Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection, Data Extraction and Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Diagnostic Performance of Biomarkers
3.4. Functionality of Discovered Proteins
3.5. Assessment of Risk of Bias across Biomarker Combination Studies
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in Globoscan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Soerjomataram, I.; Lortet-Tieulent, J.; Parkin, D.M.; Ferlay, J.; Mathers, C.; Forman, D.; Bray, F. Global burden of cancer in 2008: A systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 2012, 380, 1840–1850. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Stock, C.; Hoffmeister, M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: Systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ 2014, 348, g2467. [Google Scholar] [CrossRef] [PubMed]
- Zauber, A.G. The impact of screening on colorectal cancer mortality and incidence: Has it really made a difference? Dig. Dis. Sci. 2015, 60, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Lansdorp-Vogelaar, I.; Knudsen, A.B.; Brenner, H. Cost-effectiveness of colorectal cancer screening. Epidemiol. Rev. 2011, 33, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Hassan, C.; Giorgi Rossi, P.; Camilloni, L.; Rex, D.K.; Jimenez-Cendales, B.; Ferroni, E.; Borgia, P.; Zullo, A.; Guasticchi, G.; Group, H.T.A. Meta-analysis: Adherence to colorectal cancer screening and the detection rate for advanced neoplasia, according to the type of screening test. Aliment. Pharmacol. Ther. 2012, 36, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Song, L.L.; Li, Y.M. Current noninvasive tests for colorectal cancer screening: An overview of colorectal cancer screening tests. World J. Gastrointest. Oncol. 2016, 8, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Geiger, S.; Keil, A.; Bias, H.; Schatz, P.; deVos, T.; Dhein, J.; Zimmermann, M.; Tauber, R.; Wiedenmann, B. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in germany. BMC Gastroenterol. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.J.; Lee, J.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Lieberman, D.; Levin, T.R.; Rex, D.K. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: A consensus statement by the us multi-society task force on colorectal cancer. Gastroenterology 2017, 152, 1217–1237.e1213. [Google Scholar] [CrossRef] [PubMed]
- Stracci, F.; Zorzi, M.; Grazzini, G. Colorectal cancer screening: Tests, strategies, and perspectives. Front. Public Health 2014, 2, 210. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pons, M.; Cruz-Correa, M. Colorectal cancer biomarkers: Where are we now? BioMed Res. Int. 2015, 2015, 149014. [Google Scholar] [CrossRef] [PubMed]
- Mroczko, B.; Groblewska, M.; Wereszczynska-Siemiatkowska, U.; Kedra, B.; Konopko, M.; Szmitkowski, M. The diagnostic value of G-CSF measurement in the sera of colorectal cancer and adenoma patients. Clin. Chim. Acta Int. J. Clin. Chem. 2006, 371, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Lin, M.; Zhang, H.-B. Diagnostic value of carcinoembryonic antigen and carcinoma antigen 19-9 for colorectal carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 9404–9409. [Google Scholar] [PubMed]
- Schaaij-Visser, T.B.; de Wit, M.; Lam, S.W.; Jimenez, C.R. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. Biochim. Biophys. Acta 2013, 1834, 2242–2258. [Google Scholar] [CrossRef] [PubMed]
- De Wit, M.; Kant, H.; Piersma, S.R.; Pham, T.V.; Mongera, S.; van Berkel, M.P.; Boven, E.; Ponten, F.; Meijer, G.A.; Jimenez, C.R.; et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J. Proteom. 2014, 99, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2077. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. Uniprot: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Han, C.L.; Chen, J.S.; Chan, E.C.; Wu, C.P.; Yu, K.H.; Chen, K.T.; Tsou, C.C.; Tsai, C.F.; Chien, C.W.; Kuo, Y.B.; et al. An informatics-assisted label-free approach for personalized tissue membrane proteomics: Case study on colorectal cancer. Mol. Cell. Proteom. MCP 2011, 10, M110.003087. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Li, M.; Zhan, T.; Yao, Y.; Shen, J.; Tian, H.; Zhang, Z.; Gu, J. Prognostic role of serum AZGP1, PEDF and PRDX2 in colorectal cancer patients. Carcinogenesis 2013, 34, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, C.; Chen, K.; Chen, Z.; Sun, Z.; Zhang, Z.; Ding, D.; Ren, S.; Zuo, Y. The clinical significance of DC-SIGN and DC-SIGNR, which are novel markers expressed in human colon cancer. PLoS ONE 2014, 9, e114748. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Fang, C.Y.; Chen, S.X.; Wang, X.Q.; Cui, S.J.; Liu, X.H.; Jiang, Y.H.; Wang, J.; Zhang, Y.; Yang, P.Y.; et al. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget 2015, 6, 29929–29946. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Lin, S.; Chen, C.; Wang, C.; Ma, Q.; Jiang, B. Identification of kininogen-1 as a serum biomarker for the early detection of advanced colorectal adenoma and colorectal cancer. PLoS ONE 2013, 8, e70519. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Tang, Z.X.; Yu, D.; Cui, S.J.; Jiang, Y.H.; Zhang, Q.; Wang, J.; Yang, P.Y.; Liu, F. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma. Oncotarget 2016, 7, 8823–8838. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.Q.; Zhao, C.; Cai, S.J.; Xu, Y.; Huang, L.Y.; Bian, J.S.; Shen, C.P.; Lu, H.J.; Yang, P.Y. Novel proteomic strategy reveal combined α1 antitrypsin and cathepsin D as biomarkers for colorectal cancer early screening. J. Proteome Res. 2010, 9, 4701–4709. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Lu, B.; Zhang, J.; Wu, M.; Huang, Q.; Wu, Q.; Sheng, H.; Wu, D.; Hu, J.; Lai, M. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J. Proteome Res. 2010, 9, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yu, F.; Yan, D.; Cui, F.; Tang, H.; Wang, X.; Chen, J.; Lu, H.; Zhao, S.; Peng, Z. Zinc-α-2-glycoprotein: A candidate biomarker for colon cancer diagnosis in Chinese population. Int. J. Mol. Sci. 2014, 16, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lao, W.F.; Zhang, Y.; Tang, X.R.; Hu, X.T.; He, C.; Hu, X.F.; Xu, L.S.X. Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues. J. Proteome Res. 2012, 11, 3281–3294. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.J.; Chen, H.M.; Song, W.; Zhang, Z.Y.; Zhang, M.D.; Feng, L.Y.; Gao, C.F. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark. 2016, 16, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shan, Q.; Hou, G.; Zhang, J.; Bai, J.; Lv, X.; Xie, Y.; Zhu, H.; Su, S.; Li, Y.; et al. Discovery of potential colorectal cancer serum biomarkers through quantitative proteomics on the colonic tissue interstitial fluids from the AOM-DSS mouse model. J. Proteom. 2016, 132, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.Q.; Wang, J.; Cui, S.J.; Lou, X.M.; Yan, B.; Qiao, J.; Jiang, Y.H.; Zhang, L.J.; Yang, P.Y.; et al. Upregulation of spondin-2 predicts poor survival of colorectal carcinoma patients. Oncotarget 2015, 6, 15095–15110. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Y.; Chen, L.H.; Lv, X.L.; Hou, G.X.; Wang, Y.; Jiang, C.C.; Zhu, H.X.; Xu, N.Z.; Wu, L.; Lou, X.M.; et al. The levels of serine proteases in colon tissue interstitial fluid and serum serve as an indicator of colorectal cancer progression. Oncotarget 2016, 7, 32592–32606. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Chen, H.C.; Chen, S.J.; Liu, H.P.; Hsieh, Y.Y.; Yu, C.J.; Tang, R.; Hsieh, L.L.; Yu, J.S.; Chang, Y.S. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008, 8, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Huang, Y.S.; Lee, L.Y.; Liang, Y.; Tang, R.P.; Chang, Y.S.; Hsieh, L.L.; Yu, J.S. Overexpression and elevated plasma level of tumor-associated antigen 90 K/Mac-2 binding protein in colorectal carcinoma. Proteom. Clin. Appl. 2008, 2, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.F.; Kan, C.Y.; Hsiao, Y.C.; Tang, R.; Hsieh, L.L.; Chiang, J.M.; Tsai, W.S.; Yeh, C.Y.; Hsieh, P.S.; Liang, Y.; et al. Bone marrow stromal antigen 2 is a novel plasma biomarker and prognosticator for colorectal carcinoma: A secretome-based verification study. Dis. Mark. 2015, 2015, 874054. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.W.; Chan, C.C.; Chen, K.T.; Twu, J.; Huang, Y.S.; Han, C.L.; Chen, Y.J.; Yu, J.S.; Chang, Y.S.; Kuo, Y.B.; et al. Identification of SEC61β and its autoantibody as biomarkers for colorectal cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2011, 412, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.B.; Chan, C.C.; Chang, C.A.; Fan, C.W.; Hung, R.P.; Hung, Y.S.; Chen, K.T.; Yu, J.S.; Chang, Y.S.; Chan, E.C. Identification of phospholipid scramblase 1 as a biomarker and determination of its prognostic value for colorectal cancer. Mol. Med. 2011, 17, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Tagi, T.; Matsui, T.; Kikuchi, S.; Hoshi, S.; Ochiai, T.; Kokuba, Y.; Kinoshita-Ida, Y.; Kisumi-Hayashi, F.; Morimoto, K.; Imai, T.; et al. Dermokine as a novel biomarker for early-stage colorectal cancer. J. Gastroenterol. 2010, 45, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, K.; Iida, H.; Endo, H.; Hosono, K.; Akiyama, T.; Takahashi, H.; Inamori, M.; Abe, Y.; Yoneda, M.; Fujita, K.; et al. Identification of Cystatin SN as a novel tumor marker for colorectal cancer. Int. J. Oncol. 2009, 35, 33–40. [Google Scholar] [PubMed]
- Matsubara, J.; Honda, K.; Ono, M.; Sekine, S.; Tanaka, Y.; Kobayashi, M.; Jung, G.M.; Sakuma, T.; Nakamori, S.; Sata, N.; et al. Identification of adipophilin as a potential plasma biomarker for colorectal cancer using label-free quantitative mass spectrometry and protein microarray. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2195–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toiyama, Y.; Tanaka, K.; Kitajima, T.; Shimura, T.; Kawamura, M.; Kawamoto, A.; Okugawa, Y.; Saigusa, S.; Hiro, J.; Inoue, Y.; et al. Elevated serum angiopoietin-like protein 2 correlates with the metastatic properties of colorectal cancer: A serum biomarker for early diagnosis and recurrence. Clin. Cancer Res. 2014, 20, 6175–6186. [Google Scholar] [CrossRef] [PubMed]
- Hosono, K.; Yamada, E.; Endo, H.; Takahashi, H.; Inamori, M.; Hippo, Y.; Nakagama, H.; Nakajima, A. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas. World J. Gastroenterol. 2012, 18, 5360–5368. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.Y.; Kim, Y.H.; Jang, Y.J.; Kang, Y.H.; Lee, C.I.; Kim, J.W.; Yeom, Y.I.; Chun, H.K.; Choi, Y.H.; Kim, J.H.; et al. Identification of endothelial cell-specific molecule-1 as a potential serum marker for colorectal cancer. Cancer Sci. 2010, 101, 2248–2253. [Google Scholar] [PubMed]
- Shin, J.; Kim, H.J.; Kim, G.; Song, M.; Woo, S.J.; Lee, S.T.; Kim, H.; Lee, C. Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics. J. Proteome Res. 2014, 13, 4919–4931. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kang, H.J.; Lee, H.; Lee, S.T.; Yu, M.H.; Kim, H.; Lee, C. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J. Proteome Res. 2009, 8, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Song, M.; Shin, N.; Shin, C.H.; Min, B.S.; Kim, H.S.; Yoo, J.S.; Kim, H. Diagnostic significance of serum HMGB1 in colorectal carcinomas. PLoS ONE 2012, 7, e34318. [Google Scholar]
- Lin, Q.; Lim, H.S.; Lin, H.L.; Tan, H.T.; Lim, T.K.; Cheong, W.K.; Cheah, P.Y.; Tang, C.L.; Chow, P.K.; Chung, M.C. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics 2015, 15, 3905–3920. [Google Scholar] [PubMed]
- Babel, I.; Barderas, R.; Diaz-Uriarte, R.; Martinez-Torrecuadrada, J.L.; Sanchez-Carbayo, M.; Casal, J.I. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell. Proteom. MCP 2009, 8, 2382–2395. [Google Scholar]
- Babel, I.; Barderas, R.; Diaz-Uriarte, R.; Moreno, V.; Suarez, A.; Fernandez-Acenero, M.J.; Salazar, R.; Capella, G.; Casal, J.I. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol. Cell. Proteom. MCP 2011, 10, M110.001784. [Google Scholar]
- Barderas, R.; Babel, I.; Diaz-Uriarte, R.; Moreno, V.; Suarez, A.; Bonilla, F.; Villar-Vazquez, R.; Capella, G.; Casal, J.I. An optimized predictor panel for colorectal cancer diagnosis based on the combination of tumor-associated antigens obtained from protein and phage microarrays. J. Proteom. 2012, 75, 4647–4655. [Google Scholar] [Green Version]
- Barderas, R.; Mendes, M.; Torres, S.; Bartolome, R.A.; Lopez-Lucendo, M.; Villar-Vazquez, R.; Pelaez-Garcia, A.; Fuente, E.; Bonilla, F.; Casal, J.I. In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol. Cell. Proteom. MCP 2013, 12, 1602–1620. [Google Scholar]
- Rodriguez-Pineiro, A.M.; Garcia-Lorenzo, A.; Blanco-Prieto, S.; Alvarez-Chaver, P.; Rodriguez-Berrocal, F.J.; Cadena, M.P.; Martinez-Zorzano, V.S. Secreted clusterin in colon tumor cell models and its potential as diagnostic marker for colorectal cancer. Cancer Investig. 2012, 30, 72–78. [Google Scholar]
- Sole, X.; Crous-Bou, M.; Cordero, D.; Olivares, D.; Guino, E.; Sanz-Pamplona, R.; Rodriguez-Moranta, F.; Sanjuan, X.; de Oca, J.; Salazar, R.; et al. Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS ONE 2014, 9, e106748. [Google Scholar]
- Broll, R.; Duchrow, M.; Oevermann, E.; Wellm, C.; Schwandner, O.; Schimmelpenning, H.; Roblick, U.J.; Bruch, H.P.; Windhovel, U. P53 autoantibodies in sera of patients with a colorectal cancer and their association to p53 protein concentration and p53 immunohistochemistry in tumor tissue. Int. J. Colorectal Dis. 2001, 16, 22–27. [Google Scholar] [PubMed]
- Roessler, M.; Rollinger, W.; Palme, S.; Hagmann, M.L.; Berndt, P.; Engel, A.M.; Schneidinger, B.; Pfeffer, M.; Andres, H.; Karl, J.; et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res. 2005, 11, 6550–6557. [Google Scholar]
- Surinova, S.; Choi, M.; Tao, S.; Schuffler, P.J.; Chang, C.Y.; Clough, T.; Vyslouzil, K.; Khoylou, M.; Srovnal, J.; Liu, Y.; et al. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol. Med. 2015, 7, 1166–1178. [Google Scholar] [PubMed]
- Weiss, J.V.; Klein-Scory, S.; Kubler, S.; Reinacher-Schick, A.; Stricker, I.; Schmiegel, W.; Schwarte-Waldhoff, I. Soluble E-cadherin as a serum biomarker candidate: Elevated levels in patients with late-stage colorectal carcinoma and FAP. Int. J. Cancer 2011, 128, 1384–1392. [Google Scholar] [PubMed]
- Albrethsen, J.; Moller, C.H.; Olsen, J.; Raskov, H.; Gammeltoft, S. Human neutrophil peptides 1, 2 and 3 are biochemical markers for metastatic colorectal cancer. Eur. J. Cancer 2006, 42, 3057–3064. [Google Scholar] [PubMed]
- Hamelin, C.; Cornut, E.; Poirier, F.; Pons, S.; Beaulieu, C.; Charrier, J.P.; Haidous, H.; Cotte, E.; Lambert, C.; Piard, F.; et al. Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 2011, 278, 4845–4859. [Google Scholar] [PubMed]
- Kijanka, G.; Hector, S.; Kay, E.W.; Murray, F.; Cummins, R.; Murphy, D.; MacCraith, B.D.; Prehn, J.H.; Kenny, D. Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer. Gut 2010, 59, 69–78. [Google Scholar] [PubMed]
- Fijneman, R.J.; de Wit, M.; Pourghiasian, M.; Piersma, S.R.; Pham, T.V.; Warmoes, M.O.; Lavaei, M.; Piso, C.; Smit, F.; Delis-van Diemen, P.M.; et al. Proximal fluid proteome profiling of mouse colon tumors reveals biomarkers for early diagnosis of human colorectal cancer. Clin. Cancer Res. 2012, 18, 2613–2624. [Google Scholar]
- Niewiarowska, K.; Pryczynicz, A.; Dymicka-Piekarska, V.; Gryko, M.; Cepowicz, D.; Famulski, W.; Kemona, A.; Guzinska-Ustymowicz, K. Diagnostic significance of TIMP-1 level in serum and its immunohistochemical expression in colorectal cancer patients. Pol. J. Pathol. 2014, 65, 296–304. [Google Scholar] [PubMed]
- Ladd, J.J.; Busald, T.; Johnson, M.M.; Zhang, Q.; Pitteri, S.J.; Wang, H.; Brenner, D.E.; Lampe, P.D.; Kucherlapati, R.; Feng, Z.; et al. Increased plasma levels of the APC-interacting protein MAPRE1, LRG1, and IGFBP2 preceding a diagnosis of colorectal cancer in women. Cancer Prev. Res. 2012, 5, 655–664. [Google Scholar]
- Nam, M.J.; Kee, M.K.; Kuick, R.; Hanash, S.M. Identification of defensin α6 as a potential biomarker in colon adenocarcinoma. J. Biol. Chem. 2005, 280, 8260–8265. [Google Scholar] [PubMed]
- Taguchi, A.; Rho, J.H.; Yan, Q.; Zhang, Y.; Zhao, Y.; Xu, H.; Tripathi, S.C.; Wang, H.; Brenner, D.E.; Kucherlapati, M.; et al. Mapre1 as a plasma biomarker for early-stage colorectal cancer and adenomas. Cancer Prev. Res. 2015, 8, 1112–1119. [Google Scholar]
- Prieto, D.A.; Johann, D.J.; Wei, B.-R.; Ye, X.; Chan, K.C.; Nissley, D.V.; Simpson, R.M.; Citrin, D.E.; Mackall, C.L.; Linehan, W.M.; et al. Mass spectrometry in cancer biomarker research: A case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomark. Med. 2014, 8, 269–286. [Google Scholar] [PubMed]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. MCP 2002, 1, 845–867. [Google Scholar]
- Alvarez-Llamas, G.; Szalowska, E.; de Vries, M.P.; Weening, D.; Landman, K.; Hoek, A.; Wolffenbuttel, B.H.; Roelofsen, H.; Vonk, R.J. Characterization of the human visceral adipose tissue secretome. Mol. Cell. Proteom. MCP 2007, 6, 589–600. [Google Scholar]
- Makridakis, M.; Vlahou, A. Secretome proteomics for discovery of cancer biomarkers. J. Proteom. 2010, 73, 2291–2305. [Google Scholar]
- Pavlou, M.P.; Diamandis, E.P. The cancer cell secretome: A good source for discovering biomarkers? J. Proteom. 2010, 73, 1896–1906. [Google Scholar]
- Viswanathan, M.; Ansari, M.T.; Berkman, N.D.; Chang, S.; Hartling, L.; McPheeters, M.; Santaguida, P.L.; Shamliyan, T.; Singh, K.; Tsertsvadze, A.; et al. Assessing the risk of bias of individual studies in systematic reviews of health care interventions. In Methods Guide for Effectiveness and Comparative Effectiveness Reviews; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012. [Google Scholar]
- Whiting, P.; Rutjes, A.W.; Reitsma, J.B.; Glas, A.S.; Bossuyt, P.M.; Kleijnen, J. Sources of variation and bias in studies of diagnostic accuracy: A systematic review. Ann. Intern. Med. 2004, 140, 189–202. [Google Scholar] [PubMed]
First Author, Year, Country [Ref] | Platform | Cell Lines Used | Study Sample (Tissue) | Study Samples (Blood) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SW480 | SW620 | HCT-116 | Colo205 | Caco-2 | HT-29 | LoVo | SW48 | HCT-15 | Colo320 | Others | Sample Size(N) CRC Cn | % Late Stage (III/IV) CRC | Mean Age (Range/±SD) CRC Cn | % Males CRC Cn | |||
Combination Marker Studies | |||||||||||||||||
Wu, 2008, Taiwan [35] | MALDI, SDS | x | x | - | 169 paired CRC & NC | 201 201 | 50 | 63.5 (24–88) (24–84) | 52 55 | ||||||||
Wu, 2008, Taiwan [36] | MALDI, IHC | x | x | x | 1 | 241 CRC & 231 NM | 280 147 | 60 | 60.1 (19–88) (24–84) | 50 55 | |||||||
Babel, 2009, Spain [50] | PrMA, IHC | x | x | x | x | x | 3 | 45 paired CRC & NM | 52 42 | 62 | 71 (±10.6) 61.7 (±16.0) | 62 60 | |||||
Tagi, 2010, Japan [40] | qRT-PCR, IHC | x | x | x | x | x | x | x | x | 7 | 130 CRC | 105 100 | 44 | 39.2 (23–59) 66.8 (26–93) | - | ||
Babel, 2011, Spain [51] | PhMA, IHC | x | x | x | x | x | x | x | x | 8 | 25 paired CRC & NM | 50 46 | 66 | 70.8 (41–91) 59.6 (34–89) | 66 63 | ||
Fan, 2011, Taiwan [38] | qRT-PCR, WB, IHC | x | x | x | - | 10 CRC &NC/64 CRC | 86 72 | 59 | - | - | |||||||
Weiss, 2011, Germany [59] | SDS, IHC | x | 4 | 4 paired CRC & NM | 59 45 | 75 | (37–87) (17–87) | 75 49 | |||||||||
Barderas, 2012, Spain [52] | PhMA, WB | x | x | x | x | x | x | x | x | 8 | 6 paired CRC & NM | 50 46 | 66 | 70.8 (±15.7) 60.9 (±11.4) | 66 61 | ||
Ladd, 2012, USA [65] | LC/MS-MS | x | x | - | - | 32 32 | 47 | 68.1 67.8 | 0 0 | ||||||||
Lee, 2012, Korea [48] | IHC, WB | x | x | x | x | x | 6 | 120 paired CRC & NM | 219 75 | 47 | -- | 63 63 | |||||
Barderas, 2013, Spain [53] | MS, SDS | 2 | - | 40 20 | 68 | 67.5 (43–85) 60.5 (49–88) | 58 60 | ||||||||||
Shin, 2014, Korea [46] | LC/MS-MS | x | 1 | - | 228 77 | 40 | 62.6 (±8.7) 68.2 (±7.0) | 60 43 | |||||||||
Chiang, 2015, Taiwan [37] | qRT-PCR, IHC | x | x | x | - | 132 paired CRC & NC | 120 120 | 49 | 65.3 (±12.7) 45.3 (±10.1) | 61 51 | |||||||
Lin, 2015, Singapore [49] | MS, WB | x | - | - | 45 47 | 67 | - - | 33 - | |||||||||
Taguchi, 2015, USA [67] | AbMA, MS | x | x | x | x | x | x | x | x | - | 66 CRC & 20 NM | 60 60 | 50 | - 55.7 (±9.9) | 40 73 | ||
Individual Marker Studies | |||||||||||||||||
Nam, 2004, USA [66] | MA, WB | x | x | x | x | 2 | 36 paired CRC & NM | 49 18 | - | - | - | ||||||
Xue, 2010, China [28] | LC/MS-MS | x | x | - | 69 CRC | 144 156 | 53 | 59 (27–88) 56 (25–81) | 53 54 | ||||||||
Rodriguez-Pineiro, 2012, Spain [54] | MALDI | x | - | - | 31 33 | 39 | 69.0 (± 9.0) | - | |||||||||
Toiyama, 2014, Japan [43] | qRT-PCR, IHC | x | x | x | x | 1 | 195 paired CRC & NM | 195 45 | 47 | 66.7 (±10.7) 57.2 (±13.4) | 58 56 | ||||||
Qiao, 2015, China [24] | LC-MS, WB | x | x | x | 5 | 90 paired CRC & NM | 42 48 | - | 65.5 (±10.97) 41 (±16.28) | 67 44 | |||||||
Zhang, 2015, China [33] | qRT-PCR, WB, IHC | x | x | x | x | x | - | 90 paired CRC & NC | 43 38 | - | - | - | |||||
Fan, 2016, China [31] | LC/MS-MS | x | x | x | 3 | - | 112 96 | 37 | 58.9 (±7.94) 61.5 (±7.94) | ||||||||
Wang X, 2016, China [26] | MA, WB, IHC | x | x | x | x | x | - | 90 CRC & matched NM | 86 68 | - | - | - |
First Author, Year, Country, [Ref] | Platform | Study Samples (Tumor Tissue) | Study Samples (Blood) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample Size (N) Cases NM | % Late Stage (III/IV) CRC | Mean Age (Range/±SD) CRC | % Males CRC | Sample Size (N) CRC Cn | % Late Stage (III/IV) CRC | Mean Age (Range/±SD) CRC Cn | % Males CRC Cn | |||
Combination Marker Studies | ||||||||||
Broll, 2001, Germany [56] | SPM | 38 paired CRC & NC | - | - | - | 122 65 | 44 | 68.3 (32–92) 66.4 (27–89) | 49 48 | |
Alberthsen, 2006, Denmark [60] | SELDI-TOF MS | 32 CRC tumors | 50 | - | 63 | 119 34 | 49 | - (50–80) | 56 53 | |
Yoneda, 2009, Japan [41] | MA, IHC | - | - | - | - | 159 40 | 42 | (38–90) (29–85) | 67 53 | |
Kijanka, 2010, Ireland [62] | IHC | 43 CRC 19 NM | - | - | - | 43 40 | - | - | - | |
Xie, 2010, China [27] | GeMS, TiMA | 93 paired CRC & NC | 3 | 66.05 ± 13.89 | 53 | 42 42 | - | - | - | |
Hamelin, 2011, France [61] | MALDI, IHC | 20 paired CRC & NC | 70 | - | 50 | 112 90 | 50 | 70 (± 11) 58 (± 4) | 54 60 | |
Kuo, 2011, Taiwan [39] | IHC | 104 paired CRC & NM | 92 | - | 47 | 59 52 | 58 | - | 58 - | |
Matsubara, 2011, Japan [42] | IHC, RPPM | 20 tissues | - | - | - | 26 87 | 35 | 63.0 (±12.0) 43.0 (±16.0) | 50 64 | |
Wang, 2013, China [25] | MALDI, IHC | 248 CRC 75 NM | - | - | - | 143 85 | 46 | 54.7 (±1.02) 52.5 (±1.19) | 58 51 | |
Jiang, 2014, China [23] | IHC | 98 CRC 30 NC | 61 | (28–88) | 62 | 182 101 | - | 61 (23–86) (21–62) | 52 45 | |
Surinova, 2015, Germany, CR [58] | LC/MS-MS | 16 paired CRC & NC | 25 | 62.3 ± 9.5 | 81 | 202 67 | 50 | 67 (59–74.8) 49 (52–65) | 56 76 | |
Xue, 2014, China [29] | WB | 190 paired CC & NC | 45 | 66 (22–95) | 43 | 120 40 | 37 | 66.8 (26–93) 39.2 (23–59) | 41 - | |
Wang Y, 2016, China [32] | LC/MS-MS | TIF 16 AOM-DSS mice | - | - | - | 16 16 | 56 | (35–67) | 56 | |
Xie, 2016, China[34] | LC/MS-MS | TIF ApcMin/+ & WT mice | - | - | - | 30 30 | - | (31–70) (31–70) | 60 57 | |
Individual Marker Studies | ||||||||||
Roessler, 2005, Germany [57] | SDS | 18 paired CRC & NM | 28 | 73.3 (±9.7) | 61 | 109 317 | 40 | - (12–89) | - | |
Kim, 2009, Korea [47] | 2-D DIGE, MS, IHC | 6 paired CRC & NM | 33 | 53.5 (±11.4) | 50 | 77 21 | 52 | - | ||
Ji, 2010, Korea [45] | MA, WB, IHC | 66 paired CRC & NM | - | - | - | 100 78 | 49 | - | 61 - | |
Han, 2011, China [21] | LC/MS-MS | 28 paired CRC & NM | 61 | 62.2 (±14.3) | 57 | 70 70 | - | - | - | |
Fijneman, 2012, The Netherlands [63] | GeLC/MS-MS | TIFFabplCre;apc15lox/+C57Bl/6 mice | - | - | - | 8 36 | 63 | 71.8 (±6.4) 60.2 (±13.8) | 50 42 | |
Hosono, 2012, Japan [44] | IHC | 62 adenoma | - | - | - | 62 A 34 | - | 67.7 (±8.2) 67.6 (±15.9) | 63 59 | |
Yao, 2012, China [30] | IHC | 88 CRC 16 NM | 41 | (35–88) | 57 | 122 79 | - | - | - - | |
Ji, 2013, China [22] | IHC, LC/MS-MS | 294 CRC | 71 | 59.55 ± 12.34 | 55 | 405 84 | 48 | - | 55 56 | |
Niewiarowska, 2014, Poland [64] | IHC | 38 CRC tissues | - | - | - | 43 24 | 88 | 67.1 (±1.89) 55.7 (±7.3) | 63 | |
Sole, 2014, Spain [55] | LC/MS-MS | 70 CRC 34 NM | 0 | 62.5 (50–69) | 23 | 80 77 | 55 | 67 (34–89) 66 (22–83) | 65 51 |
First Author, Year, [Ref] | Proteins | Sensitivity (95%CI) % | Specificity (95%CI) % | Area under the Curve (95%CI) | Method | Validation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEA | CA19-9 | ACVR2B | AZGP1 | GDF15 | LRG1 | S100A9 | MAPKAP3 | TIMP1 | PIM1 | Others | ||||||
Cell Line Secretome Combination Marker Studies | ||||||||||||||||
Wu, 2008 [35] | x | CRMP2 | 77 (71–83) | 95 (91–98) | 0.75 (0.68–0.78) | ELISA | No | |||||||||
Wu, 2008 [36] | x | Mac-2BP | 69 (63–74) | 72 (64–79) | 0.774 (0.727–0.816) | ELISA | No | |||||||||
Babel, 2009 [50] | x | x | x | 84 (71–93) | 71 (55–84) | 0.85 | ELISA | BS | ||||||||
Tagi, 2010 [40] | x | DK, S-p53 (Stg.1) | 58 (48–68) | 80 (71–87) | - | ELISA | No | |||||||||
Babel, 2011 [51] | SULF1, MST1/STK4 & phages NHSL1, GTF2i, SREBF2, GRN | 83 (70–92) | 70 (55–83) | 0.86 | ELISA | BS | ||||||||||
Fan, 2011 [38] | x | SEC61β | 71 (60–80) | 89 (79–95) | 0.838 (0.774–0.903) | ELISA, WB | No | |||||||||
Weiss, 2011 [59] | x | sE-cadherin | 34 (22–48) | 97 (87–100) | - | ELISA | No | |||||||||
Barderas, 2012 [52] | x | x | x | FGFR4 & phages GRN, NHSL1, SREBF2 | 89 (77–96) | 90 (78–97) | 0.925 | ELISA | BS | |||||||
Ladd, 2012 [65] | x | x | IGFBP2, MAPRE1 | 41 (24–60) | 95 (81–100) | 0.724 | ELISA | SS | ||||||||
Lee, 2012 [48] | x | HMGB1 | 42 (35–49) | 87 (77–94) | 0.643 | ELISA | No | |||||||||
Barderas, 2013 [53] | x | x | S100A8/A9, SERPINI1 | 60 (43–75) | 95 (75–100) | 0.884 | ELISA | No | ||||||||
Shin, 2014 [46] | x | PAI-1, TRFM | 68 (62–74) | 90 (81–96) | 0.821 (0.731–0.890) | ELISA | No | |||||||||
Chiang, 2015 [37] | x | BST2 | 24 (17–33) | 100 (97–100) | 0.872 (0.828–0.916) | ELISA | SS | |||||||||
Lin, 2015 [49] | x | LAMB1 | 80 (65–90) | 92 (80–98) | 0.911 (0.85–0.97) | ELISA | No | |||||||||
Taguchi, 2015 [67] | x | MAPRE, AK1 | 43 (30–56) | 95 (86–99) | - | ELISA | BS | |||||||||
Cell Line Secretome Individual Marker Studies | ||||||||||||||||
Nam, 2005 [66] | Defensin α6 | 69 (54–81) | 83 (58–96) | - | ELISA | SS | ||||||||||
Xue, 2010 [28] | x | TFF3 | 54 (46–62) 78 (70–85) | 97 (93–99) 99 (96–100) | 0.730 (0.670–0.791) 0.897 (0.856–0.938) | ELISA | No | |||||||||
Rodriguez-P, 2012 [54] | Clusterin | 81 (63–93) | 79 (61–91) | 0.845 (0.747–0.942) | ELISA | No | ||||||||||
Toiyama, 2014 [43] | ANGPTL2 | 70 (63–76) | 96 (86–100) | 0.885 (0.838–0.923) | ELISA | SS | ||||||||||
Qiao, 2015 [24] | COL6A3 | 93 (81–99) | 81 (67–91) | 0.885 | ELISA | No | ||||||||||
Zhang, 2015 [33] | Spondin-2 | 100 (92–100) | 90 (76–97) | 0.959 | ELISA | No | ||||||||||
Fan, 2016 [31] | x | x | MRC1 | 74 (65–82) 81 (73–88) 52 (42–62) | 63 (53–73) 80 (71–88) 48 (38–58) | 0.744 (0.678–0.810) 0.873 (0.826–0.920) 0.464 (0.384–0.544) | ELISA | No | ||||||||
Wang X, 2016 [26] | x | COL3A1 | 99 (94–100) 70 (59–79) | 69 (57–80) 73 (61–83) | 0.92 0.791 | ELISA | No |
First Author, Year, [Ref] | Proteins | Sensitivity (95%CI) % | Specificity (95%CI) % | Area under the Curve (95%CI) | Method | Validation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEA | CA19-9 | ACVR2B | AZGP1 | GDF15 | LRG1 | S100A9 | MAPKAP3 | TIMP1 | PIM1 | Others | ||||||
Tumor Tissue Proteome Combination Marker Studies | ||||||||||||||||
Broll, 2001 [56] | x | VEGF | 62 (53–71) | 85 (74–93) | - | ELISA | No | |||||||||
Alberthsen, 2006 [60] | HNP1, HNP2, HNP3 | 80 (72–87) | 53 (35–70) | - | ELISA | No | ||||||||||
Yoneda, 2009 [41] | x | x | Cystatin SN | 63 (55–71) | 90 (76–97) | - | ELISA | No | ||||||||
Kijanka, 2010 [62] | ZNF700, TSLC1, LASS5, p53, TCF3, SNP29, ZNF638, ICLN, ZNF346, AOPJ75, HMGB1, BAC85857 | 84 (70–93) | 80 (64–91) | - | PrA | SS | ||||||||||
Xie, 2010 [27] # | A1AT, CTSD | 100 (92–100) | 97 (87–100) | - | WB | No | ||||||||||
Hamelin, 2011 [61] | x | x | HSP60 | 47 (38–57) | 90 (82–95) | 0.77 (0.70–0.84) | ELISA | SS | ||||||||
Kuo, 2011 [39] | x | PLSCR1 | 85 (73–93) | 48 (34–62) | 0.80 | WB | No | |||||||||
Matsubara, 2011 [42] | x | Adipophilin | 31 (15–52) | 95 (88–99) | 0.783 | RPPM | SS | |||||||||
Wang, 2013 [25] | x | Kininogen-1 | 22 (16–30) | 93 (85–97) | - | ELISA | CV | |||||||||
Jiang, 2014 [23] | DC-SIGN, DC-SIGNR | 99 (96–100) | 95 (89–98) | 0.989 | ELISA | No | ||||||||||
Xue, 2014 [29] | x | x | x | 74 (65–82) | 73 (57–86) | 0.805 (0.738–0.872) | ELISA | LOOCV | ||||||||
Surinova, 2015 [58] | x | x | CP, PON1, SERPINA3 | 70 (63–76) | 79 (67–88) | 0.84 (0.75–0.92) * | SRM | TFCV | ||||||||
Wang Y, 2016 [32] | x | TUBB5 | 63 (36–85) | 81 (54–96) | 0.74 | MRM | No | |||||||||
Xie, 2016 [34] | CELA1, CEL2A, CTRL, TRY2 | 87 (70-96) | 83 (65-94) | 0.90 (0.83–0.98) | MRM | No | ||||||||||
Tumor Tissue Proteome Individual Marker Studies | ||||||||||||||||
Roessler, 2005 [57] | x | NNMT | 51 (41–61) 39 (30–49) | 95 (92–97) 95 (92–97) | 0.84 0.78 | ELISA | No | |||||||||
Kim, 2009 [47] | x | x | S100A8 | 41 (30–53) 44 (33–56) 22 (13–33) | 95 (76–100) 95 (76–100) 100 (94–100) | 0.91 0.89 0.78 | WB | No | ||||||||
Ji, 2010 [45] | x | ESM-1 | 99 (95–100) 48 (38–58) | 73 (62–82) 99 (94–100) | 0.94 0.733 | ELISA | No | |||||||||
Han, 2011 [21] | STOML2 | 71 (59–81) | 63 (51–74) | 0.77 | ELISA | No | ||||||||||
Fijneman, 2012 [63] | x | CHI3L1 | 75 (35–97) 38 (9–76) | 89 (74–97) 100 (90–100) | 0.81 0.86 | ELISA | No | |||||||||
Hosono, 2012 [44] A | TNF-R1 | 93 (84–98) | 82 (65–93) | - | ELISA | No | ||||||||||
Yao, 2012 [30] | x | EFEMP2 | 83 (75–89) 63 (54–72) | 93 (85–98) 77 (66–86) | 0.923 (0.885–0.961) 0.728 (0.659–0.797) | ELISA | SS | |||||||||
Ji, 2013 [22] | x | PEDF PRDX2 | 100 (99–100) 34 (29–39) 87 (83–90) | 79 (69–87) 96 (89–99) 51 (40–62) | - | ELISA | SS | |||||||||
Niewiarowska, 2014 [64] | x | 67 (51–81) | 67 (45–85) | 0.666 | ELISA | No | ||||||||||
Sole, 2014 [55] § | COL10A1 | 63 (52–74) | 85 (75–92) | 0.75 | ELISA | SS |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, M.; Erben, V.; Schrotz-King, P.; Brenner, H. Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers 2017, 9, 156. https://doi.org/10.3390/cancers9110156
Bhardwaj M, Erben V, Schrotz-King P, Brenner H. Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers. 2017; 9(11):156. https://doi.org/10.3390/cancers9110156
Chicago/Turabian StyleBhardwaj, Megha, Vanessa Erben, Petra Schrotz-King, and Hermann Brenner. 2017. "Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review" Cancers 9, no. 11: 156. https://doi.org/10.3390/cancers9110156
APA StyleBhardwaj, M., Erben, V., Schrotz-King, P., & Brenner, H. (2017). Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers, 9(11), 156. https://doi.org/10.3390/cancers9110156