhar, G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 1999, 80, 880–888. [Google Scholar] [CrossRef]
- Melamed, R.; Rosenne, E.; Shakhar, K.; Schwartz, Y.; Abudarham, N.; Ben-Eliyahu, S. Marginating pulmonary-nk activity and resistance to experimental tumor metastasis: Suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav. Immun. 2005, 19, 114–126. [Google Scholar] [CrossRef]
- McCoy, J.L.; Rucker, R.; Petros, J.A. Cell-mediated immunity to tumor-associated antigens is a better predictor of survival in early stage breast cancer than stage, grade or lymph node status. Breast Cancer Res. Treat. 2000, 60, 227–234. [Google Scholar] [CrossRef]
- Atzil, S.; Arad, M.; Glasner, A.; Abiri, N.; Avraham, R.; Greenfeld, K.; Rosenne, E.; Beilin, B.; Ben-Eliyahu, S. Blood transfusion promotes cancer progression: A critical role for aged erythrocytes. Anesthesiology 2008, 109, 989–997. [Google Scholar] [CrossRef]
- Ben-Eliyahu, S.; Shakhar, G.; Rosenne, E.; Levinson, Y.; Beilin, B. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: A role for adrenergic mechanisms. Anesthesiology 1999, 91, 732–740. [Google Scholar] [CrossRef]
- Snyder, G.L.; Greenberg, S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br. J. Anaesth. 2010, 105, 106–115. [Google Scholar] [CrossRef]
- Gao, J.Q.; Okada, N.; Mayumi, T.; Nakagawa, S. Immune cell recruitment and cell-based system for cancer therapy. Pharm. Res. 2008, 25, 752–768. [Google Scholar] [CrossRef]
- Goldfarb, Y.; Ben-Eliyahu, S. Surgery as a risk factor for breast cancer recurrence and metastasis: Mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006, 26, 99–114. [Google Scholar]
- Shakhar, G.; Ben-Eliyahu, S. Potential prophylactic measures against postoperative immunosuppression: Could they reduce recurrence rates in oncological patients? Ann. Surg. Oncol. 2003, 10, 972–992. [Google Scholar] [CrossRef]
- Whiteside, T.L. Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Semin. Cancer Biol. 2006, 16, 3–15. [Google Scholar] [CrossRef]
- Raskovalova, T.; Lokshin, A.; Huang, X.; Jackson, E.K.; Gorelik, E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by il-2/nkp46-activated nk cells: Involvement of protein kinase a isozyme i (pka i). Immunol. Res. 2006, 36, 91–99. [Google Scholar] [CrossRef]
- Greenfeld, K.; Avraham, R.; Benish, M.; Goldfarb, Y.; Rosenne, E.; Shapira, Y.; Rudich, T.; Ben-Eliyahu, S. Immune suppression while awaiting surgery and following it: Dissociations between plasma cytokine levels, their induced production, and nk cell cytotoxicity. Brain Behav. Immun. 2007, 21, 503–513. [Google Scholar] [CrossRef]
- Benish, M.; Bartal, I.; Goldfarb, Y.; Levi, B.; Avraham, R.; Raz, A.; Ben-Eliyahu, S. Perioperative use of beta-blockers and cox-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann. Surg. Oncol. 2008, 15, 2042–2052. [Google Scholar] [CrossRef]
- Cruz-Munoz, M.E.; Veillette, A. Do nk cells always need a license to kill? Nat. Immunol. 2010, 11, 279–280. [Google Scholar] [CrossRef]
- Cooper, M.A.; Colonna, M.; Yokoyama, W.M. Hidden talents of natural killers: Nk cells in innate and adaptive immunity. EMBO Rep. 2009, 10, 1103–1110. [Google Scholar] [CrossRef]
- Algarra, I.; Garcia-Lora, A.; Cabrera, T.; Ruiz-Cabello, F.; Garrido, F. The selection of tumor variants with altered expression of classical and nonclassical mhc class i molecules: Implications for tumor immune escape. Cancer Immunol. Immunother. 2004, 53, 904–910. [Google Scholar]
- Ljunggren, H.G.; Karre, K. In search of the 'missing self': Mhc molecules and nk cell recognition. Immunol. Today 1990, 11, 237–244. [Google Scholar] [CrossRef]
- Brittenden, J.; Heys, S.D.; Ross, J.; Eremin, O. Natural killer cells and cancer. Cancer 1996, 77, 1226–1243. [Google Scholar] [CrossRef]
- Taketomi, A.; Shimada, M.; Shirabe, K.; Kajiyama, K.; Gion, T.; Sugimachi, K. Natural killer cell activity in patients with hepatocellular carcinoma: A new prognostic indicator after hepatectomy. Cancer 1998, 83, 58–63. [Google Scholar] [CrossRef]
- Glasner, A.; Avraham, R.; Rosenne, E.; Benish, M.; Zmora, O.; Shemer, S.; Meiboom, H.; Ben-Eliyahu, S. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol. 2010, 184, 2449–2457. [Google Scholar] [CrossRef]
- Singh-Ranger, G.; Salhab, M.; Mokbel, K. The role of cyclooxygenase-2 in breast cancer: Review. Breast Cancer Res. Treat. 2008, 109, 189–198. [Google Scholar] [CrossRef]
- Howe, L.R. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007, 9, 210. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Narumiya, S. Prostaglandin e receptors. J. Biol. Chem. 2007, 282, 11613–11617. [Google Scholar] [CrossRef]
- Su, Y.; Huang, X.; Raskovalova, T.; Zacharia, L.; Lokshin, A.; Jackson, E.; Gorelik, E. Cooperation of adenosine and prostaglandin e2 (pge2) in amplification of camp-pka signaling and immunosuppression. Cancer Immunol. Immunother. 2008, 57, 1611–1623. [Google Scholar] [CrossRef]
- Martinet, L.; Jean, C.; Dietrich, G.; Fournie, J.J.; Poupot, R. Pge2 inhibits natural killer and gamma delta t cell cytotoxicity triggered by nkr and tcr through a camp-mediated pka type i-dependent signaling. Biochem. Pharmacol. 2010, 80, 838–845. [Google Scholar] [CrossRef]
- Zeddou, M.; Greimers, R.; de Valensart, N.; Nayjib, B.; Tasken, K.; Boniver, J.; Moutschen, M.; Rahmouni, S. Prostaglandin e2 induces the expression of functional inhibitory cd94/nkg2a receptors in human cd8+ t lymphocytes by a camp-dependent protein kinase a type i pathway. Biochem. Pharmacol. 2005, 70, 714–724. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Bhattacharyya, S.; Saha, B.; Chakraborty, J.; Mohanty, S.; Sakib Hossain, D.M.; Banerjee, S.; Das, K.; Sa, G.; Das, T. Tumor-shed pge(2) impairs il2rgammac-signaling to inhibit cd4 t cell survival: Regulation by theaflavins. PLoS One 2009, 4, e7382. [Google Scholar] [CrossRef]
- Ahmadi, M.; Emery, D.C.; Morgan, D.J. Prevention of both direct and cross-priming of antitumor cd8+ t-cell responses following overproduction of prostaglandin e2 by tumor cells in vivo. Cancer Res. 2008, 68, 7520–7529. [Google Scholar] [CrossRef]
- Sharma, S.; Yang, S.C.; Zhu, L.; Reckamp, K.; Gardner, B.; Baratelli, F.; Huang, M.; Batra, R.K.; Dubinett, S.M. Tumor cyclooxygenase-2/prostaglandin e2-dependent promotion of foxp3 expression and cd4+ cd25+ t regulatory cell activities in lung cancer. Cancer Res. 2005, 65, 5211–5220. [Google Scholar] [CrossRef]
- Yakar, I.; Melamed, R.; Shakhar, G.; Shakhar, K.; Rosenne, E.; Abudarham, N.; Page, G.G.; Ben-Eliyahu, S. Prostaglandin e(2) suppresses nk activity in vivo and promotes postoperative tumor metastasis in rats. Ann. Surg. Oncol. 2003, 10, 469–479. [Google Scholar] [CrossRef]
- Ono, M. Molecular links between tumor angiogenesis and inflammation: Inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008, 99, 1501–1506. [Google Scholar] [CrossRef]
- Sahin, M.; Sahin, E.; Gumuslu, S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60, 242–253. [Google Scholar]
- Sarkar, F.H.; Adsule, S.; Li, Y.; Padhye, S. Back to the future: Cox-2 inhibitors for chemoprevention and cancer therapy. Mini Rev. Med. Chem. 2007, 7, 599–608. [Google Scholar] [CrossRef]
- Kundu, N.; Ma, X.; Holt, D.; Goloubeva, O.; Ostrand-Rosenberg, S.; Fulton, A.M. Antagonism of the prostaglandin e receptor ep4 inhibits metastasis and enhances nk function. Breast Cancer Res. Treat. 2009, 117, 235–242. [Google Scholar] [CrossRef]
- Singh, B.; Irving, L.R.; Tai, K.; Lucci, A. Overexpression of cox-2 in celecoxib-resistant breast cancer cell lines. J. Surg. Res. 2010, 163, 235–243. [Google Scholar] [CrossRef]
- Singh, B.; Cook, K.R.; Vincent, L.; Hall, C.S.; Berry, J.A.; Multani, A.S.; Lucci, A. Cyclooxygenase-2 induces genomic instability, bcl2 expression, doxorubicin resistance, and altered cancer-initiating cell phenotype in mcf7 breast cancer cells. J. Surg. Res. 2008, 147, 240–246. [Google Scholar] [CrossRef]
- Hu, M.; Peluffo, G.; Chen, H.; Gelman, R.; Schnitt, S.; Polyak, K. Role of cox-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc. Natl. Acad. Sci. USA 2009, 106, 3372–3377. [Google Scholar]
- Minn, A.J.; Gupta, G.P.; Siegel, P.M.; Bos, P.D.; Shu, W.; Giri, D.D.; Viale, A.; Olshen, A.B.; Gerald, W.L.; Massague, J. Genes that mediate breast cancer metastasis to lung. Nature 2005, 436, 518–524. [Google Scholar] [CrossRef]
- Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; Massague, J. Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459, 1005–1009. [Google Scholar] [CrossRef]
- Singh, B.; Berry, J.A.; Vincent, L.E.; Lucci, A. Involvement of il-8 in cox-2-mediated bone metastases from breast cancer. J. Surg. Res. 2006, 134, 44–51. [Google Scholar] [CrossRef]
- Yoshinaka, R.; Shibata, M.A.; Morimoto, J.; Tanigawa, N.; Otsuki, Y. Cox-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res. 2006, 26, 4245–4254. [Google Scholar]
- Qadri, S.S.; Wang, J.H.; Coffey, J.C.; Alam, M.; O'Donnell, A.; Aherne, T.; Redmond, H.P. Surgically induced accelerated local and distant tumor growth is significantly attenuated by selective cox-2 inhibition. Ann. Thorac. Surg. 2005, 79, 990–995; discussion 990–995. [Google Scholar] [CrossRef]
- Palesh, O.; Butler, L.D.; Koopman, C.; Giese-Davis, J.; Carlson, R.; Spiegel, D. Stress history and breast cancer recurrence. J. Psychosom. Res. 2007, 63, 233–239. [Google Scholar] [CrossRef]
- Antoni, M.H.; Lutgendorf, S.K.; Cole, S.W.; Dhabhar, F.S.; Sephton, S.E.; McDonald, P.G.; Stefanek, M.; Sood, A.K. The influence of bio-behavioural factors on tumour biology: Pathways and mechanisms. Nat. Rev. Cancer 2006, 6, 240–248. [Google Scholar] [CrossRef]
- Jetschmann, J.U.; Benschop, R.J.; Jacobs, R.; Kemper, A.; Oberbeck, R.; Schmidt, R.E.; Schedlowski, M. Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (cd16+) cells. J. Neuroimmunol. 1997, 74, 159–164. [Google Scholar] [CrossRef]
- Shakhar, G.; Ben-Eliyahu, S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J. Immunol. 1998, 160, 3251–3258. [Google Scholar]
- Dokur, M.; Boyadjieva, N.; Sarkar, D.K. Catecholaminergic control of nk cell cytolytic activity regulatory factors in the spleen. J. Neuroimmunol. 2004, 151, 148–157. [Google Scholar] [CrossRef]
- Calcagni, E.; Elenkov, I. Stress system activity, innate and t helper cytokines, and susceptibility to immune-related diseases. Ann. NY Acad. Sci. 2006, 1069, 62–76. [Google Scholar] [CrossRef]
- Sekut, L.; Champion, B.R.; Page, K.; Menius, J.A., Jr.; Connolly, K.M. Anti-inflammatory activity of salmeterol: Down-regulation of cytokine production. Clin. Exp. Immunol. 1995, 99, 461–466. [Google Scholar]
- Ramer-Quinn, D.S.; Baker, R.A.; Sanders, V.M. Activated t helper 1 and t helper 2 cells differentially express the beta-2-adrenergic receptor: A mechanism for selective modulation of t helper 1 cell cytokine production. J. Immunol. 1997, 159, 4857–4867. [Google Scholar]
- Holen, E.; Elsayed, S. Effects of beta2 adrenoceptor agonists on t-cell subpopulations. APMIS 1998, 106, 849–857. [Google Scholar] [CrossRef]
- Lee, J.W.; Shahzad, M.M.; Lin, Y.G.; Armaiz-Pena, G.; Mangala, L.S.; Han, H.D.; Kim, H.S.; Nam, E.J.; Jennings, N.B.; Halder, J.; Nick, A.M.; Stone, R.L.; Lu, C.; Lutgendorf, S.K.; Cole, S.W.; Lokshin, A.E.; Sood, A.K. Surgical stress promotes tumor growth in ovarian carcinoma. Clin. Cancer Res. 2009, 15, 2695–2702. [Google Scholar] [CrossRef]
- Sloan, E.K.; Priceman, S.J.; Cox, B.F.; Yu, S.; Pimentel, M.A.; Tangkanangnukul, V.; Arevalo, J.M.; Morizono, K.; Karanikolas, B.D.; Wu, L.; Sood, A.K.; Cole, S.W. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010. [Google Scholar] [CrossRef]
- Shi, M.; Liu, D.; Duan, H.; Qian, L.; Wang, L.; Niu, L.; Zhang, H.; Yong, Z.; Gong, Z.; Song, L.; Yu, M.; Hu, M.; Xia, Q.; Shen, B.; Guo, N. The beta2-adrenergic receptor and her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res. Treat. 2010. [Google Scholar] [CrossRef]
- Bookout, A.L.; Finney, A.E.; Guo, R.; Peppel, K.; Koch, W.J.; Daaka, Y. Targeting gbetagamma signaling to inhibit prostate tumor formation and growth. J. Biol. Chem. 2003, 278, 37569–37573. [Google Scholar]
- Sastry, K.S.; Karpova, Y.; Prokopovich, S.; Smith, A.J.; Essau, B.; Gersappe, A.; Carson, J.P.; Weber, M.J.; Register, T.C.; Chen, Y.Q.; Penn, R.B.; Kulik, G. Epinephrine protects cancer cells from apoptosis via activation of camp-dependent protein kinase and bad phosphorylation. J. Biol. Chem. 2007, 282, 14094–14100. [Google Scholar] [CrossRef]
- Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M.; Merritt, W.M.; Lin, Y.G.; Mangala, L.S.; Kim, T.J.; Coleman, R.L.; Landen, C.N.; Li, Y.; Felix, E.; Sanguino, A.M.; Newman, R.A.; Lloyd, M.; Gershenson, D.M.; Kundra, V.; Lopez-Berestein, G.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 2006, 12, 939–944. [Google Scholar] [CrossRef]
- Guo, K.; Ma, Q.; Wang, L.; Hu, H.; Li, J.; Zhang, D.; Zhang, M. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol. Rep. 2009, 22, 825–830. [Google Scholar]
- Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; Lemeshow, S.; Glaser, R. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (mmp)-2, and mmp-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006, 66, 10357–10364. [Google Scholar] [CrossRef]
- Sood, A.K.; Armaiz-Pena, G.N.; Halder, J.; Nick, A.M.; Stone, R.L.; Hu, W.; Carroll, A.R.; Spannuth, W.A.; Deavers, M.T.; Allen, J.K.; Han, L.Y.; Kamat, A.A.; Shahzad, M.M.; McIntyre, B.W.; Diaz-Montero, C.M.; Jennings, N.B.; Lin, Y.G.; Merritt, W.M.; DeGeest, K.; Vivas-Mejia, P.E.; Lopez-Berestein, G.; Schaller, M.D.; Cole, S.W.; Lutgendorf, S.K. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest. 2010, 120, 1515–1523. [Google Scholar] [CrossRef]
- Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting erbb2 and discovering erbb3. Nat. Rev. Cancer 2009, 9, 463–475. [Google Scholar] [CrossRef]
- Carie, A.E.; Sebti, S.M. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the raf-1/mek-1/erk1/2 pathway. Oncogene 2007, 26, 3777–3788. [Google Scholar] [CrossRef]
- Sarkar, C.; Das, S.; Chakroborty, D.; Chowdhury, U.R.; Basu, B.; Dasgupta, P.S.; Basu, S. Cutting edge: Stimulation of dopamine d4 receptors induce t cell quiescence by up-regulating kruppel-like factor-2 expression through inhibition of erk1/erk2 phosphorylation. J. Immunol. 2006, 177, 7525–7529. [Google Scholar]
- Chakroborty, D.; Sarkar, C.; Basu, B.; Dasgupta, P.S.; Basu, S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009, 69, 3727–3730. [Google Scholar] [CrossRef]
- Basu, S.; Nagy, J.A.; Pal, S.; Vasile, E.; Eckelhoefer, I.A.; Bliss, V.S.; Manseau, E.J.; Dasgupta, P.S.; Dvorak, H.F.; Mukhopadhyay, D. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 2001, 7, 569–574. [Google Scholar] [CrossRef]
- Sarkar, C.; Chakroborty, D.; Chowdhury, U.R.; Dasgupta, P.S.; Basu, S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin. Cancer Res. 2008, 14, 2502–2510. [Google Scholar] [CrossRef]
- Bartal, I.; Melamed, R.; Greenfeld, K.; Atzil, S.; Glasner, A.; Domankevich, V.; Naor, R.; Beilin, B.; Yardeni, I.Z.; Ben-Eliyahu, S. Immune perturbations in patients along the perioperative period: Alterations in cell surface markers and leukocyte subtypes before and after surgery. Brain Behav. Immun. 2010, 24, 376–386. [Google Scholar] [CrossRef]
- Lutgendorf, S.K.; Weinrib, A.Z.; Penedo, F.; Russell, D.; DeGeest, K.; Costanzo, E.S.; Henderson, P.J.; Sephton, S.E.; Rohleder, N.; Lucci, J.A., 3rd; Cole, S.; Sood, A.K.; Lubaroff, D.M. Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. J. Clin. Oncol. 2008, 26, 4820–4827. [Google Scholar] [CrossRef]
- Shakhar, G.; Blumenfeld, B. Glucocorticoid involvement in suppression of nk activity following surgery in rats. J. Neuroimmunol. 2003, 138, 83–91. [Google Scholar] [CrossRef]
- Krukowski, K.; Eddy, J.; Kosik, K.L.; Konley, T.; Janusek, L.W.; Mathews, H.L. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav. Immun. 2010. [Google Scholar] [CrossRef]
- Ito, K.; Barnes, P.J.; Adcock, I.M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone h4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 2000, 20, 6891–6903. [Google Scholar] [CrossRef]
- Cippitelli, M.; Sica, A.; Viggiano, V.; Ye, J.; Ghosh, P.; Birrer, M.J.; Young, H.A. Negative transcriptional regulation of the interferon-gamma promoter by glucocorticoids and dominant negative mutants of c-jun. J. Biol. Chem. 1995, 270, 12548–12556. [Google Scholar]
- Elenkov, I.J. Glucocorticoids and the th1/th2 balance. Ann. NY Acad. Sci. 2004, 1024, 138–146. [Google Scholar] [CrossRef]
- Fahey, A.J.; Robins, R.A.; Kindle, K.B.; Heery, D.M.; Constantinescu, C.S. Effects of glucocorticoids on stat4 activation in human t cells are stimulus-dependent. J. Leukoc. Biol. 2006, 80, 133–144. [Google Scholar] [CrossRef]
- Franchimont, D.; Galon, J.; Gadina, M.; Visconti, R.; Zhou, Y.; Aringer, M.; Frucht, D.M.; Chrousos, G.P.; O'Shea, J.J. Inhibition of th1 immune response by glucocorticoids: Dexamethasone selectively inhibits il-12-induced stat4 phosphorylation in t lymphocytes. J. Immunol. 2000, 164, 1768–1774. [Google Scholar]
- Bodner, G.; Ho, A.; Kreek, M.J. Effect of endogenous cortisol levels on natural killer cell activity in healthy humans. Brain Behav. Immun. 1998, 12, 285–296. [Google Scholar] [CrossRef]
- Page, G.G.; Ben-Eliyahu, S. Natural killer cell activity and resistance to tumor metastasis in prepubescent rats: Deficient baselines, but invulnerability to stress and beta-adrenergic stimulation. Neuroimmunomodulation 2000, 7, 160–168. [Google Scholar]
- Ben-Eliyahu, S.; Rosenne, E.; Sorski, L.; Levi, B. Second thoughts on the role of glucocorticoids in the in vivo suppression of nk activity following stress. In PsychoNeuroImmunology Research Society Annual Meeting, Dublin, Ireland, 2010.
- Wu, W.; Chaudhuri, S.; Brickley, D.R.; Pang, D.; Karrison, T.; Conzen, S.D. Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res. 2004, 64, 1757–1764. [Google Scholar] [CrossRef]
- Wu, W.; Zou, M.; Brickley, D.R.; Pew, T.; Conzen, S.D. Glucocorticoid receptor activation signals through forkhead transcription factor 3a in breast cancer cells. Mol. Endocrinol. 2006, 20, 2304–2314. [Google Scholar] [CrossRef]
- Runnebaum, I.B.; Bruning, A. Glucocorticoids inhibit cell death in ovarian cancer and up-regulate caspase inhibitor ciap2. Clin. Cancer Res. 2005, 11, 6325–6332. [Google Scholar] [CrossRef]
- Herr, I.; Gassler, N.; Friess, H.; Buchler, M.W. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007, 12, 271–291. [Google Scholar] [CrossRef]
- Yano, A.; Fujii, Y.; Iwai, A.; Kageyama, Y.; Kihara, K. Glucocorticoids suppress tumor angiogenesis and in vivo growth of prostate cancer cells. Clin. Cancer Res. 2006, 12, 3003–3009. [Google Scholar] [CrossRef]
- Iwai, A.; Fujii, Y.; Kawakami, S.; Takazawa, R.; Kageyama, Y.; Yoshida, M.A.; Kihara, K. Down-regulation of vascular endothelial growth factor in renal cell carcinoma cells by glucocorticoids. Mol. Cell. Endocrinol. 2004, 226, 11–17. [Google Scholar] [CrossRef]
- Sionov, R.V.; Spokoini, R.; Kfir-Erenfeld, S.; Cohen, O.; Yefenof, E. Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv. Cancer Res. 2008, 101, 127–248. [Google Scholar] [CrossRef]
- Brand, J.M.; Kirchner, H.; Poppe, C.; Schmucker, P. The effects of general anesthesia on human peripheral immune cell distribution and cytokine production. Clin. Immunol. Immunopathol. 1997, 83, 190–194. [Google Scholar] [CrossRef]
- Markovic, S.N.; Knight, P.R.; Murasko, D.M. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology 1993, 78, 700–706. [Google Scholar] [CrossRef]
- Schlagenhauff, B.; Ellwanger, U.; Breuninger, H.; Stroebel, W.; Rassner, G.; Garbe, C. Prognostic impact of the type of anaesthesia used during the excision of primary cutaneous melanoma. Melanoma Res. 2000, 10, 165–169. [Google Scholar]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: Mediating mechanisms and prophylactic measures. Anesth. Analg. 2003, 97, 1331–1339. [Google Scholar]
- Beilin, B.; Shavit, Y.; Trabekin, E.; Mordashev, B.; Mayburd, E.; Zeidel, A.; Bessler, H. The effects of postoperative pain management on immune response to surgery. Anesth. Analg. 2003, 97, 822–827. [Google Scholar]
- Jakob, S.M.; Stanga, Z. Perioperative metabolic changes in patients undergoing cardiac surgery. Nutrition 2010, 26, 349–353. [Google Scholar] [CrossRef]
- Frank, S.M.; Higgins, M.S.; Breslow, M.J.; Fleisher, L.A.; Gorman, R.B.; Sitzmann, J.V.; Raff, H.; Beattie, C. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology 1995, 82, 83–93. [Google Scholar] [CrossRef]
- Gupta, K.; Kshirsagar, S.; Chang, L.; Schwartz, R.; Law, P.Y.; Yee, D.; Hebbel, R.P. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002, 62, 4491–4498. [Google Scholar]
- Bar-Yosef, S.; Melamed, R.; Page, G.G.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology 2001, 94, 1066–1073. [Google Scholar] [CrossRef]
- Page, G.G.; Blakely, W.P.; Ben-Eliyahu, S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain 2001, 90, 191–199. [Google Scholar]
- Tacconi, F.; Pompeo, E.; Sellitri, F.; Mineo, T.C. Surgical stress hormones response is reduced after awake videothoracoscopy. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 666–671. [Google Scholar] [CrossRef]
- Sessler, D.I.; Ben-Eliyahu, S.; Mascha, E.J.; Parat, M.O.; Buggy, D.J. Can regional analgesia reduce the risk of recurrence after breast cancer? Methodology of a multicenter randomized trial. Contemp. Clin. Trials 2008, 29, 517–526. [Google Scholar] [CrossRef]
- Exadaktylos, A.K.; Buggy, D.J.; Moriarty, D.C.; Mascha, E.; Sessler, D.I. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 2006, 105, 660–664. [Google Scholar] [CrossRef]
- Wuethrich, P.Y.; Hsu Schmitz, S.F.; Kessler, T.M.; Thalmann, G.N.; Studer, U.E.; Stueber, F.; Burkhard, F.C. Potential influence of the anesthetic technique used during open radical prostatectomy on prostate cancer-related outcome: A retrospective study. Anesthesiology 2010, 113, 570–576. [Google Scholar]
- Manfredi, B.; Sacerdote, P.; Bianchi, M.; Locatelli, L.; Veljic-Radulovic, J.; Panerai, A.E. Evidence for an opioid inhibitory effect on t cell proliferation. J Neuroimmunol 1993, 44, 43–48. [Google Scholar] [CrossRef]
- Shavit, Y.; Ben-Eliyahu, S.; Zeidel, A.; Beilin, B. Effects of fentanyl on natural killer cell activity and on resistance to tumor metastasis in rats. Dose and timing study. Neuroimmunomodulation 2004, 11, 255–260. [Google Scholar] [CrossRef]
- Appel, N.M.; Kiritsy-Roy, J.A.; van Loon, G.R. Mu receptors at discrete hypothalamic and brainstem sites mediate opioid peptide-induced increases in central sympathetic outflow. Brain Res 1986, 378, 8–20. [Google Scholar] [CrossRef]
- Freier, D.O.; Fuchs, B.A. A mechanism of action for morphine-induced immunosuppression: Corticosterone mediates morphine-induced suppression of natural killer cell activity. J. Pharmacol. Exp. Ther. 1994, 270, 1127–1133. [Google Scholar]
- Yeager, M.P.; Colacchio, T.A.; Yu, C.T.; Hildebrandt, L.; Howell, A.L.; Weiss, J.; Guyre, P.M. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers. Anesthesiology 1995, 83, 500–508. [Google Scholar] [CrossRef]
- Franchi, S.; Panerai, A.E.; Sacerdote, P. Buprenorphine ameliorates the effect of surgery on hypothalamus-pituitary-adrenal axis, natural killer cell activity and metastatic colonization in rats in comparison with morphine or fentanyl treatment. Brain Behav. Immun. 2007, 21, 767–774. [Google Scholar] [CrossRef]
- Gaspani, L.; Bianchi, M.; Limiroli, E.; Panerai, A.E.; Sacerdote, P. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J. Neuroimmunol. 2002, 129, 18–24. [Google Scholar] [CrossRef]
- Sacerdote, P.; Bianchi, M.; Gaspani, L.; Manfredi, B.; Maucione, A.; Terno, G.; Ammatuna, M.; Panerai, A.E. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth. Analg. 2000, 90, 1411–1414. [Google Scholar] [CrossRef]
- Malan, T.P., Jr.; Marsh, G.; Hakki, S.I.; Grossman, E.; Traylor, L.; Hubbard, R.C. Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty. Anesthesiology 2003, 98, 950–956. [Google Scholar] [CrossRef]
- Gach, K.; Szemraj, J.; Wyrebska, A.; Janecka, A. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol. Biol. Rep. 2010. [Google Scholar] [CrossRef]
- Koodie, L.; Ramakrishnan, S.; Roy, S. Morphine suppresses tumor angiogenesis through a hif-1alpha/p38mapk pathway. Am. J. Pathol. 2010, 177, 984–997. [Google Scholar] [CrossRef]
- Hernandez-Palazon, J.; Tortosa, J.A.; Martinez-Lage, J.F.; Perez-Flores, D. Intravenous administration of propacetamol reduces morphine consumption after spinal fusion surgery. Anesth. Analg. 2001, 92, 1473–1476. [Google Scholar]
- Hodsman, N.B.; Burns, J.; Blyth, A.; Kenny, G.N.; McArdle, C.S.; Rotman, H. The morphine sparing effects of diclofenac sodium following abdominal surgery. Anaesthesia 1987, 42, 1005–1008. [Google Scholar] [CrossRef]
- Moffat, A.C.; Kenny, G.N.; Prentice, J.W. Postoperative nefopam and diclofenac. Evaluation of their morphine-sparing effect after upper abdominal surgery. Anaesthesia 1990, 45, 302–305. [Google Scholar] [CrossRef]
- Forget, P.; Vandenhende, J.; Berliere, M.; Machiels, J.P.; Nussbaum, B.; Legrand, C.; De Kock, M. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth. Analg. 2010, 110, 1630–1635. [Google Scholar]
- Gupta, A.; Watson, D.I. Effect of laparoscopy on immune function. Br. J. Surg. 2001, 88, 1296–1306. [Google Scholar] [CrossRef]
- Marana, E.; Scambia, G.; Maussier, M.L.; Parpaglioni, R.; Ferrandina, G.; Meo, F.; Sciarra, M.; Marana, R. Neuroendocrine stress response in patients undergoing benign ovarian cyst surgery by laparoscopy, minilaparotomy, and laparotomy. J. Am. Assoc. Gynecol. Laparosc. 2003, 10, 159–165. [Google Scholar] [CrossRef]
- Muzii, L.; Marana, R.; Marana, E.; Paielli, F.V.; Meo, F.; Maussier, M.L.; Sciarra, M.; Mancuso, S. Evaluation of stress-related hormones after surgery by laparoscopy or laparotomy. J. Am. Assoc. Gynecol. Laparosc. 1996, 3, 229–234. [Google Scholar] [CrossRef]
- Friedrich, M.; Rixecker, D.; Friedrich, G. Evaluation of stress-related hormones after surgery. Clin. Exp. Obstet. Gynecol. 1999, 26, 71–75. [Google Scholar]
- Wichmann, M.W.; Huttl, T.P.; Winter, H.; Spelsberg, F.; Angele, M.K.; Heiss, M.M.; Jauch, K.W. Immunological effects of laparoscopic vs open colorectal surgery: A prospective clinical study. Arch. Surg. 2005, 140, 692–697. [Google Scholar] [CrossRef]
- Leung, K.L.; Lai, P.B.; Ho, R.L.; Meng, W.C.; Yiu, R.Y.; Lee, J.F.; Lau, W.Y. Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma: A prospective randomized trial. Ann. Surg. 2000, 231, 506–511. [Google Scholar] [CrossRef]
- Ghezzi, F.; Cromi, A.; Uccella, S.; Siesto, G.; Giudici, S.; Serati, M.; Franchi, M. Laparoscopic versus open surgery for endometrial cancer: A minimum 3-year follow-up study. Ann. Surg. Oncol. 2010, 17, 271–278. [Google Scholar] [CrossRef]
- Ohtani, H.; Tamamori, Y.; Noguchi, K.; Azuma, T.; Fujimoto, S.; Oba, H.; Aoki, T.; Minami, M.; Hirakawa, K. Meta-analysis of laparoscopy-assisted and open distal gastrectomy for gastric cancer. J. Surg. Res. 2010. [Google Scholar] [CrossRef]
- Aldrighetti, L.; Guzzetti, E.; Pulitano, C.; Cipriani, F.; Catena, M.; Paganelli, M.; Ferla, G. Case-matched analysis of totally laparoscopic versus open liver resection for hcc: Short and middle term results. J. Surg. Oncol. 2010, 102, 82–86. [Google Scholar] [CrossRef]
- Porpiglia, F.; Fiori, C.; Daffara, F.; Zaggia, B.; Bollito, E.; Volante, M.; Berruti, A.; Terzolo, M. Retrospective evaluation of the outcome of open versus laparoscopic adrenalectomy for stage i and ii adrenocortical cancer. Eur. Urol. 2010, 57, 873–878. [Google Scholar] [CrossRef]
- McGuire, K.P.; Eisen, S.; Rodriguez, A.; Meade, T.; Cox, C.E.; Khakpour, N. Factors associated with improved outcome after surgery in metastatic breast cancer patients. Am. J. Surg. 2009, 198, 511–515. [Google Scholar] [CrossRef]
- Smitt, M.C.; Nowels, K.W.; Zdeblick, M.J.; Jeffrey, S.; Carlson, R.W.; Stockdale, F.E.; Goffinet, D.R. The importance of the lumpectomy surgical margin status in long-term results of breast conservation. Cancer 1995, 76, 259–267. [Google Scholar] [CrossRef]
- Wazer, D.E.; Jabro, G.; Ruthazer, R.; Schmid, C.; Safaii, H.; Schmidt-Ullrich, R.K. Extent of margin positivity as a predictor for local recurrence after breast conserving irradiation. Radiat. Oncol. Investig. 1999, 7, 111–117. [Google Scholar] [CrossRef]
- Liu, J.; Hao, X.S.; Yu, Y.; Fang, Z.Y.; Liu, J.T.; Niu, Y.; Fentiman, I.S. Long-term results of breast conservation in chinese women with breast cancer. Breast J. 2009, 15, 296–298. [Google Scholar] [CrossRef]
- Nesvold, I.L.; Dahl, A.A.; Lokkevik, E.; Marit Mengshoel, A.; Fossa, S.D. Arm and shoulder morbidity in breast cancer patients after breast-conserving therapy versus mastectomy. Acta Oncol. 2008, 47, 835–842. [Google Scholar] [CrossRef]
- El-Tamer, M.B.; Ward, B.M.; Schifftner, T.; Neumayer, L.; Khuri, S.; Henderson, W. Morbidity and mortality following breast cancer surgery in women: National benchmarks for standards of care. Ann. Surg. 2007, 245, 665–671. [Google Scholar] [CrossRef]
- Poggi, M.M.; Danforth, D.N.; Sciuto, L.C.; Smith, S.L.; Steinberg, S.M.; Liewehr, D.J.; Menard, C.; Lippman, M.E.; Lichter, A.S.; Altemus, R.M. Eighteen-year results in the treatment of early breast carcinoma with mastectomy versus breast conservation therapy: The national cancer institute randomized trial. Cancer 2003, 98, 697–702. [Google Scholar] [CrossRef]
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef]
- Hrushesky, W.J.; Bluming, A.Z.; Gruber, S.A.; Sothern, R.B. Menstrual influence on surgical cure of breast cancer. Lancet 1989, 2, 949–952. [Google Scholar]
- Grant, C.S.; Ingle, J.N.; Suman, V.J.; Dumesic, D.A.; Wickerham, D.L.; Gelber, R.D.; Flynn, P.J.; Weir, L.M.; Intra, M.; Jones, W.O.; Perez, E.A.; Hartmann, L.C. Menstrual cycle and surgical treatment of breast cancer: Findings from the ncctg n9431 study. J. Clin. Oncol. 2009, 27, 3620–3626. [Google Scholar]
- Thorpe, H.; Brown, S.R.; Sainsbury, J.R.; Perren, T.J.; Hiley, V.; Dowsett, M.; Nejim, A.; Brown, J.M. Timing of breast cancer surgery in relation to menstrual cycle phase: No effect on 3-year prognosis: The its study. Br. J. Cancer 2008, 98, 39–44. [Google Scholar] [CrossRef]
- Kroman, N. Timing of breast cancer surgery in relation to the menstrual cycle--the rise and fall of a hypothesis. Acta Oncol. 2008, 47, 576–579. [Google Scholar] [CrossRef]
- Ben-Eliyahu, S.; Page, G.G.; Shakhar, G.; Taylor, A.N. Increased susceptibility to metastasis during pro-oestrus/oestrus in rats: Possible role of oestradiol and natural killer cells. Br. J. Cancer 1996, 74, 1900–1907. [Google Scholar] [CrossRef]
- Ben-Eliyahu, S.; Shakhar, G.; Shakhar, K.; Melamed, R. Timing within the oestrous cycle modulates adrenergic suppression of nk activity and resistance to metastasis: Possible clinical implications. Br. J. Cancer 2000, 83, 1747–1754. [Google Scholar] [CrossRef]
- Page, G.G.; Ben-Eliyahu, S. Increased surgery-induced metastasis and suppressed natural killer cell activity during proestrus/estrus in rats. Breast Cancer Res. Treat. 1997, 45, 159–167. [Google Scholar] [CrossRef]
- Shakhar, K.; Shakhar, G.; Rosenne, E.; Ben-Eliyahu, S. Timing within the menstrual cycle, sex, and the use of oral contraceptives determine adrenergic suppression of nk cell activity. Br. J. Cancer 2000, 83, 1630–1636. [Google Scholar] [CrossRef]
- Wheeldon, N.M.; Newnham, D.M.; Coutie, W.J.; Peters, J.A.; McDevitt, D.G.; Lipworth, B.J. Influence of sex-steroid hormones on the regulation of lymphocyte beta 2-adrenoceptors during the menstrual cycle. Br. J. Clin. Pharmacol. 1994, 37, 583–588. [Google Scholar] [CrossRef]
- Pierdominici, M.; Maselli, A.; Colasanti, T.; Giammarioli, A.M.; Delunardo, F.; Vacirca, D.; Sanchez, M.; Giovannetti, A.; Malorni, W.; Ortona, E. Estrogen receptor profiles in human peripheral blood lymphocytes. Immunol. Lett. 2010, 132, 79–85. [Google Scholar] [CrossRef]
- Curran, E.M.; Berghaus, L.J.; Vernetti, N.J.; Saporita, A.J.; Lubahn, D.B.; Estes, D.M. Natural killer cells express estrogen receptor-alpha and estrogen receptor-beta and can respond to estrogen via a non-estrogen receptor-alpha-mediated pathway. Cell. Immunol. 2001, 214, 12–20. [Google Scholar] [CrossRef]
- Hao, S.; Zhao, J.; Zhou, J.; Zhao, S.; Hu, Y.; Hou, Y. Modulation of 17beta-estradiol on the number and cytotoxicity of nk cells in vivo related to mcm and activating receptors. Int. Immunopharmacol. 2007, 7, 1765–1775. [Google Scholar] [CrossRef]
- Hao, S.; Li, P.; Zhao, J.; Hu, Y.; Hou, Y. 17beta-estradiol suppresses cytotoxicity and proliferative capacity of murine splenic nk1.1+ cells. Cell. Mol. Immunol. 2008, 5, 357–364. [Google Scholar] [CrossRef]
- Wood, P.A.; Bove, K.; You, S.; Chambers, A.; Hrushesky, W.J. Cancer growth and spread are saltatory and phase-locked to the reproductive cycle through mediators of angiogenesis. Mol. Cancer Ther. 2005, 4, 1065–1075. [Google Scholar] [CrossRef]
- White, C.M.; Talati, R.; Phung, O.J.; Baker, W.L.; Reinhart, K.; Sedrakyan, A.; Kluger, J.; Coleman, C.I. Benefits and risks associated with beta-blocker prophylaxis in noncardiac surgery. Am. J. Health Syst. Pharm. 2010, 67, 523–530. [Google Scholar] [CrossRef]
- Avraham, R.; Benish, M.; Inbar, S.; Bartal, I.; Rosenne, E.; Ben-Eliyahu, S. Synergism between immunostimulation and prevention of surgery-induced immune suppression: An approach to reduce post-operative tumor progression. Brain Behav. Immun. 2010, 24, 952–958. [Google Scholar] [CrossRef]
- Weiss, J.M.; Subleski, J.J.; Wigginton, J.M.; Wiltrout, R.H. Immunotherapy of cancer by il-12-based cytokine combinations. Expert Opin. Biol. Ther. 2007, 7, 1705–1721. [Google Scholar] [CrossRef]
- Wigginton, J.M.; Wiltrout, R.H. Il-12/il-2 combination cytokine therapy for solid tumours: Translation from bench to bedside. Expert Opin. Biol. Ther. 2002, 2, 513–524. [Google Scholar] [CrossRef]
- Murad, Y.M.; Clay, T.M. Cpg oligodeoxynucleotides as tlr9 agonists: Therapeutic applications in cancer. Bio. Drugs 2009, 23, 361–375. [Google Scholar]
- Seya, T.; Matsumoto, M. The extrinsic rna-sensing pathway for adjuvant immunotherapy of cancer. Cancer Immunol. Immunother. 2009, 58, 1175–1184. [Google Scholar] [CrossRef]
- Schwartz, Y.; Avraham, R.; Benish, M.; Rosenne, E.; Ben-Eliyahu, S. Prophylactic il-12 treatment reduces postoperative metastasis: Mediation by increased numbers but not cytotoxicity of nk cells. Breast Cancer Res. Treat. 2008, 107, 211–223. [Google Scholar] [CrossRef]
- Goldfarb, Y.; Benish, M.; Rosenne, E.; Melamed, R.; Levi, B.; Glasner, A.; Ben-Eliyahu, S. Cpg-c oligodeoxynucleotides limit the deleterious effects of beta-adrenoceptor stimulation on nk cytotoxicity and metastatic dissemination. J. Immunother. 2009, 32, 280–291. [Google Scholar] [CrossRef]
- Goldfarb, Y.; Levi, B.; Sorski, L.; Frenkel, D.; Ben-Eliyahu, S. Cpg-c immunotherapeutic efficacy is jeopardized by ongoing exposure to stress: Potential implications for clinical use. Brain Behav. Immun. 2010. [Google Scholar] [CrossRef]
- R, A.; S, B.-E. Neuroendocrine regulation of cancer progression: Ii. Immunological mechanisms, clinical relevance, and prophylactic measures, Fourth ed.; Elsevier: Amsterdam, 2007; pp. 251–265. [Google Scholar]
- Benjamin, B.; Hazut, O.; Shaashua, L.; Benish, M.; Zmora, N.; Barshack, I.; Hoffman, A.; Ben-Eliyahu, S.; Zmora, O. Effect of beta blocker combined with cox-2 inhibitor on colonic anastomosis in rats. Int. J. Colorectal. Dis. 2010, 25, 1459–1461. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Benish, M.; Ben-Eliyahu, S. Surgery as a Double-Edged Sword: A Clinically Feasible Approach to Overcome the Metastasis-Promoting Effects of Surgery by Blunting Stress and Prostaglandin Responses. Cancers 2010, 2, 1929-1951. https://doi.org/10.3390/cancers2041929
Benish M, Ben-Eliyahu S. Surgery as a Double-Edged Sword: A Clinically Feasible Approach to Overcome the Metastasis-Promoting Effects of Surgery by Blunting Stress and Prostaglandin Responses. Cancers. 2010; 2(4):1929-1951. https://doi.org/10.3390/cancers2041929
Chicago/Turabian StyleBenish, Marganit, and Shamgar Ben-Eliyahu. 2010. "Surgery as a Double-Edged Sword: A Clinically Feasible Approach to Overcome the Metastasis-Promoting Effects of Surgery by Blunting Stress and Prostaglandin Responses" Cancers 2, no. 4: 1929-1951. https://doi.org/10.3390/cancers2041929