Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies
Abstract
:1. Introduction
2. Effects of Metformin in Lung Cancer: In Vitro Studies
3. Effects of Combined Metformin Treatment in Lung Cancer: In Vitro Studies
4. Effects of Metformin in Lung Cancer: In Vivo Studies
5. Effects of Metformin in Lung Cancer: Human Studies
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Cancer Report; WHO: Geneva, Switzerland, 2014; Available online: http://www.searo.who.int/publications/bookstore/documents/9283204298/en/ (accessed on 23 December 2016).
- Lung Cancer Statistics—Canadian Cancer Society. Available online: http://www.cancer.ca/en/cancer-information/cancer-type/lung/statistics/?region=on (accessed on 23 December 2016).
- Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.-K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 2014, 14, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 2012, 25, S18–S30. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Faivre, S.; Armand, J.P. Epidermal Growth Factor Receptor Tyrosine Kinase as a Target for Anticancer Therapy. Drugs 2000, 60, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Tiash, S.; Chowdhury, E. Growth factor receptors: Promising drug targets in cancer. J. Cancer Metastasis Treat. 2015, 1, 190. [Google Scholar]
- Witsch, E.; Sela, M.; Yarden, Y. Roles for Growth Factors in Cancer Progression. Physiology 2010, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Pakkala, S.; Ramalingam, S.S. Epidermal Growth Factor Receptor Mutated Advanced Non-Small Cell Lung Cancer: A Changing Treatment Paradigm. Hematol. Oncol. Clin. N. Am. 2017, 31, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Santis, M.C.D.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014, 46, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Vicary, G.W.; Roman, J. Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am. J. Med. Sci. 2016, 352, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Wise, H.M.; Hermida, M.A.; Leslie, N.R. Prostate cancer, PI3K, PTEN and prognosis. Clin. Sci. 2017, 131, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Drilon, A. KRAS-Mutant Lung Cancers in the Era of Targeted Therapy. Adv. Exp. Med. Biol. 2016, 893, 155–178. [Google Scholar] [PubMed]
- Samatar, A.A.; Poulikakos, P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov. 2014, 13, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Fang, B. RAS signaling and anti-RAS therapy: Lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim. Biophys. Sin. 2016, 48, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Aviel-Ronen, S.; Blackhall, F.H.; Shepherd, F.A.; Tsao, M.-S. K-ras mutations in non-small-cell lung carcinoma: A review. Clin. Lung Cancer 2006, 8, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Steelman, L.S.; Martelli, A.M.; Cocco, L.; Libra, M.; Nicoletti, F.; Abrams, S.L.; McCubrey, J.A. The therapeutic potential of mTOR inhibitors in breast cancer. Br. J. Clin. Pharmacol. 2016, 82, 1189–1212. [Google Scholar] [CrossRef] [PubMed]
- Mundi, P.S.; Sachdev, J.; McCourt, C.; Kalinsky, K. AKT in cancer: New molecular insights and advances in drug development. Br. J. Clin. Pharmacol. 2016, 82, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Rauch, N.; Rukhlenko, O.S.; Kolch, W.; Kholodenko, B.N. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr. Opin. Struct. Biol. 2016, 41, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S.; Ganchev, G.; Iltcheva, M.; La Maestra, S.; Micale, R.T.; Steele, V.E.; Balansky, R. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence. Trends Pharmacol. Sci. 2016, 37, 120–142. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Arya, A.; Malecek, M.-K.; Shin, D.S.; Carneiro, B.; Chandra, S.; Kaplan, J.; Kalyan, A.; Altman, J.K.; Platanias, L.; et al. Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget 2016, 7, 40767–40780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-H.; Guo, X.-L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother. Pharmacol. 2016, 78, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Daugan, M.; Dufaÿ Wojcicki, A.; d’Hayer, B.; Boudy, V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol. Res. 2016, 113, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, F.; Sasso, F.C.; Corte, C.M.D.; Festino, L.; Manzo, A.; Martinelli, E.; Troiani, T.; Capuano, A.; Ciardiello, F. Metformin in lung cancer: Rationale for a combination therapy. Expert Opin. Investig. Drugs 2013, 22, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.G.; Evangelopoulos, A.; Kazazis, C. Metformin and cancer. Rev. Diabet. Stud. RDS 2013, 10, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Becker, D.; Preeshagul, I.; Lee, K.; Katz, E.; Levy, B. Therapeutic Effects of Repurposed Therapies in Non-Small Cell Lung Cancer: What is Old is New again. Oncologist 2015, 20, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Kangwan, N.; Park, J.-M.; Kim, E.-H.; Hahm, K.B. Chemoquiescence for ideal cancer treatment and prevention: Where are we now? J. Cancer Prev. 2014, 19, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Sahra, I.B.; Marchand-Brustel, Y.L.; Tanti, J.-F.; Bost, F. Metformin in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug? Mol. Cancer Ther. 2010, 9, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Korsse, S.E.; Peppelenbosch, M.P.; van Veelen, W. Targeting LKB1 signaling in cancer. Biochim. Biophys. Acta 2013, 1835, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Li, S.-J.; Zhu, Y.-T.; Liu, L.; Li, M.-X. LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer. Asian Pac. J. Cancer Prev. APJCP 2013, 14, 4033–4039. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Mousa, S.A. Metformin and neoplasia: Implications and indications. Pharmacol. Ther. 2012, 133, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Sośnicki, S.; Kapral, M.; Węglarz, L. Molecular targets of metformin antitumor action. Pharmacol. Rep. PR 2016, 68, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Ashinuma, H.; Takiguchi, Y.; Kitazono, S.; Kitazono-Saitoh, M.; Kitamura, A.; Chiba, T.; Tada, Y.; Kurosu, K.; Sakaida, E.; Sekine, I.; et al. Antiproliferative action of metformin in human lung cancer cell lines. Oncol. Rep. 2012, 28, 8–14. [Google Scholar] [PubMed]
- Salani, B.; Maffioli, S.; Hamoudane, M.; Parodi, A.; Ravera, S.; Passalacqua, M.; Alama, A.; Nhiri, M.; Cordera, R.; Maggi, D. Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells. FASEB J. 2012, 26, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Do, M.T.; Kim, H.G.; Khanal, T.; Choi, J.H.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol. 2013, 271, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Kitazono, S.; Takiguchi, Y.; Ashinuma, H.; Saito-Kitazono, M.; Kitamura, A.; Chiba, T.; Sakaida, E.; Sekine, I.; Tada, Y.; Kurosu, K.; et al. Effect of metformin on residual cells after chemotherapy in a human lung adenocarcinoma cell line. Int. J. Oncol. 2013, 43, 1846–1854. [Google Scholar] [PubMed]
- Ko, J.-C.; Huang, Y.-C.; Chen, H.-J.; Tseng, S.-C.; Chiu, H.-C.; Wo, T.-Y.; Huang, Y.-J.; Weng, S.-H.; Chiou, R.Y.Y.; Lin, Y.-W. Metformin Induces Cytotoxicity by Down-Regulating Thymidine Phosphorylase and Excision Repair Cross-Complementation 1 Expression in Non-Small Cell Lung Cancer Cells. Basic Clin. Pharmacol. Toxicol. 2013, 113, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, F.-C.; Wang, W.; Shi, H.-S.; Li, D.; Wang, Y.-S. K-ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol. Med. Rep. 2013, 8, 763–768. [Google Scholar] [PubMed]
- Morgillo, F.; Sasso, F.C.; Corte, C.M.D.; Vitagliano, D.; D’Aiuto, E.; Troiani, T.; Martinelli, E.; Vita, F.D.; Orditura, M.; Palma, R.D.; et al. Synergistic Effects of Metformin Treatment in Combination with Gefitinib, a Selective EGFR Tyrosine Kinase Inhibitor, in LKB1 Wild-type NSCLC Cell Lines. Clin. Cancer Res. 2013, 19, 3508–3519. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.-C.; Chiu, H.-C.; Wo, T.-Y.; Huang, Y.-J.; Tseng, S.-C.; Huang, Y.-C.; Chen, H.-J.; Syu, J.-J.; Chen, C.-Y.; Jian, Y.-T.; et al. Inhibition of p38 MAPK-dependent MutS homologue-2 (MSH2) expression by metformin enhances gefitinib-induced cytotoxicity in human squamous lung cancer cells. Lung Cancer 2013, 82, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Sirianni, R.; Chimento, A.; De Luca, A.; Casaburi, I.; Rizza, P.; Onofrio, A.; Iacopetta, D.; Puoci, F.; Andò, S.; Maggiolini, M.; et al. Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol. Nutr. Food Res. 2010, 54, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; Sirianni, R.; Casaburi, I.; Zolea, F.; Rizza, P.; Avena, P.; Malivindi, R.; De Luca, A.; Campana, C.; Martire, E.; et al. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo. Oncotarget 2015, 6, 19190–19203. [Google Scholar] [CrossRef] [PubMed]
- Salani, B.; Marini, C.; Rio, A.D.; Ravera, S.; Massollo, M.; Orengo, A.M.; Amaro, A.; Passalacqua, M.; Maffioli, S.; Pfeffer, U.; Cordera, R.; Maggi, D.; Sambuceti, G. Metformin Impairs Glucose Consumption and Survival in Calu-1 Cells by Direct Inhibition of Hexokinase-II. Sci. Rep. 2013, 3, 2070. [Google Scholar] [CrossRef] [PubMed]
- San-Millán, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.C.; Bilan, P.J.; Tsakiridis, T.; Tsiani, E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016, 65, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, B.; Wu, J.; Zhang, H.; Wu, B. Metformin inhibits the proliferation of A549/CDDP cells by activating p38 mitogen-activated protein kinase. Oncol. Lett. 2014, 8, 1269–1274. [Google Scholar] [PubMed]
- Kurimoto, R.; Iwasawa, S.; Ebata, T.; Ishiwata, T.; Sekine, I.; Tada, Y.; Tatsumi, K.; Koide, S.; Iwama, A.; Takiguchi, Y. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int. J. Oncol. 2016, 48, 1825–1836. [Google Scholar] [CrossRef] [PubMed]
- Cufí, S.; Vazquez-Martin, A.; Oliveras-Ferraros, C.; Martin-Castillo, B.; Joven, J.; Menendez, J.A. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): From cancer stem cells to aging-associated fibrosis. Cell Cycle 2010, 9, 4461–4468. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; He, X.; Zou, J.; Guo, P.; Jiang, S.; Lv, N.; Alekseyev, Y.; Luo, L.; Luo, Z. Negative regulation of Bmi-1 by AMPK and implication in cancer progression. Oncotarget 2015, 7, 6188–6200. [Google Scholar]
- Li, L.; Wang, H.; Kunlin, L.; Kejun, Z.; Caiyu, L.; Rui, H.; Conghua, L.; Yubo, W.; Hengyi, C.; Fenfen, S.; et al. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway. Oncotarget 2015, 6, 43605–43619. [Google Scholar] [PubMed]
- Dong, S.; Zeng, L.; Liu, Z.; Li, R.; Zou, Y.; Li, Z.; Ge, C.; Lai, Z.; Xue, Y.; Yang, J.; et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J. Hematol. Oncol. J. Hematol. Oncol. 2015, 8, 120. [Google Scholar]
- Wang, J.; Gao, Q.; Wang, D.; Wang, Z.; Hu, C. Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway. Oncol. Lett. 2015, 10, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Liu, Z.; Jiang, L.; Liu, M.; Ma, J.; Yang, C.; Han, L.; Nan, K.; Liang, X. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol. Med. Rep. 2016, 13, 2590–2596. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, R.; Xiao, H.; Lin, C.; Wang, Y.; Liu, H.; Li, K.; Chen, H.; Sun, F.; Yang, Z.; et al. Metformin Sensitizes EGFR-TKI–Resistant Human Lung Cancer Cells In Vitro and In Vivo through Inhibition of IL-6 Signaling and EMT Reversal. Clin. Cancer Res. 2014, 20, 2714–2726. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Peng, T.; Zhang, K.; Lin, C.; Han, R.; Lu, C.; He, Y. Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget 2016, 7, 34442–34452. [Google Scholar] [CrossRef] [PubMed]
- Vujic, I.; Sanlorenzo, M.; Posch, C.; Esteve-Puig, R.; Yen, A.J.; Kwong, A.; Tsumura, A.; Murphy, R.; Rappersberger, K.; Ortiz-Urda, S. Metformin and trametinib have synergistic effects on cell viability and tumor growth in NRAS mutant cancer. Oncotarget 2015, 6, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Groenendijk, F.H.; Mellema, W.W.; van der Burg, E.; Schut, E.; Hauptmann, M.; Horlings, H.M.; Willems, S.M.; van den Heuvel, M.M.; Jonkers, J.; Smit, E.F.; et al. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation. Int. J. Cancer 2015, 136, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.M.; Ciaramella, V.; Mauro, C.D.; Castellone, M.D.; Papaccio, F.; Fasano, M.; Sasso, F.C.; Martinelli, E.; Troiani, T.; De Vita, F.; et al. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget 2015, 7, 4265–4278. [Google Scholar]
- Lin, C.-C.; Yeh, H.-H.; Huang, W.-L.; Yan, J.-J.; Lai, W.-W.; Su, W.-P.; Chen, H.H.W.; Su, W.-C. Metformin Enhances Cisplatin Cytotoxicity by Suppressing Signal Transducer and Activator of Transcription–3 Activity Independently of the Liver Kinase B1–AMP-Activated Protein Kinase Pathway. Am. J. Respir. Cell Mol. Biol. 2013, 49, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.F.; dos Santos Guimarães, I.; Madeira, K.P.; Daltoé, R.D.; Silva, I.V.; Rangel, L.B.A. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. J. Bras. Pneumol. 2013, 39, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.-C.; Huang, Y.-C.; Chen, H.-J.; Chiu, H.-C.; Huang, Y.-J.; Wo, T.-Y.; Weng, S.-H.; Lin, Y.-W. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem. Pharmacol. 2013, 85, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Hann, S.S.; Tang, Q.; Zheng, F.; Zhao, S.; Chen, J.; Wang, Z. Repression of phosphoinositide-dependent protein kinase 1 expression by ciglitazone via Egr-1 represents a new approach for inhibition of lung cancer cell growth. Mol. Cancer 2014, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Sperl, B.; Ullrich, A.; Knyazev, P. Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget 2014, 5, 12877–12890. [Google Scholar] [CrossRef] [PubMed]
- Koeck, S.; Amann, A.; Huber, J.M.; Gamerith, G.; Hilbe, W.; Zwierzina, H. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol. Lett. 2016, 11, 2946–2952. [Google Scholar] [PubMed]
- Cao, H.; Dong, W.; Qu, X.; Shen, H.; Xu, J.; Zhu, L.; Liu, Q.; Du, J. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci. Rep. 2016, 6, 31072. [Google Scholar] [CrossRef] [PubMed]
- Nazim, U.M.; Moon, J.-H.; Lee, J.-H.; Lee, Y.-J.; Seol, J.-W.; Eo, S.-K.; Lee, J.-H.; Park, S.-Y. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL- induced apoptosis. Oncotarget 2016, 7, 23468–23481. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wu, J.; Zheng, F.; Tang, Q.; Yang, L.; Li, L.; Wu, W.; Hann, S.S. β-elemene inhibited expression of DNA methyltransferase 1 through activation of ERK1/2 and AMPKα signalling pathways in human lung cancer cells: The role of Sp1. J. Cell. Mol. Med. 2015, 19, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Storozhuk, Y.; Hopmans, S.N.; Sanli, T.; Barron, C.; Tsiani, E.; Cutz, J.-C.; Pond, G.; Wright, J.; Singh, G.; Tsakiridis, T. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 2013, 108, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.J.; Dallos, M.; Kitagawa, H.; Kunnumakkara, A.B.; Memmott, R.M.; Hollander, M.C.; Gills, J.J.; Dennis, P.A. Inhibition of Lung Tumorigenesis by Metformin Is Associated with Decreased Plasma IGF-I and Diminished Receptor Tyrosine Kinase Signaling. Cancer Prev. Res. 2013, 6, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cheng, X.; Wang, Y.; Han, R.; Li, L.; Xiang, T.; He, L.; Long, H.; Zhu, B.; He, Y. Metformin Inhibits the IL-6-Induced Epithelial-Mesenchymal Transition and Lung Adenocarcinoma Growth and Metastasis. PLoS ONE 2014, 9, e95884. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, D.; Choi, G.; de Bruyn, M.; Wiersma, V.R.; Bremer, E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. Int. Rev. Cell Mol. Biol. 2017, 331, 289–383. [Google Scholar] [PubMed]
- Remon, J.; Pardo, N.; Martinez-Martí, A.; Cedrés, S.; Navarro, A.; Martinez de Castro, A.M.; Felip, E. Immune-checkpoint inhibition in first-line treatment of advanced non-small cell lung cancer patients: Current status and future approaches. Lung Cancer 2017, 106, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Trapani, J.A.; Darcy, P.K. Immunotherapy of cancer. Aust. Fam. Phys. 2017, 46, 194–199. [Google Scholar]
- Kourelis, T.V.; Siegel, R.D. Metformin and cancer: New applications for an old drug. Med. Oncol. 2012, 29, 1314–1327. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Spira, A.; Garber, J.E.; Szabo, E.; Lee, J.J.; Dong, Z.; Dannenberg, A.J.; Hait, W.N.; Blackburn, E.; Davidson, N.E.; et al. Transforming Cancer Prevention through Precision Medicine and Immune-oncology. Cancer Prev. Res. 2016, 9, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-J.; Bi, Y.; Li, S.; Zhang, Q.; Zhao, G.; Guo, Y.; Song, Q. Reduced risk of lung cancer with metformin therapy in diabetic patients: A systematic review and meta-analysis. Am. J. Epidemiol. 2014, 180, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.C.; Roberts, C.M.; Boulis, M.; Mo, J.; MacRae, K.D. Diabetes and the risk of lung cancer. Diabetes Care 2005, 28, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.-W.; Liao, K.-F.; Chen, P.-C.; Tsai, P.-Y.; Hsieh, D.P.H.; Chen, C.-C. Antidiabetes drugs correlate with decreased risk of lung cancer: A population-based observation in Taiwan. Clin. Lung Cancer 2012, 13, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS ONE 2012, 7, e33411. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Gallagher, E.J.; Sigel, K.; Mhango, G.; Galsky, M.D.; Smith, C.B.; LeRoith, D.; Wisnivesky, J.P. Survival of Patients with Stage IV Lung Cancer with Diabetes Treated with Metformin. Am. J. Respir. Crit. Care Med. 2015, 191, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.-X.; Yao, W.-X.; Ge, J.; Peng, X.-C.; Du, X.-B.; Zhang, R.; Yao, B.; Xie, K.; Li, L.-H.; Dong, H.; et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer 2011, 117, 5103–5111. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S.S.; Groman, A.; Meagher, A.; Demmy, T.; Warren, G.W.; Yendamuri, S. Metformin and Not Diabetes Influences the Survival of Resected Early Stage NSCLC Patients. J. Cancer Sci. Ther. 2014, 6, 217–222. [Google Scholar] [PubMed]
- Nie, S.-P.; Chen, H.; Zhuang, M.-Q.; Lu, M. Anti-diabetic medications do not influence risk of lung cancer in patients with diabetes mellitus: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 6863–6869. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, M.; Lucisano, G.; Lapice, E.; Strippoli, G.F.M.; Pellegrini, F.; Nicolucci, A. Metformin therapy and risk of cancer in patients with type 2 diabetes: Systematic review. PLoS ONE 2013, 8, e71583. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.; Saad, A.S.; El Wakeel, L.; Elkholy, E.; Badary, O. Metformin Addition to Chemotherapy in Stage IV Non-Small Cell Lung Cancer: An Open Label Randomized Controlled Study. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 6621–6626. [Google Scholar] [CrossRef] [PubMed]
- Dowling, R.J.O.; Niraula, S.; Stambolic, V.; Goodwin, P.J. Metformin in cancer: Translational challenges. J. Mol. Endocrinol. 2012, 48, R31–R43. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Dose and Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
RERF-LC-AI (SCC), IA-5 (LCC), WA-hT (SCLC), A549 (AC) | 0.3 mM–20 mM met for 1–72 h RERF-LC-AI, IC50 = 6 mM A549, IC50 = 1 mM IA-5, IC50 = 5 mM WA-hT, IC50 = 2 mM | ↓ cell proliferation ↑ apoptosis ↓ colony formation | ↑ G0/G1 cell cycle arrest | [34] |
Calu-1 (NSCLC), Calu-6 (AC) | 0.3 mM–5 mM met for 0–72 h Calu-1 IC50 = 16 mM Calu-6 IC50 = 18 mM | ↓ cell proliferation | ↓ phosphorylation of IGF-IR substrates Akt and FOXO3a ↑ AMPK phosphorylation in Calu-1 cells | [35] |
A549 (AC) | 1–10 mM met for 24 h | ↓ HO-1 mRNA and protein expression ↓ Nrf2 expression | ↓ phosphorylation of Raf and ERK1/2 | [36] |
PC9 (AC) | 1–32 mM met for 0–72 h ~ IC50 = 3.5 mM | ↓ proliferation | [37] | |
A549 (AC), H1975 (AC) | 5–50 μM met for 24–72 h | ↑ cytotoxicity ↓ cellular TP and ERCC1 expression | ↓ MEK1/2-ERK1/2 protein levels. | [38] |
A549 (AC) | 1–10 mM met for 24–72 h IC50 = 5 mM | ↓ proliferation ↑ apoptosis | ↓ Akt levels reducing mTOR activation | [39] |
H1299 (AC), GLC82 (AC), H1975 (AC), CALU-3 (AC), CALU-3 GEF-R (AC), H460 (LCC), A549 (AC) | 0.1–20 mM met for 72 h IC50 = 2–2.5 mM for all cells except A549 and H460 IC50 > 20 mM | ↓ proliferation ↑ apoptosis | ↑ MAPK activation | [40] |
Calu-1 (NSCLC) | 0.0375–10 mM met for 6, 24, 48 h | ↑ apoptosis ↓ glucose uptake | ↓ Hexokinase-II activity | [44] |
A549 (AC) | 0.5–8 mM met for 24 h ~ IC50 = 4 Mm | ↓ proliferation ↑ apoptosis | ↑ G1 cell cycle arrest ↑ p38 MAPK phosphorylation | [47] |
A549 (AC) | 10 mM met for 0–24 h | ↓ Bmi-1 ↑ miR-15a, miR-128, miR-192 and miR-194 | ↑ phosphorylation of AMPK and expression of LKB1 | [50] |
TKI-sensitive PC-9 (AC), TKI-resistant PC-9GR (AC) | 5 mM met for 48 h | ↓ expression of markers of pulmonary fibrosis | ↓ expression of α-actin and COL1A1 ↓ expression of pSMAD2, pSMAD3, pSTAT3, pAKT and dpERK1/2 ↓ TGF-β levels and activation. | [51] |
H522 (AC), H2342 (AC), H2405 (AC), A549 (AC), SPC-A-1 (AC), SW900 (SCC), H1869 (SCC), SK-MES-1 (SCC), H661 (LCC), H1299 (AC) | 1.25–5 mM met for 7 days A549 IC50 = 7.97 mM SK-MES-1 IC50 = 13.36 mM | ↓ proliferative activities ↓ cancer stemness of A549 cells ↓ levels of stem cell markers | ↓ levels of NLK, Nanog, c-Myc and KLF4 | [52] |
A549 (AC) | 5–50 mM met for 24, 48 or 72 h 24 h, IC50 = 3.5 mM 48 h, IC50 = 8 mM 72 h, IC50 = 20 mM | ↑ apoptosis ↑ cell cycle arrest at Go–G1 phase | ↓ Bcl-2 protein levels ↑ Bax protein expression | [53] |
H460 (LCC), H1299 (AC) | 5, 10 or 20 mM met for 24, 48 or 72 h H460 24 h, IC50 > 20 mM H460 48 h, IC50 = 20 mM H460 72 h, IC50 = 10 mM H1299 24 h, IC50 > 20 mM H1299 48 h, IC50 = 20 mM H1299 72 h, IC50 = 20 mM | ↓ proliferation ↑ apoptosis ↑ cell cycle arrest at Go–G1 phase | ↑ AMPK phosphorylation ↓ mTOR and p70S6K phosphorylation | [54] |
Cell Type | Dose and Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
H520 (SCC), H1703 (SCC) | 0.1–1 mM met alone or in combination with 1–10 μM gefitinib for 24 h | ↑ cytotoxicity and growth inhibition by gefitinib | ↓ gefitinib induced expression of MSH2 expression | [41] |
PC-9 (AC), PC-9GR (AC), H1650-M3 (AC) | 5 mM met alone or in combination with either 1–16 μM Gefitinib or 2.5–20 μM erlotinib for 48 h | Resensitized EGFR-TKI resistant human lung cancer cells ↓ EMT in TKI resistant human lung cancer cells | ↑ E-cadherin expression ↓ Vimentin and SNAIL expression | [55] |
H2228 (AC), H3122 (AC) | 5 mM met alone or in combination with 400 nM crizotinib for 48 h | ↓ cell proliferation ↑ apoptosis ↑ crizotinib sensitivity ↓ crizotinib resistance ↓ tumor invasion | ↓ IGF1-R signaling. ↓ phosphorylation of mTOR, p70S6K and S6 | [56] |
SW1271 (SCLC), H2347 (AC) | 10 mM met alone or in combination with 30 nM trametinib for 72 h SW1271 IC50 = 29.9 mM H2347 IC50 = 6.79 mM | Combination is effective for treatment of NRAS mutant lung carcinomas | ↓ cell viability ↓ activity of MAPK and PI3K/Akt/mTOR signaling pathways. | [57] |
A549 (AC), H460 (LCC) | 0.5–2 mM met alone or in combination with 0.25–6 μM sorafenib, for up to 10 days | ↓ proliferation | ↑ AMPK activation | [58] |
H358, Calu-3 (AC), H1299 (AC), H1975 (AC) | 2 mM met alone or in combination with 0.01 μM or 1 μM selumetitnib for 72 h H358 IC50 = 1.5 mM Calu-3 IC50 = 1 mM H1299 IC50 = 1.5 mM H1975 IC50 = 2.5 mM | ↓ proliferation ↑ apoptosis ↓ GLI1 transcriptional activity | ↓ production of MMP-2 and MMP-9 by reducing NF-κB | [59] |
AS2 (AC) | 2.5–2.5 mM met alone or in combination with 2.5 μM cisplatin for 24–72 h | ↓ secretion of VEGF ↑ cisplatin cytotoxicity ↓ cisplatin induced ROS production | ↓ of STAT3 pathway | [60] |
H460 (LCC) | 15.145–60.58 mM met alone or in combination with 0.0995–0.199 mM cisplatin or 0.0926–0.1852 mM etoposide IC50 = 60.58 mM | ↓ proliferation | ↓ metabolic viability | [61] |
H1650 (AC), H1703 (SCC) | 0.1–1 mM met alone or in combination with 0.1–1 μM paclitaxel for 24 h | ↑ cytotoxic effect of paclitaxel ↓ ERCC1 expression | ↓ p38 MAPK phosphorylation | [62] |
H1299 (AC), H1650 (AC) | 5 mM met alone or in combination with 20 μM ciglitazone for 24 h | ↓ growth ↑ apoptosis | ↓ PDK1 expression and promoter activity | [63] |
HCC4006 (AC), NCI-H1975 (AC), HCC95 (SCC), NCI-H2122 (AC), NCI-H3122 (AC) | 0.01–10 mM met alone or in combination with 50–5 μM salinomycin for 48 or 72 h HCC4006 ~ IC50 = 2 mM H1975 ~ IC50 = 5 mM HCC95 ~ IC50 = 5 mM H2122 ~ IC50 > 1 mM H3122 ~ IC50 = 5 mM | ↑ cell death | ↓ EGFR signaling ↓ Akt, EGFR 1/2, mTOR and p70S6K activity | [64] |
A549 (AC), HCC4006 (AC) | 1–10 mM met alone or in combination with 0.1–1 μM salinomycin +10 ng/mL TGF-β for 48 h A549 ~ IC50 = 20 mM HCC4006, IC50 = 20 mM | ↓ TGF-β induced EMT ↓ cell migration | ↑ E-cadherin expression | [65] |
A549 (AC), SPC-A-1 (AC), H1975 (AC), SK-MES-1 (SCC), H520 (SCC), PC-9 (AC) | 3 mM met alone or in combination with 100 ng/mL Figitumumab for 6–48 h (Please check whether the unit missing) | ↓ proliferation | ↓ PI3K/Akt signaling pathways ↓ MEK/ERK signaling pathways ↓ IGF-1 receptor | [66] |
A549 (AC) | 1–4 mM met alone for 12 h or in combination with 200 ng/mL TRAIL protein for 2 h | ↑ apoptosis | ↓ c-FLIP ↓ p62 protein levels | [67] |
PC9 (AC), A549 (AC), | 20 μM met alone or in combination with 20 μg/mL β-elemene for 24 h | ↓ cell growth | ↓ Akt phosphorylation ↓ DNMT1 | [68] |
A549 (AC), H1299 (AC), SK-MES1 (SCC) | 2.5–5 mM met alone or in combination with ionizing radiation for 72 h A549 ~ IC50 = 75 μM H1299 ~ IC50 = 25 μM SK-MES1 ~ IC50 = 25 μM | ↓ proliferation ↑ radio-sensitization | ↑ ATM-AMPK-P53 pathway activity ↓ Akt, mTOR, 4EBP1 pathways ↑ G1 cell cycle arrest ↑ apoptosis | [69] |
Animal Model | Dose and Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
7 week old female Balb/c mice inoculated subcutaneously with A549 or A431 cells | Drinking water +250 mg/kg/day metformin for 21 days | ↑ apoptosis ↓ growth of K-ras mutant tumors | ↓ Akt levels ↓ mTOR activation | [39] |
8 week old LID mice were given 3 weekly injections of NNK (tobacco carcinogen) | Drinking water +5 mg/mL metformin | ↓ lung tumorigenesis | IGF-1 independent mechanism ↓ phosphorylation of multiple RTKs | [70] |
6 week old nude mice inoculated with HCC827-pSB388 cells | Drinking water +250 mg/kg body weight metformin, 2 days before tumor inoculation—till the mice were sacrificed | ↓ growth and distant metastases ↓ IL-6 induced EMT | ↓ STAT3 phosphorylation | [71] |
4–6 week old female Balb/c mice were injected subcutaneously with H1299 or CALU-3 GEF-R cells | Drinking water +200 mg/mL metformin +150 mg/kg/day gefitinib for 35 days | ↓ proliferation ↑ apoptosis | ↓ EGFR phosphorylation ↑ MAPK activation | [40] |
6 week old female Balb/cA-nu mice were inoculated with PC-9GR or PC-9 cells subcutaneously into the back next to the left forelimb | Drinking water +1 mg/mL metformin alone or in combination with 250 mg/L gefitinib for 30 days | ↓ tumor growth in xenografts with TKI-resistant cancer cells | ↓ IL-6 secretion and expression ↓ IL-6 signaling action ↓ EMT | [55] |
Male SD rats with average weight of 200 g. Maintained under chloral hydrate anesthesia (500 mg/kg) | Gefitinib 200 mg/kg administered orally once/day for 3 days before animals received a single intratracheal administration of bleomycin (5 mg/kg). Gefitnib and metformin (300 mg/kg) was then continued once every 2 days for the following 21 days | ↓ exacerbation of bleomycin-induced pulmonary fibrosis by gefitinib | ↓ α-actin and COL1A1 ↓ expression of pSMAD2, pSMAD3, pSTAT3, pAKT and ERK1/2 ↓ TGF-β levels and activation | [51] |
6–8 week old balb/c nude mice were subcutaneously injected with AS2 cells into the flanks | Drinking water with or without 500 mg/kg metformin with or without 4 mg/kg cisplatin | ↓ xenograft growth ↓ cisplatin induced ROS production and autocrine IL-6 secretion | ↓ of STAT 3 pathway | [60] |
Balb/c nude mice were subcutaneously injected with A549 cells into their right flanks | 40 mg/kg/day metformin alone or in combination with 5 mg/kg/day cisplatin | ↓ tumor size | ↓ Bcl-2 protein levels ↑ Bax protein expression | [53] |
7 week old immunodeficient Balb/c female nude mice injected subcutaneously with A549 cells into the right posterior flanks | Drinking water + 400 mg/kg/day body weight metformin + 30 mg/kg/day. Sorafenib for 40 days. Given either agent alone or in combination. | ↓ proliferation | ↑ apoptosis phosphorylation of AMPK ↑ inhibition of downstream mTOR signaling | [58] |
4–6 week old nude mice bearing H1299 or H1975 cells that were grown subcutaneously | Drinking water +200 mg/mL metformin +25 mg/kg selumetinib for 35 days | Expression changes of mesenchymal proteins, SNAIL and vimentin ↓ tumor metastatic behavior | ↓ production of MMP-2 and MMP-9 by reducing NF-κB | [59] |
5 week old balb/c-nude mice were subcutaneously injected with A549 or H1299 cells into the right flank | Drinking water +300 mg/kg body weight per day metformin till euthanasia. Xenografts were subjected to 0 Gy or 10 Gy IR while under gaseous anesthesia | ↓ of xenograft growth | ↑ ATM-AMPK-P53 pathway ↓ Akt-mTOR-4EBP1 pathways in tumors ↓ angiogenesis ↑ expression of apoptosis markers | [69] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, M.; Tsiani, E. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers 2017, 9, 45. https://doi.org/10.3390/cancers9050045
Yousef M, Tsiani E. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers. 2017; 9(5):45. https://doi.org/10.3390/cancers9050045
Chicago/Turabian StyleYousef, Michael, and Evangelia Tsiani. 2017. "Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies" Cancers 9, no. 5: 45. https://doi.org/10.3390/cancers9050045
APA StyleYousef, M., & Tsiani, E. (2017). Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers, 9(5), 45. https://doi.org/10.3390/cancers9050045