Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors
Abstract
:1. Introduction
WHO 2000 | WHO 2010 |
---|---|
1. Well-differentiated endocrine tumour (WDET) | 1. NET G1 (carcinoid) NET G2 (carcinoid) * |
2. Well-differentiated endocrine carcinoma (WDEC) | |
3. Poorly differentiated endocrine carinoma/small cell carcinoma (PDEC) | 2. NEC G3 large or small cell type |
4. Mixed exocrine-endocrine carcinoma (MEEC) | 3. Mixed adenoneuroendocrine carcinoma (MANEC) |
5. Tumour-like lesions (TLL) | 4. Hyperplastic and preneoplastic lesions |
2. Medical Treatment of NEN
2.1. Aims of Treatment
- Inhibition of hormone secretion for symptomatic relief in hormonally active tumors;
- Improving or maintaining quality of life;
- Inhibition of tumor growth;
- Prevention of complications (carcinoid crisis, carcinoid heart disease, bleeding, ileus);
- Prolongation of survival.
2.2. Somatostatin Analogues
First Author and Year | Patients | SSA/Dose | Progression Prior to Treatment | PR(%) | SD(%) | Additional Remarks |
---|---|---|---|---|---|---|
Vinik 1989 [18] | 14; carcinoid and pNET | Oct sc100 µg–250 µgq 6–12 h | no | 20 * | 50 | * any regression |
Öberg 1991 [19] | 23 midgut carcinoids | Oct sc 50 µg–100 mgq 12 h | no | 28 | 36 | |
Saltz 1993 [20] | 34 carcinoid and pNET | Oct 150 µg–250 µg t.i.d. | yes | 0 | 50 | |
Arnold 1996 [21] | 103 GEPNET | Oct sc 200 µg–500 µgt.i.d. | in 50% | 0 | 37 a/54 b | a in patients with documented progression b in patients without documented progression |
di Bartolomeo 1996 [22] | 58 GEPNET | Oct sc 500 mg–1000 mgt.i.d. | yes | 3 | 47 | |
Tomassetti 1998 [23] | 18 GEPNET | Lan i.m. 30 mg q 10 d | no | 0 | 78 | |
Wymenga 1999 [24] | 55 functioning GEPNET | Lan i.m. 30 mg q 14 d to q 7 d | no | 6 | 81 | |
Faiss 1999 [25] | 30 GEPNET | Lan sc 5000 µg t.i.d. | yes | 6.6 | 37 | |
Ricci 2000 [26] | 15 GEPNET | Oct LAR 20 mg q 28 d | yes | 7 | 40 | |
Tomassetti 2000 [27] | 16 GEPNET | Oct LAR 20 mg q 28 d | no | 0 | 87.5 | |
Aparicio 2001 [28] | 35 GEPNET | Oct sc 100 µg t.i.d. or Lan i.m. 30 mg q 14 d to q 7 d or both | yes | 2.9 | 57.1 | |
Shojamanesh 2002 [29] | 15 gastrinoma | Oct sc or Oct LAR | yes | 6 | 47 | |
Faiss 2003 [30] | 25 GEPNET | Lan sc 1000 µg t.i.d. | yes | 4 | 28 | |
Bajetta 2006 [31] | 30 GEPNET | LAN MP 60 q 21 d | no | 3.6 | 64.3 | |
30 GEPNET | LAN AG 120 q 42 d | 0 | 67.9 | |||
Panzuto 2006 [32] | 21 pNET | Oct LAR 30 mg q 28 d | yes | 0 | 45 | |
Rinke 2009 [33] | 85 midgut NET | Oct LAR 30 mg q 28 d versus placebo | no | 2.4 a | 67 a | a at 6 months of treatmentPFS 14.5 versus 6.0 months |
2.3. α-Interferon
2.4. mTOR Inhibitors
Toxicity
2.5. Multikinase Inhibitors
First Author and Year | patients | Number of Patients | Regimen | PD Prior to Treatment | Design | PR | TTP/PFS | Additional Remarks |
---|---|---|---|---|---|---|---|---|
Hobday 2007 [45], (abstract) | carcinoid | 50 | sorafenib 400 mg bid | no | phase II | 10% | 7.8 months | 43% grade 3/4 toxicity |
pNET | 43 | 11.9 months | ||||||
Yao 2008 [46] | carcinoid | 22 | octreotide + bevacizumab | no | randomized phase II | 18% | 95% at week 18 | |
22 | octreotide + PEGIFN | 0% | 68% at week 18 | |||||
Kulke 2008 [47] | carcinoid | 41 | sunitinib 37.5 mg | no | phase II | 2.4% | 10.2 months | |
pNET | 66 | 16.7% | 7.7 months | |||||
Raymond 2011 [48] | pNET | 171 | sunitinib 37.5 mg | yes | randomized phase III, placebo-controlled | 9.3% | 11.4 months versus 5.5 months (placebo) | 340 planned patients; survival advantage |
Phan 2010 [49], (abstract) | carcinoid | 20 | octreotide + pazopanib 800 mg | no | phase II | 0% | 12.7 months | grade 3/4 hypertension 11.7% |
pNET | 31 | 19% | 11.7 months | |||||
Duran 2006 [40] | GEPNET | 37 | temsirolimus | yes | phase II | 6% | 6 months | |
Yao 2008 [41] | carcinoid | 30 | 5–10 mg everolimus + octreotide | no | phase II | 17% | 63 weeks | trend to better results at 10 mg dose level |
pNET | 30 | 27% | 50 weeks | |||||
Yao 2010 [42] | pNET | 115 | 10 mg everolimus | yes | phase II | 9.7% | 9.7 months | 2 strata, no randomization |
45 | 10 mg everolimus + octreotide | 4.4% | 17 months | |||||
Yao 2011 [43] | pNET | 410 | 10 mg everolimus versus placebo | yes | randomized phase III, placebo-controlled | 5% | 11.4 months versus 5.4 months (placebo) | |
Pavel 2010 [44], (abstract) | carcinoid syndrome | 429 | 10 mg everolimus + octreotide versus placebo + octreotide | yes | randomized phase III, placebo-controlled | 16.4 months versus 11.3 months | only 50% intestinal primary, mixed population |
Toxicity and Quality of Life
2.6. Chemotherapy
2.6.1. Chemotherapy in G3 Neuroendocrine Carcinoma
2.6.2. Chemotherapy in G1/G2 NET of Pancreatic and Other Foregut Origin
2.7. Ongoing Trials and Future Perspectives
3. Conclusions
Conflict of interest
References
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar]
- Hauso, O.; Gustafsson, B.I.; Kidd, M.; Waldum, H.L.; Drozdov, I.; Chan, A.K.; Modlin, I.M. Neuroendocrine tumor epidemiology: Contrasting Norway and North America. Cancer 2008, 113, 2655–2664. [Google Scholar] [CrossRef]
- Niederle, M.B.; Hackl, M.; Kaserer, K.; Niederle, B. Gastroenteropancreatic neuroendocrine tumours: The current incidence and staging based on the WHO and European Neuroendocrine Tumour Society classification: An analysis based on prospectively collected parameters. Endocr. Relat. Cancer 2010, 17, 909–918. [Google Scholar] [CrossRef]
- Rindi, G.; Arnold, R.; Bosman, F.T.; Capella, C.; Klimstra, D.S.; Klöppel, G.; Komminoth, P.; Solcia, P. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumors of the Digestive System; Bosman, F.T., Carneiro, F., Hruban, R.H., Theise, N.D., Eds.; IARC: Lyon, France, 2010; pp. S13–S14. [Google Scholar]
- Rindi, G.; Klöppel, G.; Alhman, H.; Caplin, M.; Couvelard, A.; de Herder, W.W.; Erikssson, B.; Falchetti, A.; Falconi, M.; Komminoth, P.; et al. TNM staging of foregut (neuro)endocrine tumors: A consensus proposal including a grading system. Virchows Arch. 2006, 449, 395–401. [Google Scholar] [CrossRef]
- Rindi, G.; Klöppel, G.; Couvelard, A.; Komminoth, P.; Körner, M.; Lopes, J.M.; McNicol, A.M.; Nilsson, O.; Perren, A.; Scarpa, A.; et al. TNM staging of midgut and hindgut (neuro)endocrine tumors: A consensus proposal including a grading system. Virchows Arch. 2007, 451, 757–762. [Google Scholar] [CrossRef]
- Modlin, I.M.; Pavel, M.; Kidd, M.; Gustafsson, B.I. Review article: Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 2010, 31, 169–188. [Google Scholar]
- Long, R.G.; Peters, J.R.; Bloom, S.R.; Brown, M.R.; Vale, W.; Rivier, J.E.; Grahame-Smith, D.G. Somatostatin, gastrointestinal peptides, and the carcinoid syndrome. Gut 1981, 22, 549–553. [Google Scholar] [CrossRef]
- Wood, S.M.; Kraenzlin, M.E.; Adrian, T.E.; Bloom, S.R. Treatment of patients with pancreatic endocrine tumours using a new long-acting somatostatin analogue symptomatic and peptide responses. Gut 1985, 26, 438–444. [Google Scholar] [CrossRef]
- Kvols, L.K.; Moertel, C.G.; O'Connell, M.J.; Schutt, A.J.; Rubin, J.; Hahn, R.G. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N. Engl. J. Med. 1986, 315, 663–666. [Google Scholar] [CrossRef]
- Kvols, L.K.; Martin, J.K.; Marsh, H.M.; Moertel, C.G. Rapid reversal of carcinoid crisis with a somatostatin analogue. N. Engl. J. Med. 1985, 313, 1229–1230. [Google Scholar]
- Bhattacharyya, S.; Toumpanakis, C.; Chilkunda, D.; Caplin, M.E.; Davar, J. Risk factors for the development and progression of carcinoid heart disease. Am. J. Cardiol. 2011, 107, 1221–1226. [Google Scholar] [CrossRef]
- Koop, H.; Klein, M.; Arnold, R. Acid inhibitory effects of somatostatin analog in malignant gastrinomas. J. Clin. Gastroenterol. 1990, 12, 120–121. [Google Scholar]
- Jensen, R.T.; Niederle, B.; Mitry, E.; Ramage, J.K.; Steinmuller, T.; Lewington, V.; Scarpa, A.; Sundin, A.; Perren, A.; Gross, D.; et al. Gastrinoma (duodenal and pancreatic). Neuroendocrinology 2006, 84, 173–182. [Google Scholar] [CrossRef]
- O'Toole, D.; Ducreux, M.; Bommelaer, G.; Wemeau, J.L.; Bouché, O.; Catus, F.; Blumberg, J.; Ruszniewski, P. Treatment of carcinoid syndrome: A prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer 2000, 88, 770–776. [Google Scholar] [CrossRef]
- Schmid, H.A.; Schoeffter, P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology 2004, 80, 47–50. [Google Scholar] [CrossRef]
- Susini, C.; Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 2006, 17, 1733–1742. [Google Scholar] [CrossRef]
- Vinik, A.; Moattari, A.R. Use of somatostatin analog in management of carcinoid syndrome. Dig. Dis. Sci. 1989, 34, 14–27. [Google Scholar] [CrossRef]
- Oberg, K.; Norheim, I.; Theodorsson, E. Treatment of malignant midgut carcinoid tumours with a long-acting somatostatin analogue octreotide. Acta Oncol. 1991, 30, 503–507. [Google Scholar] [CrossRef]
- Saltz, L.; Trochanowski, B.; Buckley, M.; Heffernan, B.; Niedzwiecki, D.; Tao, Y.; Kelsen, D. Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer 1993, 72, 244–248. [Google Scholar] [CrossRef]
- Arnold, R.; Trautmann, M.E.; Creutzfeldt, W.; Benning, R.; Benning, M.; Neuhaus, C.; Jürgensen, R.; Stein, K.; Schäfer, H.; Bruns, C.; et al. Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 1996, 38, 430–438. [Google Scholar] [CrossRef]
- di Bartolomeo, M.; Bajetta, E.; Buzzoni, R.; Mariani, L.; Carnaghi, C.; Somma, L.; Zilembo, N.; di Leo, A. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors. A study by the Italian Trials in Medical Oncology Group. Cancer 1996, 77, 402–408. [Google Scholar] [CrossRef]
- Tomassetti, P.; Migliori, M.; Gullo, L. Slow-release lanreotide treatment in endocrine gastrointestinal tumors. Am. J. Gastroenterol. 1998, 93, 1468–1471. [Google Scholar] [CrossRef]
- Wymenga, A.N.; Eriksson, B.; Salmela, P.I.; Jacobsen, M.B.; van Cutsem, E.J.; Fiasse, R.H.; Välimäki, M.J.; Renstrup, J.; de Vries, E.G.; Oberg, K.E. Efficacy and safety of prolonged-release lanreotide in patients with gastrointestinal neuroendocrine tumors and hormone-related symptoms. J. Clin. Oncol. 1999, 17, 1111. [Google Scholar]
- Faiss, S.; Räth, U.; Mansmann, U.; Caird, D.; Clemens, N.; Riecken, E.O.; Wiedenmann, B. Ultra-high-dose lanreotide treatment in patients with metastatic neuroendocrine gastroenteropancreatic tumors. Digestion 1999, 60, 469–476. [Google Scholar] [CrossRef]
- Ricci, S.; Antonuzzo, A.; Galli, L.; Ferdeghini, M.; Bodei, L.; Orlandini, C.; Conte, P.F. Octreotide acetate long-acting release in patients with metastatic neuroendocrine tumors pretreated with lanreotide. Ann. Oncol. 2000, 11, 1127–1130. [Google Scholar] [CrossRef]
- Tomassetti, P.; Migliori, M.; Corinaldesi, R.; Gullo, L. Treatment of gastroenteropancreatic neuroendocrine tumours with octreotide LAR. Aliment. Pharmacol. Ther. 2000, 14, 557–560. [Google Scholar] [CrossRef]
- Aparicio, T.; Ducreux, M.; Baudin, E.; Sabourin, J.C.; de Baere, T.; Mitry, E.; Schlumberger, M.; Rougier, P. Antitumour activity of somatostatin analogues in progressive metastatic neuroendocrine tumours. Eur. J. Cancer 2001, 37, 1014–1019. [Google Scholar]
- Shojamanesh, H.; Gibril, F.; Louie, A.; Ojeaburu, J.V.; Bashir, S.; Abou-Saif, A.; Jensen, R.T. Prospective study of the antitumor efficacy of long-term octreotide treatment in patients with progressive metastatic gastrinoma. Cancer 2002, 94, 331–343. [Google Scholar] [CrossRef]
- Faiss, S.; Pape, U.F.; Böhmig, M.; Dörffel, Y.; Mansmann, U.; Golder, W.; Riecken, E.O.; Wiedenmann, B. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors—The International Lanreotide and Interferon Alfa Study Group. J. Clin. Oncol. 2003, 21, 2689–2696. [Google Scholar]
- Bajetta, E.; Procopio, G.; Catena, L.; Martinetti, A.; de Dosso, S.; Ricci, S.; Lecchi, A.S.; Boscani, P.F.; Iacobelli, S.; Carteni, G.; et al. Lanreotide autogel every 6 weeks compared with Lanreotide microparticles every 3 weeks in patients with well differentiated neuroendocrine tumors: A Phase III Study. Cancer 2006, 107, 2474–2481. [Google Scholar]
- Panzuto, F.; di Fonzo, M.; Iannicelli, E.; Sciuto, R.; Maini, C.L.; Capurso, G.; Milione, M.; Cattaruzza, M.S.; Falconi, M.; David, V.; et al. Long-term clinical outcome of somatostatin analogues for treatment of progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinoma. Ann. Oncol. 2006, 17, 461–466. [Google Scholar]
- Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar]
- Oberg, K. Interferon in the management of neuroendocrine GEP-tumors: A review. Digestion 2000, 62, 92–97. [Google Scholar] [CrossRef]
- Oberg, K.; Norheim, I.; Theodorsson, E. Treatment of malignant midgut carcinoid tumours with a long-acting somatostatin analogue octreotide. Acta Oncol. 1991, 30, 503–507. [Google Scholar] [CrossRef]
- Arnold, R.; Rinke, A.; Klose, K.; Müller, H.; Wied, M.; Zamzow, K.; Schmidt, C.; Schade-Brittinger, C.; Barth, P.; Moll, R.; et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: A randomized trial. Clin. Gastroenterol. Hepatol. 2005, 3, 761–771. [Google Scholar]
- Pavel, M.E.; Baum, U.; Hahn, E.G.; Schuppan, D.; Lohmann, T. Efficacy and tolerability of pegylated IFN-alpha in patients with neuroendocrine gastroenteropancreatic carcinomas. J. Interferon Cytokine Res. 2006, 26, 8–13. [Google Scholar] [CrossRef]
- Johannessen, C.M.; Reczek, E.E.; James, M.F.; Brems, H.; Legius, E.; Cichowski, K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA 2005, 102, 8573–8578. [Google Scholar]
- Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; della Peruta, M.; Piemonti, L.; Capurso, G.; di Florio, A.; delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 2010, 28, 245–255. [Google Scholar]
- Duran, I.; Kortmansky, J.; Singh, D.; Hirte, H.; Kocha, W.; Goss, G.; Le, L.; Oza, A.; Nicklee, T.; Ho, J.; et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br. J. Cancer 2006, 95, 1148–1154. [Google Scholar] [CrossRef]
- Yao, J.C.; Phan, A.T.; Chang, D.Z.; Wolff, R.A.; Hess, K.; Gupta, S.; Jacobs, C.; Mares, J.E.; Landgraf, A.N.; Rashid, A.; et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: Results of a phase II study. J. Clin. Oncol. 2008, 26, 4311–4318. [Google Scholar]
- Yao, J.C.; Lombard-Bohas, C.; Baudin, E.; Kvols, L.K.; Rougier, P.; Ruszniewski, P.; Hoosen, S.; St. Peter, J.; Haas, T.; Lebwohl, D.; et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: A phase II trial. J. Clin. Oncol. 2010, 28, 69–76. [Google Scholar]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar]
- Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovski, J.; Lebwohl, D.; Jehl, V.; Wolin, E.M.; et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 378, 2005–2012. [Google Scholar]
- Hobday, T.J.; Rubin, J.; Holen, K.; Picus, J.; Donehower, R.; Marschke, R.; Maples, W.; Lloyd, R.; Mahoney, M.; Erlichman, C. MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J. Clin. Oncol. 2007, 25, 4504, (Meeting Abstracts). [Google Scholar]
- Yao, J.C.; Phan, A.; Hoff, P.M.; Chen, H.X.; Charnsangavej, C.; Yeung, S.C.; Hess, K.; Ng, C.; Abbruzzese, J.L.; Ajani, J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J. Clin. Oncol. 2008, 26, 1316–1323. [Google Scholar]
- Kulke, M.H.; Lenz, H.J.; Meropol, N.J.; Posey, J.; Ryan, D.P.; Picus, J.; Bergsland, E.; Stuart, K.; Tye, L.; Huang, X.; et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 2008, 26, 3403–3410. [Google Scholar]
- Raymond, E.; Dahan, L.; Raoul, J.L.; Bang, Y.J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar]
- Phan, A.T.; Yao, J.C.; Fogelman, D.R.; Hess, K.R.; Ng, C.S.; Bullock, S.A.; Malinowski, P.; Regan, E.; Kulke, M. A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J. Clin. Oncol. 2010, 28, 4001, (Meeting Abstracts). [Google Scholar]
- Moertel, C.G.; Kvols, L.K.; O'Connell, M.J.; Rubin, J. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 1991, 68, 227–232. [Google Scholar] [CrossRef]
- Mitry, E.; Baudin, E.; Ducreux, M.; Sabourin, J.C.; Rufié, P.; Aparicio, T.; Lasser, P.; Elias, D.; Duvillard, P.; Schlumberger, M.; et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br. J. Cancer 1999, 81, 1351–1355. [Google Scholar]
- Hainsworth, J.D.; Spigel, D.R.; Litchy, S.; Greco, F.A. Phase II trial of paclitaxel, carboplatin, and etoposide in advanced poorly differentiated neuroendocrine carcinoma: A minnie pearl cancer research network study. J. Clin. Oncol. 2006, 24, 3548–3554. [Google Scholar]
- Bajetta, E.; Catena, L.; Procopio, G.; de Dosso, S.; Bichisao, E.; Ferrari, L.; Martinetti, A.; Platania, M.; Verzoni, E.; Formisano, B.; et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother. Pharmacol. 2007, 59, 637–642. [Google Scholar] [CrossRef]
- Olsen, I.H.; Langer, S.W.; Jepsen, I.; Assens, M.; Federspiel, B.; Hasselby, J.P.; Hansen, C.P.; Kjær, A.; Knigge, U. First-line treatment of patients with disseminated poorly differentiated neuroendocrine carcinomas with carboplatin, etoposide, and vincristine: A single institution experience. Acta Oncol. 2012, 51, 97–100. [Google Scholar] [CrossRef]
- Okita, N.T.; Kato, K.; Takahari, D.; Hirashima, Y.; Nakajima, T.E.; Matsubara, J.; Hamaguchi, T.; Yamada, Y.; Shimada, Y.; Taniguchi, H.; et al. Neuroendocrine tumors of the stomach: Chemotherapy with cisplatin plus irinotecan is effective for gastric poorly-differentiated neuroendocrine carcinoma. Gastric. Cancer 2011, 14, 161–165. [Google Scholar]
- Welin, S.; Sorbye, H.; Sebjornsen, S.; Knappskog, S.; Busch, C.; Oberg, K. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer 2011, 117, 4617–4622. [Google Scholar]
- Moertel, C.G.; Hanley, J.A.; Johnson, L.A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1980, 303, 1189–1194. [Google Scholar] [CrossRef]
- Moertel, C.G.; Lefkopoulo, M.; Lipsitz, S.; Hahn, R.G.; Klaassen, D. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1992, 326, 519–523. [Google Scholar]
- Eriksson, B.; Skogseid, B.; Lundqvist, G.; Wide, L.; Wilander, E.; Oberg, K. Medical treatment and long-term survival in a prospective study of 84 patients with endocrine pancreatic tumors. Cancer 1990, 65, 1883–1890. [Google Scholar] [CrossRef]
- Delaunoit, T.; Ducreux, M.; Boige, V.; Dromain, C.; Sabourin, J.C.; Duvillard, P.; Schlumberger, M.; de Baere, T.; Rougier, P.; Ruffie, P.; et al. The doxorubicin-streptozotocin combination for the treatment of advanced well-differentiated pancreatic endocrine carcinoma; a judicious option? Eur. J. Cancer 2004, 40, 515–520. [Google Scholar]
- Cheng, P.N.; Saltz, L.B. Failure to confirm major objective antitumor activity for streptozocin and doxorubicin in the treatment of patients with advanced islet cell carcinoma. Cancer 1999, 86, 944–948. [Google Scholar] [CrossRef]
- Kouvaraki, M.A.; Ajani, J.A.; Hoff, P.; Wolff, R.; Evans, D.B.; Lozano, R.; Yao, J.C. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J. Clin. Oncol. 2004, 22, 4762–4771. [Google Scholar] [CrossRef]
- Sun, W.; Lipsitz, S.; Catalano, P.; Mailliard, J.A.; Haller, D.G. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J. Clin. Oncol. 2005, 23, 4897–4904. [Google Scholar] [CrossRef]
- Altimari, A.F.; Badrinath, K.; Reisel, H.J.; Prinz, R.A. DTIC therapy in patients with malignant intra-abdominal neuroendocrine tumors. Surgery 1987, 102, 1009–1017. [Google Scholar]
- Ramanathan, R.K.; Cnaan, A.; Hahn, R.G.; Carbone, P.P.; Haller, D.G. Phase II trial of dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282. Ann. Oncol. 2001, 12, 1139–1143. [Google Scholar] [CrossRef]
- Bajetta, E.; Rimassa, L.; Carnaghi, C.; Seregni, E.; Ferrari, L.; di Bartolomeo, M.; Regalia, E.; Cassata, A.; Procopio, G.; Mariani, L. 5-Fluorouracil, dacarbazine, and epirubicin in the treatment of patients with neuroendocrine tumors. Cancer 1998, 83, 372–378. [Google Scholar]
- Ekeblad, S.; Sundin, A.; Janson, E.T.; Welin, S.; Granberg, D.; Kindmark, H.; Dunder, K.; Kozlovacki, G.; Orlefors, H.; Sigurd, M.; et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin. Cancer Res. 2007, 13, 2986–2991. [Google Scholar]
- Kulke, M.H.; Stuart, K.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Muzikansky, A.; Vincitore, M.; Michelini, A.; Fuchs, C.S. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J. Clin. Oncol. 2006, 24, 401–406. [Google Scholar]
- Strosberg, J.R.; Fine, R.L.; Choi, J.; Nasir, A.; Coppola, D.; Chen, D.T.; Helm, J.; Kvols, L. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011, 117, 268–275. [Google Scholar]
- Gilbert, J.A.; Adhikari, L.J.; Lloyd, R.V.; Rubin, J.; Haluska, P.; Carboni, J.M.; Gottardis, M.M.; Ames, M.M. Molecular markers for novel therapies in neuroendocrine (carcinoid) tumors. Endocr. Relat. Cancer 2010, 17, 623–636. [Google Scholar] [CrossRef]
- di Florio, A.; Adesso, L.; Pedrotti, S.; Capurso, G.; Pilozzi, E.; Corbo, V.; Scarpa, A.; Geremia, R.; Delle Fave, G.; Sette, C. Src kinase activity coordinates cell adhesion and spreading with activation of mammalian target of rapamycin in pancreatic endocrine tumour cells. Endocr. Relat. Cancer 2011, 18, 541–554. [Google Scholar] [CrossRef]
- Fendrich, V.; Wiese, D.; Waldmann, J.; Lauth, M.; Heverhagen, A.E.; Rehm, J.; Bartsch, D.K. Hedgehog inhibition with the orally bioavailable Smo antagonist LDE225 represses tumor growth and prolongs survival in a transgenic mouse model of islet cell neoplasms. Ann. Surg. 2011, 254, 818–823. [Google Scholar] [CrossRef]
- Svejda, B.; Kidd, M.; Kazberouk, A.; Lawrence, B.; Pfragner, R.; Modlin, I.M. Limitations in small intestinal neuroendocrine tumor therapy by mTor kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer 2011, 117, 4141–4154. [Google Scholar] [CrossRef]
- Chiu, C.W.; Nozawa, H.; Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol. 2010, 28, 4425–4433. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rinke, A.; Michl, P.; Gress, T. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors. Cancers 2012, 4, 113-129. https://doi.org/10.3390/cancers4010113
Rinke A, Michl P, Gress T. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors. Cancers. 2012; 4(1):113-129. https://doi.org/10.3390/cancers4010113
Chicago/Turabian StyleRinke, Anja, Patrick Michl, and Thomas Gress. 2012. "Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors" Cancers 4, no. 1: 113-129. https://doi.org/10.3390/cancers4010113
APA StyleRinke, A., Michl, P., & Gress, T. (2012). Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors. Cancers, 4(1), 113-129. https://doi.org/10.3390/cancers4010113