High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units
Abstract
:1. Introduction
2. Utilization of GPUs in Weather Predictions
3. HPC in Meteorological Institutes and Centers
3.1. European Centre for Medium-Range Weather Forecasts
3.2. Deutscher Wetterdienst
3.3. Swiss National Supercomputing Centre
3.4. National Center for Atmospheric Research
3.5. Riken or Institute of Physical and Chemical Research in Japan
3.6. Japan Agency for Marine–Earth Science and Technology
3.7. Institutes in China and the United States
4. Latest Topics in High-Performance Computing in Meteorology
4.1. Floating Point
4.2. Spectral Transform in Global Weather Models
4.3. Heterogeneous Computing
4.4. Co-Design
4.5. Resource Allocation of an HPC System
4.6. Data-Driven Weather Forecast
5. Discussion and Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Deep Learning for Further Information
Deep Learning Frameworks | URL |
---|---|
Tensorflow | https://www.tensorflow.org/ |
Keras | https://keras.io/ |
PyTorch | https://pytorch.org/ |
MXNet | https://aws.amazon.com/jp/mxnet/ |
CNTK | https://cntk.ai |
Caffe | https://caffe.berkeleyvision.org/ |
PaddlePaddle | www.paddlepaddle.org/ |
Scikit-learn | https://scikit-learn.org/stable/ |
R | https://www.r-project.org/ |
Weka | https://www.cs.waikato.ac.nz/ml/weka/ |
References
- Michalakes, J. HPC for Weather Forecasting. In Book Parallel Algorithms in Computational Science and Engineering; Grama, A., Sameh, A.H., Eds.; Birkhäuser Cham: Basel, Switzerland, 2020; pp. 297–323. [Google Scholar] [CrossRef]
- Richardson, L.F. Weather Prediction by Numerical Process, 2nd ed.; Cambridge University Press: London, UK, 1922; p. 236. ISBN 978-0-521-68044-8. [Google Scholar]
- Eadline, D. The evolution of HPC. In The insideHPC Guide to Co-Design Architectures Designing Machines Around Problems: The Co-Design Push to Exascale, insideHPC; LLC: Moscow, Russian, 2016; pp. 3–7. Available online: https://insidehpc.com/2016/08/the-evolution-of-hpc/ (accessed on 3 May 2022).
- Li, T.; Narayana, V.K.; El-Ghazawi, T. Exploring Graphics Processing Unit (GPU) Resource Sharing Efficiency for High Performance Computing. Computers 2013, 2, 176–214. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, J.J.; Zhang, Y.; Rahman, A. ForecastNet: A time-variant deep feed-forward neural network architecture for multi-step-ahead time-series forecasting. In Proceedings of the International Conference on Neural Information Processing, Bangkok, Thailand, 18–22 November 2020; Springer: Cham, Switzerland, 2020; pp. 579–591. [Google Scholar]
- Espeholt, L.; Agrawal, S.; Sønderby, C.; Kumar, M.; Heek, J.; Bromberg, C.; Gazen, C.; Hickey, J.; Bell, A.; Kalchbrenner, N. Skillful twelve hour precipitation forecasts using large context neural networks. arXiv 2021, arXiv:2111.07470. [Google Scholar]
- Pathak, J.; Subramanian, S.; Harrington, P.; Raja, S.; Chattopadhyay, A.; Mardani, M.; Kurth, T.; Hall, D.; Li, Z.; Azizzadenesheli, K.; et al. FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. arXiv 2022, arXiv:2202.11214. [Google Scholar] [CrossRef]
- Müller, M.; Aoki, T. Hybrid Fortran: High Productivity GPU Porting Framework Applied to Japanese Weather Prediction Model. In International Workshop on Accelerator Programming Using Directives; Springer: Cham, Switzerland, 2017; pp. 20–41. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Nakaegawa, T.; Pinzon, R.; Fabrega, J.; Cuevas, J.A.; De Lima, H.A.; Cordoba, E.; Nakayama, K.; Lao, J.I.B.; Melo, A.L.; Gonzalez, D.A.; et al. Seasonal changes of the diurnal variation of precipitation in the upper Río Chagres basin, Panamá. PLoS ONE 2019, 14, e0224662. [Google Scholar] [CrossRef]
- ECWMF 2021a: Fact Sheet: Supercomputing at ECMWF. Available online: https://www.ecmwf.int/en/about/media-centre/focus/2021/fact-sheet-supercomputing-ecmwf (accessed on 3 May 2022).
- Müller, A.; Deconinck, W.; Kühnlein, C.; Mengaldo, G.; Lange, M.; Wedi, N.; Bauer, P.; Smolarkiewicz, P.K.; Diamantakis, M.; Lock, S.-J.; et al. The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale. Geosci. Model Dev. 2019, 12, 4425–4441. [Google Scholar] [CrossRef] [Green Version]
- Jungclaus, J.H.; Lorenz, S.J.; Schmidt, H.; Brovkin, V.; Brüggemann, N.; Chegini, F.; Crüger, T.; De-Vrese, P.; Gayler, V.; Giorgetta, M.A.; et al. The ICON Earth System Model Version 1.0. J. Adv. Modeling Earth Syst. 2022, 14, e2021MS002813. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. (In German) [Google Scholar] [CrossRef]
- Schättler, U. Operational NWP at DWD Life before Exascale. In Proceedings of the 19th Workshop on HPC in Meteorology, Reading, UK, 20–24 September 2021; Available online: https://events.ecmwf.int/event/169/contributions/2770/attachments/1416/2542/HPC-WS_Schaettler.pdf (accessed on 3 May 2022).
- Fuhrer, O.; Osuna, C.; Lapillonne, X.; Gysi, T.; Cumming, B.; Bianco, M.; Arteaga, A.; Schulthess, T.C. Towards a performance portable, architecture agnostic implementation strategy for weather and climate models. Supercomput. Front. Innov. 2014, 1, 45–62. Available online: http://superfri.org/superfri/article/view/17 (accessed on 17 March 2018).
- Fuhrer, O.; Chadha, T.; Hoefler, T.; Kwasniewski, G.; Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Osuna, C.; Schär, C.; Schulthess, T.C.; et al. Near-global climate simulation at 1 km resolution: Establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geosci. Model Dev. 2018, 11, 1665–1681. [Google Scholar] [CrossRef] [Green Version]
- CSCS. Fact Sheet: “Piz Daint”, One of the Most Powerful Supercomputers in the World. 2017, p. 2. Available online: https://www.cscs.ch/fileadmin/user_upload/contents_publications/factsheets/piz_daint/FSPizDaint_Final_2018_EN.pdf (accessed on 3 May 2022).
- Hosansky, D. New NCAR-Wyoming Supercomputer to Accelerate Scientific Discovery; NCAR & UCAR News: Boulder, CO, USA, 27 January 2021; Available online: https://news.ucar.edu/132774/new-ncar-wyoming-supercomputer-accelerate-scientific-discovery (accessed on 3 May 2022).
- R-CCS. RIKEN Center for Computational Science Pamphlet. 2021, p. 14. Available online: https://www.r-ccs.riken.jp/en/wp-content/uploads/sites/2/2021/09/r-ccs_pamphlet_en.pdf (accessed on 3 May 2022).
- Duc, L.; Kawabata, T.; Saito, K.; Oizumi, T. Forecasts of the July 2020 Kyushu Heavy Rain Using a 1000-Member Ensemble Kalman Filter. SOLA 2021, 17, 41–47. [Google Scholar] [CrossRef]
- R-CCS. About Fugaku 2022. Available online: https://www.r-ccs.riken.jp/en/fugaku/about/ (accessed on 3 May 2022).
- JAMSTEC 2013. JAMSTEC Vision. Available online: https://www.jamstec.go.jp/e/about/vision/ (accessed on 3 May 2022).
- Mizuta, R.; Oouchi, K.; Yoshimura, H.; Noda, A.; Katayama, K.; Yukimoto, S.; Hosaka, M.; Kusunoki, S.; Kawai, H.; Nakagawa, M. 20-km-mesh global climate simulations using JMA-GSM model—mean climate states—. J. Meteorol. Soc. Jpn. Ser. II 2006, 84, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Kawase, H.; Imada, Y.; Sasaki, H.; Nakaegawa, T.; Murata, A.; Nosaka, M.; Takayabu, I. Contribution of Historical Global Warming to Local-Scale Heavy Precipitation in Western Japan Estimated by Large Ensemble High-Resolution Simulations. J. Geophys. Res. Atmos. 2019, 124, 6093–6103. [Google Scholar] [CrossRef]
- Hatfield, S.; Düben, P.; Chantry, M.; Kondo, K.; Miyoshi, T.; Palmer, T. Choosing the Optimal Numerical Precision for Data Assimilation in the Presence of Model Error. J. Adv. Model. Earth Syst. 2018, 10, 2177–2191. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Yashiro, H.; Kodama, C.; Tomita, H. Single Precision in the Dynamical Core of a Nonhydrostatic Global Atmospheric Model: Evaluation Using a Baroclinic Wave Test Case. Mon. Weather Rev. 2018, 146, 409–416. [Google Scholar] [CrossRef]
- NVIDIA 2020a. Training, HPC up to 20x’. Available online: https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/ (accessed on 3 May 2022).
- NVIDIA 2022a. NVIDIA A100 Tensor Core GPU. pp3. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf (accessed on 3 May 2022).
- Suda, R. Fast Spherical Harmonic Transform Routine FLTSS Applied to the Shallow Water Test Set. Mon. Weather Rev. 2005, 133, 634–648. [Google Scholar] [CrossRef]
- Yoshimura, H. Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model. Geosci. Model Dev. 2022, 15, 2561–2597. [Google Scholar] [CrossRef]
- NVIDIA 2022b cuFFT Library User’s Guide. p. 88. Available online: https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf (accessed on 3 May 2022).
- Intel 2020, Intel Executing toward XPU Vision with oneAPI and Intel Server GPU, Intel Newsroom. Available online: https://www.intel.com/content/www/us/en/newsroom/news/xpu-vision-oneapi-server-gpu.html (accessed on 3 May 2022).
- Bailey, B. What Is An XPU? Semiconductor Engineering 11 November 2021. Available online: https://semiengineering.com/what-is-an-xpu/ (accessed on 3 May 2022).
- Reinders, J.; Ashbaugh, B.; Brodman, J.; Kinsner, M.; Pennycook, J.; Tian, X. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems Using C++ and SYCL; Springer Nature: Berlin, Germany, 2021; p. 548. [Google Scholar]
- Vetter, J.S. Preparing for Extreme Heterogeneity in High Performance Computing. In Proceedings of the 19th Workshop on High Performance Computing in Meteorology, Reading, UK, 20–24 September 2021; Available online: https://events.ecmwf.int/event/169/contributions/2738/attachments/1431/2578/HPC_WS-Vetter.pdf (accessed on 3 May 2022).
- Barrett, R.F.; Borkar, S.; Dosanjh, S.S.; Hammond, S.D.; Heroux, M.A.; Hu, X.S.; Luitjens, J.; Parker, S.G.; Shalf, J.; Tang, L. On the Role of Co-design in High Performance Computing. In Transition of HPC Towards Exascale Computing; IOS Press: Amsterdam, The Netherlands, 2013; pp. 141–155. [Google Scholar] [CrossRef]
- Cardwell, S.G.; Vineyard, C.; Severa, W.; Chance, F.S.; Rothganger, F.; Wang, F.; Musuvathy, S.; Teeter, C.; Aimone, J.B. Truly Heterogeneous HPC: Co-Design to Achieve what Science Needs from HPC. In Proceedings of the Smoky Mountains Computational Sciences and Engineering Conference, Oak Ridge, TN, USA, 26–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 349–365. [Google Scholar]
- Sato, M.; Kodama, Y.; Tsuji, M.; Odajima, T. Co-Design and System for the Supercomputer “Fugaku”. IEEE Micro 2021, 42, 26–34. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Nakaegawa, T.; Kitoh, A.; Murakami, H.; Kusunoki, S. Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2013, 116, 155–168. [Google Scholar] [CrossRef]
- Mizuta, R.; Nosaka, M.; Nakaegawa, T.; Endo, H.; Kusunoki, S.; Murata, A.; Takayabu, I. Extreme Precipitation in 150-year Continuous Simulations by 20-km and 60-km Atmospheric General Circulation Models with Dynamical Downscaling over Japan by a 20-km Regional Climate Model. J. Meteorol. Soc. Jpn. Ser. II 2022, 100, 523–532. [Google Scholar] [CrossRef]
- JMA 2020: Changes in Numerical Forecasts over the Past 30 Years, in Sixty Years of Numerical Forecasting, 1–11. Available online: https://www.jma.go.jp/jma/kishou/know/whitep/doc_1-3-2-1/all.pdf (accessed on 3 May 2022). (In Japanese).
- NVIDIA, 2020b: NVIDIA CEO Introduces NVIDIA Ampere Architecture, NVIDIA A100 GPU in News-Packed ‘Kitchen Keynote. Available online: https://blogs.nvidia.com/blog/2020/05/14/gtc-2020-keynote/) (accessed on 3 May 2022).
- ECMWF. In Proceedings of the 19th Workshop on High Performance Computing in Meteorology, Reading, UK, 20–24 September 2021. Available online: https://events.ecmwf.int/event/169/ (accessed on 3 May 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakaegawa, T. High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units. Computers 2022, 11, 114. https://doi.org/10.3390/computers11070114
Nakaegawa T. High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units. Computers. 2022; 11(7):114. https://doi.org/10.3390/computers11070114
Chicago/Turabian StyleNakaegawa, Tosiyuki. 2022. "High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units" Computers 11, no. 7: 114. https://doi.org/10.3390/computers11070114
APA StyleNakaegawa, T. (2022). High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units. Computers, 11(7), 114. https://doi.org/10.3390/computers11070114