Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future
Abstract
:1. Introduction
2. The Problem of Companion Diagnostic Testing: Cancer Genotype versus Phenotype
3. Applying Companion Diagnostics in a Metastatic Setting: How to Proceed?
4. CTCs as a “Liquid Tumor Biopsy”
5. Developments in CTC Capturing Technologies, the Past and the Future
6. Clinical Utility of CTC-Based Diagnostics in a Patient with Metastatic Disease: A Promise for the Future
6.1. Choosing the Right Drug Treatment
6.2. Monitoring Treatment Response
6.3. CTCs or Cell Free DNA? Which Will It Be?
7. Developments in the Pathology/Cytology Space: Towards Digital Pathology
8. New in Vitro Human Cancer-on-a-Chip Models to Find out about CTC Behaviour and Characteristics
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Attard, G.; Swermenhuis, J.F.; Olmos, D.; Reid, A.H.M.; Vickers, E.; A’Hern, R.; Levink, R.; Coumans, F.; Moreira, J.; Riisnaes, R.; et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009, 69, 2912–2918. [Google Scholar] [CrossRef]
- Fehm, T.; Müller, V.; Aktas, B.; Janni, W.; Schneeweiss, A.; Stickeler, E.; Stickeler, E.; Lattrich, C.; Löhberg, C.R.; Solomayer, E.; et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: A prospective, multicenter trial. Breast Cancer Res. Treat. 2010, 124, 403–412. [Google Scholar] [CrossRef]
- Meng, S.; Tripathy, D.; Shete, S.; Ashfaq, R.; Haley, B.; Perkins, S.; Beitsch, P.; Khan, A.; Euhus, D.; Osborne, C.; et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl. Acad. Sci. USA 2004, 101, 9393–9398. [Google Scholar] [CrossRef]
- Onstenk, W.; Gratama, J.W.; Foekens, J.A.; Sleijfer, S. Towards a personalized breast cancer treatment approach guided by circulating tumor cell (CTC) characteristics. Cancer Treat. Rev. 2013, 39, 691–700. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Curran, T.; Ng, J.M. Cancer: Hedgehog’s other great trick. Nature 2008, 455, 293–294. [Google Scholar]
- Ellis, M.J.; Ding, L.; Shen, D.; Luo, J.; Suman, V.J.; Wallis, J.W.; van Tine, B.A.; Hoog, J.; Goiffon, R.J.; Goldstein, T.C.; et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012, 486, 353–360. [Google Scholar]
- Feldman, B.J.; Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 2001, 1, 34–45. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumor cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441, 431–436. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Ranganathan, P.; Weaver, K.L.; Capobianco, A.J. Notch signalling in solid tumors: A little bit of everything but not all the time. Nat. Rev. Cancer 2011, 11, 338–351. [Google Scholar] [CrossRef]
- Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 2004, 10, 789–799. [Google Scholar] [CrossRef]
- Correia, A.L.; Bissell, M.J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist. Updat. 2012, 15, 39–49. [Google Scholar] [CrossRef]
- Van de Stolpe, A. On the origin and destination of cancer stem cells: A conceptual evaluation. Am. J. Cancer Res. 2013, 3, 107–116. [Google Scholar]
- Navin, N.E. Tumor Evolution in Response to chemotherapy: Phenotype versus genotype. Cell Rep. 2014, 6, 417–419. [Google Scholar] [CrossRef]
- Verhaegh, W.; van Ooijen, H.; Inda, M.A.; Hatzis, P.; Versteeg, R.; Smid, M.; Martens, J.; Foekens, J.; van de Wiel, P.; Clevers, H.; et al. Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways. Cancer Res. 2014, 74, 1–10. [Google Scholar]
- Bienko, M.; Crosetto, N.; Teytelman, L.; Klemm, S.; Itzkovitz, S.; van Oudenaarden, A. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat. Methods 2013, 10, 122–124. [Google Scholar] [CrossRef]
- Ke, R.; Nong, R.Y.; Fredriksson, S.; Landegren, U.; Nilsson, M. Improving precision of proximity ligation assay by amplified single molecule detection. PLoS One 2013, 8, e69813. [Google Scholar]
- Weibrecht, I.; Lundin, E.; Kiflemariam, S.; Mignardi, M.; Grundberg, I.; Larsson, C.; Koos, B.; Nilsson, M.; Söderberg, O. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat. Protoc. 2013, 8, 355–372. [Google Scholar] [CrossRef]
- Van de Stolpe, A.; Pantel, K.; Sleijfer, S.; Terstappen, L.W.M.M.; den Toonder, J.M.J. Circulating tumor cell isolation and diagnostics: Toward routine clinical use. Cancer Res. 2011, 71, 1–6. [Google Scholar]
- Den Toonder, J.M.J. Circulating tumor cells: The grand challenge. Lab Chip. 2011, 11, 375–377. [Google Scholar] [CrossRef]
- Pantel, K. Circulating tumor cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Alix-Panabieres, C.; Pantel, K. Technologies for detection of circulating tumor cells: Facts and vision. Lab Chip 2013, 14, 57–62. [Google Scholar] [CrossRef]
- Chen, J.; Lib, J.; Sun, Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 2012, 12, 1753–1767. [Google Scholar] [CrossRef]
- Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D.A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011, 192, 373–382. [Google Scholar] [CrossRef]
- Barradas, A.M.C.; Terstappen, L.W.M.M. Towards the biological understanding of CTC: Capture technologies, definitions and potential to create metastasis. Cancers 2013, 5, 1619–1642. [Google Scholar] [CrossRef]
- Fischer, J.C.; Niederacher, D.; Topp, S.A.; Honisch, E.; Schumacher, S.; Schmitz, N.; Zacarias Föhrding, L.; Vay, C.; Hoffmann, I.; Kasprowicz, N.S.; et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl. Acad. Sci. USA 2013, 110, 16580–16585. [Google Scholar] [CrossRef]
- Hillig, T.; Nygaard, A.B.; Nekiunaite, L.; Klingelhöfer, J.; Sölétormos, G. In vitro validation of an ultra-sensitive scanning fluorescence microscope for analysis of circulating tumor cells. APMIS 2014, 122, 545–551. [Google Scholar] [CrossRef]
- Hansen, C.H.; van Oudenaarden, A. Allele-specific detection of single mRNA molecules in situ. Nat. Methods 2013, 10, 869–871. [Google Scholar] [CrossRef]
- Grundberg, I.; Kiflemariam, S.; Mignardi, M.; Imgenberg-Kreuz, J.; Edlund, K.; Micke, P.; Sundström, M.; Sjöblom, T.; Botling, J.; Nilsson, M. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics. Oncotarget 2013, 4, 2407–2418. [Google Scholar]
- Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wählby, C.; Nilsson, M. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 2013, 10, 857–860. [Google Scholar] [CrossRef]
- Mugele, F.; Baret, J.C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17. [Google Scholar] [CrossRef]
- Coumans, F. Catching Metastasize Cells in the Act. Ph.D. Thesis, Twente University, Enschede, The Netherlands, 2012. [Google Scholar]
- Ohta, A.T.; Chiou, P.Y.; Phan, H.L.; Sherwood, S.W.; Yang, J.M.; Lau, A.N.K.; Hsu, H.Y.; Jamshidi, A.; Wu, M.C. Optically controlled cell discrimination and trapping using optoelectronic tweezers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 235–243. [Google Scholar] [CrossRef]
- Wu, M.C. Optoelectronic tweezers. Nat. Photonics 2011, 5, 922–924. [Google Scholar]
- Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013, 8, 870–891. [Google Scholar] [CrossRef]
- Lindström, S.; Andersson-Svahn, H. Overview of single-cell analyses: Microdevices and applications. Lab Chip 2010, 10, 3363–3372. [Google Scholar] [CrossRef]
- Sharma, P.; Wagner, K.; Wolchok, J.D.; Allison, J.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat. Rev. Cancer 2011, 11, 805–812. [Google Scholar] [CrossRef]
- Lord, C.J.; Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 2013, 19, 1381–1388. [Google Scholar] [CrossRef]
- Pharmaceutical Research and Manufacturers of America (PhRMA). 2012 Report: Medicines in Development for Cancer; More than 900 Medicines and Vaccines in Clinical Testing Offer New Hope in the Fight Against Cancer. Available online: http://www.phrma.org/sites/default/files/pdf/phrmamedicinesindevelopmentcancer2012.pdf (accessed on 26 May 2014).
- Levêque, D. Off-label use of anticancer drugs. Lancet Oncol. 2008, 9, 1102–1107. [Google Scholar] [CrossRef]
- Ganten, M.K.; Ganten, T.M.; Schlemmer, H.P. Radiological monitoring of the treatment of solid tumors in practice. Rofo 2014, 186, 466–473. [Google Scholar] [CrossRef]
- Liu, M.C.; Shields, P.G.; Warren, R.D.; Cohen, P.; Wilkinson, M.; Ottaviano, Y.L.; Rao, S.B.; Eng-Wong, J.; Seillier-Moiseiwitsch, F.; Noone, A.M.; et al. Circulating tumor cells: A useful predictor of treatment efficacy in metastatic breast cancer. J. Clin. Oncol. 2009, 27, 5153–5159. [Google Scholar] [CrossRef]
- Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L.A., Jr.; Goodman, S.N.; David, K.A.; Juhl, H.; et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 16368–16373. [Google Scholar] [CrossRef]
- McBride, D.J.; Orpana, A.K.; Sotiriou, C.; Joensuu, H.; Stephens, P.J.; Mudie, L.J.; Hämäläinen, E.; Stebbings, L.A.; Andersson, L.C.; Flanagan, A.M.; et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosom. Cancer 2010, 49, 1062–1069. [Google Scholar] [CrossRef]
- Murtaza, M.; Dawson, S.J.; Tsui, D.W.; Gale, D.; Forshew, T.; Piskorz, A.M.; Parkinson, C.; Chin, S.F.; Kingsbury, Z.; Wong, A.S.; et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013, 497, 108–112. [Google Scholar] [CrossRef]
- Oxnard, G.R.; Paweletz, C.P.; Kuang, Y.; Mach, S.L.; O’Connell, A.; Messineo, M.M.; Luke, J.J.; Butaney, M.; Kirschmeier, P.; Jackman, D.M.; et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 2014, 20, 1698–1705. [Google Scholar] [CrossRef]
- Zwönitzer, R.; Kalinski, T.; Hofmann, H.; Roessner, A.; Bernarding, J. Digital pathology: DICOM-conform draft, testbed, and first results. Comput. Methods Programs Biomed. 2007, 87, 181–188. [Google Scholar] [CrossRef]
- Colebrooke, G. Integration of digital systems to support decision making across the continuum of care: Turning data into information. J. Oncopathol. 2013, 1, 21–25. [Google Scholar] [CrossRef]
- House, J.C.; Henderson-Jackson, E.B.; Johnson, J.O.; Lloyd, M.C.; Dhillon, J.; Ahmad, N.; Hakam, A.; Khalbuss, W.E.; Leon, M.E.; Chhieng, D.; et al. Diagnostic digital cytopathology: Are we ready yet? J. Pathol. Inform. 2013, 4. [Google Scholar] [CrossRef]
- Sellaro, T.L.; Filkins, R.; Hoffman, C.; Fine, J.L.; Ho, J.; Parwani, A.V.; Pantanowitz, L.; Montalto, M. Relationship between magnification and resolution in digital pathology systems. J. Pathol. Inform. 2013, 4. [Google Scholar] [CrossRef]
- Beebe, D.J.; Ingber, D.E.; den Toonder, J.M.J. Organs on chips. Lab Chip 2013, 13, 3447–3448. [Google Scholar]
- Van de Stolpe, A.; den Toonder, J.M.J. Workshop meeting report Organs-on-Chips: Human disease models. Lab Chip 2013, 13, 3449–3470. [Google Scholar] [CrossRef]
- Young, E.W.K. Cells, tissues, and organs on chips: Challenges and opportunities for the cancer tumor microenvironment. Integr. Biol. 2013, 5, 1096–1109. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Van de Stolpe, A.; Den Toonder, J.M.J. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future. Cancers 2014, 6, 1195-1207. https://doi.org/10.3390/cancers6021195
Van de Stolpe A, Den Toonder JMJ. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future. Cancers. 2014; 6(2):1195-1207. https://doi.org/10.3390/cancers6021195
Chicago/Turabian StyleVan de Stolpe, Anja, and Jaap M. J. Den Toonder. 2014. "Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future" Cancers 6, no. 2: 1195-1207. https://doi.org/10.3390/cancers6021195
APA StyleVan de Stolpe, A., & Den Toonder, J. M. J. (2014). Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future. Cancers, 6(2), 1195-1207. https://doi.org/10.3390/cancers6021195