99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies
Abstract
:1. Introduction
Tumor response rate | Abbreviation | RECIST |
---|---|---|
Complete response | CR | Disappearance of all target lesions |
Partial response | PR | ≥30% Decrease in the sum of diameters of target lesions |
Progressive disease | PD | ≥20% Increase in the sum of diameters of target lesions and an absolute increase of 5 mm |
Stable disease | SD | Small changes that do not meet above criteria |
2. Apoptosis
3. Phosphatidylserine Externalization
4. Annexin A5
5. Annexin A5 Imaging of Cell Death
6. 99mTc-HYNIC-Annexin A5 Evaluation of Efficacy of Anti-Cancer Therapies
6.1. Baseline Measurements
Reference | Patients (n) | Imaging time-points | Aim of the study | End points | Results |
---|---|---|---|---|---|
Van de Wiele et al. 2003 [56] | HNC (18) | Baseline | Identifying the relationship between baseline quantitative 99mTc-HYNIC-Annexin A5 tumor uptake and the number of apoptotic cells derived from histologic analysis after surgical resection. | n.a. | Quantitative 99mTc-HYNIC-Annexin A5 tumor uptake correlated well with the number of apoptotic cells if only tumor samples with no or minimal amounts of necrosis were considered. |
Vermeersch, Ham et al. 2004 [58] | HNC (11) | Baseline | Estimation of the intra-, inter-, and day-to-day reproducibility of quantitative 99mTc-HYNIC-Annexin A5 tumor uptake values. | n.a. | The mean differences for the intra-, inter-. and day-to-day measurements were −3.4%, 2.4%, and −6%, respectively. |
Vermeersch, Loose et al. 2004 [59] | HNC (18) | Baseline | 99mTc-HYNIC-Annexin A5 visualization of primary HNC lesions and lymph nodes before surgical resection and lymph node dissection. | n.a. | 99mTc-HYNIC-Annexin A5 allowed for the visualization of all primary HNC tumors identified by CT scan, but failed to identify most of the sites of lymph node involvement. |
Haas et al. 2004 [66] | FL (11) | Baseline + up to 48 h ASOT | Evaluation of 99mTc-HYNIC-Annexin A5 imaging for monitoring radiation-induced apoptotic cell death. | n.a. | In 10 patients, post-treatment cytology matched 99mTc-HYNIC-Annexin A5 uptake ASOT. Baseline uptake was weak or absent. |
Kartachova et al. 2004 [67] | FL (22) NSCLC (5) HNC (2) | Baseline + up to 72 h ASOT | Predicting outcome of various treatments by 99mTc-HYNIC-Annexin A5 imaging. | TRR | Only patients with a CR or PR showed a significant increase in 99mTc-HYNIC-Annexin A5 uptake ASOT. |
Rottey et al. 2006 [71] | M (3) Bl (1) BrC (5) HNC (2) Other (6) | Baseline + 5–7 and 40–44 h ASOT | Predicting outcome of chemotherapy by 99mTc-HYNIC-Annexin A5 imaging. | TRR | 99mTc-HYNIC-Annexin A5 imaging allowed for separation of responders and non-responders to treatment in 16 of the 17 patients. |
Rottey et al. 2007 [60] | HNC (8) BrC (6) M (2) Other (7) | Baseline | Predicting outcome of (radio)chemotherapy by baseline uptake of 99mTc-HYNIC-Annexin. | TRR | Significantly higher pre-treatment tracer uptake was found in therapy responders (CR, PR) compared to non-responders (PD, SD). |
Kartachova et al. 2007 [68] | NSCLC (14) | Baseline + up to 48 h ASOT | Predicting outcome of platinum-based chemotherapy by 99mTc-HYNIC-Annexin A5 imaging. | TRR | Patients with notably increased 99mTc-HYNIC-Annexin A5 uptake showed CR or PR. SD or PD showed less prominently increased or decreased tracer uptake. |
Kartachova et al. 2008 [69] | NSCLC (4) HNC (3) FL (26) | Baseline + 24–48 h ASOT | Identifying the reliability of visual analysis of 99mTc-HYNIC-Annexin A5 tumor uptake compared to quantitative tracer uptake evaluation. | TRR | Both visual (r = 0.97, p < 0.0001) and quantitative (r = 0.99, p < 0.0001) analysis of 99mTc-HYNIC-Annexin A5 tumor uptake significantly correlated with TRR. |
Hoebers et al. 2008 [70] | HNC (13) | Baseline + up to 24 h ASOT | Predicting outcome of cisplatin-based chemoradiation by 99mTc-HYNIC-Annexin A5 imaging. | TRR DFS OS | 99mTc-HYNIC-Annexin A5 imaging showed a radiation-dose-dependent uptake in parotid glands. No correlation could be established between baseline or treatment induced tracer uptake and TRR, DFS or OS. |
Loose et al. 2008 [61] | HNC (29) | Baseline | Identifying prognostic value of baseline 99mTc-HYNIC-Annexin A5 imaging. | DFS OS | 99mTc-HYNIC-Annexin A5 pre-treatment uptake was inversely correlated with DFS and OS. |
Rottey et al. 2009 [72] | HNC (4) BrC (2) Other (5) | 2× Baseline within 40–44 h from each other or baseline + 5–7 and 40–44 h ASOT | Determining the influence of chemotherapy on the biodistribution of 99mTc-HYNIC-Annexin in healthy tissues. | n.a. | No significant differences in 99mTc-HYNIC-Annexin uptake in healthy tissues were found between patients which received chemotherapy and which did not. |
6.2. Therapy Response Measurements
7. Implications for Health Care
8. Discussion
9. Conclusions
Acknowledgments
References
- Therasse, P. Measuring the clinical response. What does it mean? Eur. J. Cancer 2002, 38, 1817–1823. [Google Scholar] [CrossRef]
- Padhani, A.R.; Husband, J.E. Are current tumour response criteria relevant for the 21st century? Br. J. Radiol. 2000, 73, 1031–1033. [Google Scholar]
- Bradbury, P.; Seymour, L. Tumor shrinkage and objective response rates: Gold standard for oncology efficacy screening trials, or an outdated end point? Cancer J. 2009, 15, 354–360. [Google Scholar]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef]
- De Saint-Hubert, M.; Prinsen, K.; Mortelmans, L.; Verbruggen, A.; Mottaghy, F.M. Molecular imaging of cell death. Methods 2009, 48, 178–187. [Google Scholar] [CrossRef]
- Schilsky, R.L. End points in cancer clinical trials and the drug approval process. Clin. Cancer Res. 2002, 8, 935–938. [Google Scholar]
- Milas, L.; Stephens, L.C.; Meyn, R.E. Relation of apoptosis to cancer therapy. In Vivo 1994, 8, 665–673. [Google Scholar]
- Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589. [Google Scholar] [CrossRef]
- Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2003, 2, 123–131. [Google Scholar] [CrossRef]
- Milas, L.; Hunter, N.R.; Kurdoglu, B.; Mason, K.A.; Meyn, R.E.; Stephens, L.C.; Peters, L.J. Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian-tumors treated with taxol Cancer Chemother. Pharmacol. 1995, 35, 297–303. [Google Scholar]
- Meyn, R.E.; Stephens, L.C.; Hunter, N.R.; Milas, L. Induction of apoptosis in murine tumors by cyclophosphamide. Cancer Chemother. Pharmacol. 1994, 33, 410–414. [Google Scholar] [CrossRef]
- Ellis, P.A.; Smith, I.E.; McCarthy, K.; Detre, S.; Salter, J.; Dowsett, M. Preoperative chemotherapy induces apoptosis in early breast cancer. Lancet 1997, 349, 849. [Google Scholar] [CrossRef]
- Chang, J.; Ormerod, M.; Powles, T.J.; Allred, D.C.; Ashley, S.E.; Dowsett, M. Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer 2000, 89, 2145–2152. [Google Scholar] [CrossRef]
- Blankenberg, F.G.; Tait, J.; Ohtsuki, K.; Strauss, H.W. Apoptosis: The importance of nuclear medicine. Nucl. Med. Commun. 2000, 21, 241–250. [Google Scholar] [CrossRef]
- Hofstra, L.; Liem, I.H.; Dumont, E.A.; Boersma, H.H.; van Heerde, W.L.; Doevendans, P.A.; de Muinck, E.; Wellens, H.J.; Kemerink, G.J.; Reutelingsperger, C.P.; et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 2000, 356, 209–212. [Google Scholar] [CrossRef]
- Saraste, A.; Pulkki, K.; Kallajoki, M.; Henriksen, K.; Parvinen, M.; Voipio-Pulkki, L.M. Apoptosis in human acute myocardial infarction. Circulation 1997, 95, 320–323. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
- Ravichandran, K.S.; Lorenz, U. Engulfment of apoptotic cells: Signals for a good meal. Nat. Rev. Immunol. 2007, 7, 964–974. [Google Scholar] [CrossRef]
- Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992, 148, 2207–2216. [Google Scholar]
- Martin, S.J.; Reutelingsperger, C.P.M.; McGahon, A.J.; Rader, J.A.; Vanschie, R.; Laface, D.M.; Green, D.R. Early redistribution of plasma-membrane phosphatidylserine is a general feauture of apoptosis regardless of the initiating stimulus—Inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 1995, 182, 1545–1556. [Google Scholar]
- Ravichandran, K.S. Beginnings of a good apoptotic meal: The find-me and eat-me signaling pathways. Immunity 2011, 35, 445–455. [Google Scholar]
- Vangestel, C.; Peeters, M.; Mees, G.; Oltenfreiter, R.; Boersma, H.H.; Elsinga, P.H.; Reutelingsperger, C.; van Damme, N.; de Spiegeleer, B.; van de Wiele, C. In vivo imaging of apoptosis in oncology: An update. Mol. Imaging 2011, 10, 340–358. [Google Scholar]
- Zwaal, R.F.; Comfurius, P.; Bevers, E.M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci. 2005, 62, 971–988. [Google Scholar] [CrossRef]
- Blankenberg, F.G. Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin v. Proc. Am. Thorac. Soc. 2009, 6, 469–476. [Google Scholar] [CrossRef]
- Zwaal, R.F.; Schroit, A.J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997, 89, 1121–1132. [Google Scholar]
- Suzuki, J.; Umeda, M.; Sims, P.J.; Nagata, S. Calcium-dependent phospholipid scrambling by tmem16f. Nature 2010, 468, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Verhoven, B.; Schlegel, R.A.; Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic t lymphocytes. J. Exp. Med. 1995, 182, 1597–1601. [Google Scholar] [CrossRef]
- Blankenberg, F.G. In vivo imaging of apoptosis. Cancer Biol. Ther. 2008, 7, 1525–1532. [Google Scholar] [CrossRef]
- Blankenberg, F.G. Apoptosis imaging: Anti-cancer agents in medicinal chemistry. Anticancer Agents Med. Chem. 2009, 9, 944–951. [Google Scholar] [CrossRef]
- Van Genderen, H.O.; Kenis, H.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Extracellular annexin a5: Functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim. Biophys. Acta 2008, 1783, 953–963. [Google Scholar]
- Ran, S.; Thorpe, P.E. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1479–1484. [Google Scholar] [CrossRef]
- Kenis, H.; Zandbergen, H.R.; Hofstra, L.; Petrov, A.D.; Dumont, E.A.; Blankenberg, F.D.; Haider, N.; Bitsch, N.; Gijbels, M.; Verjans, J.W.; et al. Annexin a5 uptake in ischemic myocardium: Demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J. Nucl. Med. 2010, 51, 259–267. [Google Scholar] [CrossRef]
- Schutters, K.; Reutelingsperger, C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010, 15, 1072–1082. [Google Scholar] [CrossRef]
- Kenis, H.; van Genderen, H.; Bennaghmouch, A.; Rinia, H.A.; Frederik, P.; Narula, J.; Hofstra, L.; Reutelingsperger, C.P. Cell surface-expressed phosphatidylserine and annexin a5 open a novel portal of cell entry. J. Biol. Chem. 2004, 279, 52623–52629. [Google Scholar] [CrossRef]
- Koopman, G.; Reutelingsperger, C.P.M.; Kuijten, G.A.M.; Keehnen, R.M.J.; Pals, S.T.; Vanoers, M.H.J. Annexin-v for flow cytometric detection of phosphatidylserine expression on b-cells undergoing apoptosis. Blood 1994, 84, 1415–1420. [Google Scholar]
- Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin v. J. Immunol. Methods 1995, 184, 39–51. [Google Scholar] [CrossRef]
- Boersma, H.H.; Kietselaer, B.L.; Stolk, L.M.; Bennaghmouch, A.; Hofstra, L.; Narula, J.; Heidendal, G.A.; Reutelingsperger, C.P. Past, present, and future of annexin a5: From protein discovery to clinical applications. J. Nucl. Med. 2005, 46, 2035–2050. [Google Scholar]
- Boersma, H.H.; Stolk, L.M.; Kenis, H.; Deckers, N.M.; Vanderheyden, J.L.; Hofstra, L.; Heidendal, G.A.; Reutelingsperger, C.P. The apocorrect assay: A novel, rapid method to determine the biological functionality of radiolabeled and fluorescent annexin a5. Anal. Biochem. 2004, 327, 126–134. [Google Scholar] [CrossRef]
- Weiss, E.M.; Frey, B.; Rodel, F.; Herrmann, M.; Schlucker, E.; Voll, R.E.; Fietkau, R.; Gaipl, U.S. Ex vivo- and in vivo-induced dead tumor cells as modulators of antitumor responses. Ann. NY Acad. Sci. 2010, 1209, 109–117. [Google Scholar]
- Reutelingsperger, C.P. Annexins: Key regulators of haemostasis, thrombosis, and apoptosis. Thromb. Haemost. 2001, 86, 413–419. [Google Scholar]
- Kenis, H.; van Genderen, H.; Deckers, N.M.; Lux, P.A.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Annexin a5 inhibits engulfment through internalization of ps-expressing cell membrane patches. Exp. Cell Res. 2006, 312, 719–726. [Google Scholar] [CrossRef]
- Monceau, V.; Belikova, Y.; Kratassiouk, G.; Charue, D.; Camors, E.; Communal, C.; Trouve, P.; Russo-Marie, F.; Charlemagne, D. Externalization of endogenous annexin a5 participates in apoptosis of rat cardiomyocytes. Cardiovasc. Res. 2004, 64, 496–506. [Google Scholar] [CrossRef]
- Gidon-Jeangirard, C.; Hugel, B.; Holl, V.; Toti, F.; Laplanche, J.L.; Meyer, D.; Freyssinet, J.M. Annexin v delays apoptosis while exerting an external constraint preventing the release of cd4(+) and prpc+ membrane particles in a human t lymphocyte model. J. Immunol. 1999, 162, 5712–5718. [Google Scholar]
- Kemerink, G.J.; Liu, X.; Kieffer, D.; Ceyssens, S.; Mortelmans, L.; Verbruggen, A.M.; Steinmetz, N.D.; Vanderheyden, J.L.; Green, A.M.; Verbeke, K. Safety, biodistribution, and dosimetry of 99mtc-hynic-annexin v, a novel human recombinant annexin v for human application. J. Nucl. Med. 2003, 44, 947–952. [Google Scholar]
- Kurihara, H.; Yang, D.J.; Cristofanilli, M.; Erwin, W.D.; Yu, D.F.; Kohanim, S.; Mendez, R.; Kim, E.E. Imaging and dosimetry of 99mtc ec annexin v: Preliminary clinical study targeting apoptosis in breast tumors. Appl. Radiat. Isot. 2008, 66, 1175–1182. [Google Scholar] [CrossRef]
- Kemerink, G.J.; Boersma, H.H.; Thimister, P.W.; Hofstra, L.; Liem, I.H.; Pakbiers, M.T.; Janssen, D.; Reutelingsperger, C.P.; Heidendal, G.A. Biodistribution and dosimetry of 99mtc-btap-annexin-v in humans. Eur. J. Nucl. Med. 2001, 28, 1373–1378. [Google Scholar]
- Boersma, H.H.; Liem, I.H.; Kemerink, G.J.; Thimister, P.W.; Hofstra, L.; Stolk, L.M.; van Heerde, W.L.; Pakbiers, M.T.; Janssen, D.; Beysens, A.J.; et al. Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mtc-annexin a5. Br. J. Radiol. 2003, 76, 553–560. [Google Scholar]
- Belhocine, T.; Steinmetz, N.; Green, A.; Rigo, P. In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann. NY Acad. Sci. 2003, 1010, 525–529. [Google Scholar]
- Belhocine, T.; Steinmetz, N.; Hustinx, R.; Bartsch, P.; Jerusalem, G.; Seidel, L.; Rigo, P.; Green, A. Increased uptake of the apoptosis-imaging agent (99m)tc recombinant human annexin v in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res. 2002, 8, 2766–2774. [Google Scholar]
- Van de Wiele, C.; Vermeersch, H.; Loose, D.; Signore, A.; Mertens, N.; Dierckx, R. Radiolabeled annexin-v for monitoring treatment response in oncology. Cancer Biother. Radiopharm. 2004, 19, 189–194. [Google Scholar] [CrossRef]
- Lahorte, C.M.; van de Wiele, C.; Bacher, K.; van den Bossche, B.; Thierens, H.; van Belle, S.; Slegers, G.; Dierckx, R.A. Biodistribution and dosimetry study of 123i-rh-annexin v in mice and humans. Nucl. Med. Commun. 2003, 24, 871–880. [Google Scholar]
- Kartachova, M.S.; Valdes Olmos, R.A.; Haas, R.L.; Hoebers, F.J.; van den Brekel, M.W.; van Zandwijk, N.; Herk, M.; Verheij, M. Mapping of treatment-induced apoptosis in normal structures: 99mtc-hynic-rh-annexin v spect and ct image fusion. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 893–899. [Google Scholar] [CrossRef]
- Verheij, M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 2008, 27, 471–480. [Google Scholar] [CrossRef]
- Van de Wiele, C.; Lahorte, C.; Vermeersch, H.; Loose, D.; Mervillie, K.; Steinmetz, N.D.; Vanderheyden, J.L.; Cuvelier, C.A.; Slegers, G.; Dierck, R.A. Quantitative tumor apoptosis imaging using technetium-99m-hynic annexin v single photon emission computed tomography. J. Clin. Oncol. 2003, 21, 3483–3487. [Google Scholar] [CrossRef]
- Dumont, E.A.; Reutelingsperger, C.P.; Smits, J.F.; Daemen, M.J.; Doevendans, P.A.; Wellens, H.J.; Hofstra, L. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat. Med. 2001, 7, 1352–1355. [Google Scholar] [CrossRef]
- Vermeersch, H.; Ham, H.; Rottey, S.; Lahorte, C.; Corsetti, F.; Dierckx, R.; Steinmetz, N.; van de Wiele, C. Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mtc-hynic annexin-v imaging in head and neck carcinoma. Cancer Biother. Radiopharm. 2004, 19, 205–210. [Google Scholar] [CrossRef]
- Vermeersch, H.; Loose, D.; Lahorte, C.; Mervillie, K.; Dierckx, R.; Steinmetz, N.; Vanderheyden, J.L.; Cuvelier, C.; Slegers, G.; van de Wiele, C. 99mtc-hynic annexin-v imaging of primary head and neck carcinoma. Nucl. Med. Commun. 2004, 25, 259–263. [Google Scholar] [CrossRef]
- Rottey, S.; Loose, D.; Vakaet, L.; Lahorte, C.; Vermeersch, H.; van Belle, S.; van de Wiele, C.V. Tc-99m-hynic annexin-v imaging of tumors and its relationship to response to radiotherapy and/or chemotherapy. Q. J. Nucl. Med. Mol. Imaging 2007, 51, 182–188. [Google Scholar]
- Loose, D.; Vermeersch, H.; de Vos, F.; Deron, P.; Slegers, G.; de Wiele, C.V. Prognostic value of tc-99m-hynic annexin-v imaging in squamous cell carcinoma of the head and neck. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 47–52. [Google Scholar] [CrossRef]
- Naresh, K.N.; Lakshminarayanan, K.; Pai, S.A.; Borges, A.M. Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue—a hypothesis to support this paradoxical association. Cancer 2001, 91, 578–584. [Google Scholar] [CrossRef]
- Xie, X.; de Angelis, P.; Clausen, O.P.F.; Boysen, M. Prognostic significance of proliferative and apoptotic markers in oral tongue squamous cell carcinomas. Oral Oncol. 1999, 35, 502–509. [Google Scholar] [CrossRef]
- Hirvikoski, P.; Virtaniemi, J.; Kumpulainen, E.; Johansson, R.; Kosma, V.M. Supraglottic and glottic biologically carcinomas: Clinically and distinct entities? Eur. J. Cancer 2002, 38, 1717–1723. [Google Scholar] [CrossRef]
- Teppo, H.; Soini, Y.; Melkko, J.; Koivunen, P.; Alho, O.P. Prognostic factors in laryngeal carcinoma: The role of apoptosis, p53, proliferation (ki-67) and angiogenesis. Apmis 2003, 111, 451–457. [Google Scholar]
- Haas, R.L.; de Jong, D.; Valdes Olmos, R.A.; Hoefnagel, C.A.; van den Heuvel, I.; Zerp, S.F.; Bartelink, H.; Verheij, M. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 782–787. [Google Scholar] [CrossRef]
- Kartachova, M.; Haas, R.L.; Olmos, R.A.; Hoebers, F.J.; van Zandwijk, N.; Verheij, M. In vivo imaging of apoptosis by 99mtc-annexin v scintigraphy: Visual analysis in relation to treatment response. Radiother. Oncol. 2004, 72, 333–339. [Google Scholar] [CrossRef]
- Kartachova, M.; van Zandwijk, N.; Burgers, S.; van Tinteren, H.; Verheij, M.; Valdes Olmos, R.A. Prognostic significance of 99mtc hynic-rh-annexin v scintigraphy during platinum-based chemotherapy in advanced lung cancer. J. Clin. Oncol. 2007, 25, 2534–2539. [Google Scholar] [CrossRef]
- Kartachova, M.S.; Valdes Olmos, R.A.; Haas, R.L.; Hoebers, F.J.; van Herk, M.; Verheij, M. 99mtc-hynic-rh-annexin-v scintigraphy: Visual and quantitative evaluation of early treatment-induced apoptosis to predict treatment outcome. Nucl. Med. Commun. 2008, 29, 39–44. [Google Scholar] [CrossRef]
- Hoebers, F.J.; Kartachova, M.; de Bois, J.; van den Brekel, M.W.; van Tinteren, H.; van Herk, M.; Rasch, C.R.; Valdes Olmos, R.A.; Verheij, M. 99mtc hynic-rh-annexin v scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 509–518. [Google Scholar] [CrossRef]
- Rottey, S.; Slegers, G.; van Belle, S.; Goethals, I.; van de Wiele, C. Sequential 99mtc-hydrazinonicotinamide-annexin v imaging for predicting response to chemotherapy. J. Nucl. Med. 2006, 47, 1813–1818. [Google Scholar]
- Rottey, S.; van den Bossche, B.; Slegers, G.; van Belle, S.; van de Wiele, C. Influence of chemotherapy on the biodistribution of [99mtc]hydrazinonicotinamide annexin v in cancer patients. Q. J. Nucl. Med. Mol. Imaging 2009, 53, 127–132. [Google Scholar]
- Corsten, M.F.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Counting heads in the war against cancer: Defining the role of annexin a5 imaging in cancer treatment and surveillance. Cancer Res. 2006, 66, 1255–1260. [Google Scholar] [CrossRef]
- Golfinopoulos, V.; Salanti, G.; Pavlidis, N.; Ioannidis, J.P.A. Survival and disease-progression benefits with treatment regimens for advanced colorectal cancer: A meta-analysis. Lancet Oncol. 2007, 8, 898–911. [Google Scholar] [CrossRef]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef]
- Reutelingsperger, C.P.; Dumont, E.; Thimister, P.W.; van Genderen, H.; Kenis, H.; van de Eijnde, S.; Heidendal, G.; Hofstra, L. Visualization of cell death in vivo with the annexin a5 imaging protocol. J. Immunol. Methods 2002, 265, 123–132. [Google Scholar] [CrossRef]
- De Saint-Hubert, M.; Mottaghy, F.M.; Vunckx, K.; Nuyts, J.; Fonge, H.; Prinsen, K.; Stroobants, S.; Mortelmans, L.; Deckers, N.; Hofstra, L.; et al. Site-specific labeling of “second generation” annexin v with 99mtc(co)3 for improved imaging of apoptosis in vivo. Bioorg. Med. Chem. 2010, 18, 1356–1363. [Google Scholar] [CrossRef]
- Tait, J.F.; Smith, C.; Blankenberg, F.G. Structural requirements for in vivo detection of cell death with tc-99m-annexin v. J. Nucl. Med. 2005, 46, 807–815. [Google Scholar]
- Sargent, D.J.; Rubinstein, L.; Schwartz, L.; Dancey, J.E.; Gatsonis, C.; Dodd, L.E.; Shankar, L.K. Validation of novel imaging methodologies for use as cancer clinical trial end-points. Eur. J. Cancer 2009, 45, 290–299. [Google Scholar] [CrossRef]
- Driscoll, J.J.; Rixe, O. Overall survival: Still the gold standard why overall survival remains the definitive end point in cancer clinical trials. Cancer J. 2009, 15, 401–405. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Schaper, F.L.W.V.J.; Reutelingsperger, C.P. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies. Cancers 2013, 5, 550-568. https://doi.org/10.3390/cancers5020550
Schaper FLWVJ, Reutelingsperger CP. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies. Cancers. 2013; 5(2):550-568. https://doi.org/10.3390/cancers5020550
Chicago/Turabian StyleSchaper, Frédéric L.W.V.J., and Chris P. Reutelingsperger. 2013. "99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies" Cancers 5, no. 2: 550-568. https://doi.org/10.3390/cancers5020550
APA StyleSchaper, F. L. W. V. J., & Reutelingsperger, C. P. (2013). 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies. Cancers, 5(2), 550-568. https://doi.org/10.3390/cancers5020550