A Novel Deep Learning-Based Intrusion Detection System for IoT Networks
Abstract
:1. Introduction
- Deep Neural Network (DNN) design and optimization for IoT network intrusion detection.
- Designing the intrusion detection system components.
- Discovering the effective dataset features for IoT network intrusion detection.
- Deep analysis of DNN-based intrusion detection system through intrusion model of five frequently occurring attacks.
- Achieving an average intrusion detection rate of 93.21%.
2. Literature Review
3. Methodology
3.1. Components of the Detection System
3.1.1. Communication Module (CM)
Dynamic Connection
Network Emulator
Interface Module
3.1.2. Intrusion Detection Module (IDM)
Feature Extractor Module (FEM)
Network Classifier
Algorithm 1 Feature Extraction Algorithm |
Require:
Extract Divide the for each Layer for every Layer in packet do if then end if for every F do Add the F to feature list end for Assign the features to Layer end for |
Classifier Updater
3.1.3. Mitigation Module
3.2. Intrusion Detection Using Deep Learning
3.2.1. Dataset
3.2.2. Feature Engineering
3.2.3. Deep Neural Network Design
4. Implementation and Result Evaluation
4.1. Intrusion Model
Blackhole Attack (BHA)
Distributed Denial-of-Service (DDoS) Attack
Opportunistic Service Attacks (OSA)
Sinkhole Attack (SHA)
Wormhole Attack (WHA)
4.2. Evaluation Metrics
4.3. Confusion Matrix Analysis
4.3.1. Performance on BHA
4.3.2. Performance on DDoS Attack
4.3.3. Performance on OSA
4.3.4. Performance on SHA
4.3.5. Performance on WHA
4.4. Overall Performance
5. Limitation & Future Scope
5.1. Intrusion Model Limitation
5.2. Absence of Comparison
5.3. System Dependent Dataset
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput. Biol. Med. 2021, 139, 104961. [Google Scholar] [CrossRef]
- Wójcicki, K.; Biegańska, M.; Paliwoda, B.; Górna, J. Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review. Energies 2022, 15, 1806. [Google Scholar] [CrossRef]
- Hasan, M.K.; Akhtaruzzaman, M.; Kabir, S.R.; Gadekallu, T.R.; Islam, S.; Magalingam, P.; Hassan, R.; Alazab, M.; Alazab, M.A. Evolution of industry and blockchain era: Monitoring price hike and corruption using BIoT for smart government and industry 4.0. IEEE Trans. Ind. Inform. 2022, 18, 9153–9161. [Google Scholar] [CrossRef]
- Zhao, Y.; Lian, Y. Event-driven Circuits and Systems: A Promising Low Power Technique for Intelligent Sensors in AIoT Era. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3122–3128. [Google Scholar] [CrossRef]
- Soldatos, J.; Gusmeroli, S.; Malo, P.; Di Orio, G. Internet of things applications in future manufacturing. In Digitising the Industry Internet of Things Connecting the Physical, Digital and Virtual Worlds; River Publishers: Delft, The Netherlands, 2022; pp. 153–183. [Google Scholar]
- Sharma, R.; Arya, R. Security threats and measures in the Internet of Things for smart city infrastructure: A state of art. Trans. Emerg. Telecommun. Technol. 2022, 1, e4571. [Google Scholar] [CrossRef]
- Rondon, L.P.; Babun, L.; Aris, A.; Akkaya, K.; Uluagac, A.S. Survey on enterprise Internet-of-Things systems (E-IoT): A security perspective. Ad Hoc Netw. 2022, 125, 102728. [Google Scholar] [CrossRef]
- Williams, R.; McMahon, E.; Samtani, S.; Patton, M.; Chen, H. Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; IEEE: New York, NY, USA, 2017; pp. 179–181. [Google Scholar]
- Hilton, S. Dyn Analysis Summary of Friday October 21 Attack. Dyn Blog. 2016. Available online: https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack (accessed on 1 January 2023).
- Nayak, J.; Meher, S.K.; Souri, A.; Naik, B.; Vimal, S. Extreme learning machine and bayesian optimization-driven intelligent framework for IoMT cyber-attack detection. J. Supercomput. 2022, 78, 14866–14891. [Google Scholar] [CrossRef]
- Husnain, M.; Hayat, K.; Cambiaso, E.; Fayyaz, U.U.; Mongelli, M.; Akram, H.; Ghazanfar Abbas, S.; Shah, G.A. Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion Detection System. Sensors 2022, 22, 567. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Xu, X.; Zhao, Q. Dynamic defenses in cyber security: Techniques, methods and challenges. Digit. Commun. Netw. 2022, 8, 422–435. [Google Scholar] [CrossRef]
- Nimbalkar, P.; Kshirsagar, D. Analysis of rule-based classifiers for IDS in IoT. In Data Science and Security; Springer: New York, NY, USA, 2021; pp. 461–467. [Google Scholar]
- Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, M.A.; Habeeb, R.A.A.; Nasaruddin, F.H.; Gani, A.; Ahmed, E.; Nainar, A.S.M.; Akim, N.M.; Imran, M. Deep learning and big data technologies for IoT security. Comput. Commun. 2020, 151, 495–517. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, Y.; Song, H.; Lv, Z. Deep learning in security of internet of things. IEEE Internet Things J. 2021, 9, 22133–22146. [Google Scholar] [CrossRef]
- Alferidah, D.K.; Jhanjhi, N. Cybersecurity impact over bigdata and iot growth. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Bandar Seri Iskandar, Malaysia, 8–9 October 2020; IEEE: New York, NY, USA, 2020; pp. 103–108. [Google Scholar]
- Yılmaz, H.E.; Sirel, A.; Esen, M.F. The impact of internet of things self-security on daily business and business continuity. In Research Anthology on Business Continuity and Navigating Times of Crisis; IGI Global: Hershey, PA, USA, 2022; pp. 695–712. [Google Scholar]
- Harada, R.; Shibata, N.; Kaneko, S.; Honda, K.; Terada, J.; Ishida, Y.; Akashi, K.; Miyachi, T. Quick Suppression of DDoS Attacks by Frame Priority Control in IoT Backhaul with Construction of Mirai-based Attacks. IEEE Access 2022, 10, 22392–22399. [Google Scholar] [CrossRef]
- Batten, L.M.; Moonsamy, V.; Alazab, M. Smartphone applications, malware and data theft. In Computational Intelligence, Cyber Security and Computational Models; Springer: New York, NY, USA, 2016; pp. 15–24. [Google Scholar]
- Alazab, M.; Batten, L.M. Survey in smartphone malware analysis techniques. In New Threats and Countermeasures in Digital Crime and Cyber Terrorism; IGI Global: Hershey, PA, USA, 2015; pp. 105–130. [Google Scholar]
- Alajanbi, M.; Mohd Arfian Ismail, R.A.H.; Sulaiman, J. Intrusion Detection: A Review. Mesopotamian J. Cybersecur. 2021, 2021, 4. [Google Scholar]
- Alazab, A.; Khraisat, A.; Alazab, M.; Singh, S. Detection of Obfuscated Malicious JavaScript Code. Future Internet 2022, 14, 217. [Google Scholar] [CrossRef]
- Alazab, M.; Abu Khurma, R.; Awajan, A.; Wedyan, M. Digital Forensics Classification Based on a Hybrid Neural Network and the Salp Swarm Algorithm. Electronics 2022, 11, 1903. [Google Scholar] [CrossRef]
- Alazab, M.; Alazab, A.; Batten, L. Smartphone malware based on synchronisation vulnerabilities. In Proceedings of the ICITA 2011: Proceedings of the 7th International Conference on Information Technology and Applications, Washington, DC, USA, 5–8 December 2011; ICITA: Washington, DC, USA, 2011; pp. 1–6. [Google Scholar]
- Alazab, M.A. Analysis on Smartphone Devices for Detection and Prevention of Malware; Deakin University: Melbourne, Australia, 2014. [Google Scholar]
- Alazab, M.; Khurma, R.A.; Awajan, A.; Camacho, D. A new intrusion detection system based on moth–flame optimizer algorithm. Expert Syst. Appl. 2022, 210, 118439. [Google Scholar] [CrossRef]
- Alazab, M.; Alazab, M.; Shalaginov, A.; Mesleh, A.; Awajan, A. Intelligent mobile malware detection using permission requests and API calls. Future Gener. Comput. Syst. 2020, 107, 509–521. [Google Scholar] [CrossRef]
- Alzubi, O.A.; Alzubi, J.A.; Alazab, M.; Alrabea, A.; Awajan, A.; Qiqieh, I. Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment. Electronics 2022, 11, 3007. [Google Scholar] [CrossRef]
- Alani, M.M.; Damiani, E.; Ghosh, U. DeepIIoT: An Explainable Deep Learning Based Intrusion Detection System for Industrial IOT. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Hong Kong, China, 18–21 July 2022; IEEE: New York, NY, USA, 2022; pp. 169–174. [Google Scholar]
- Ravi, V.; Chaganti, R.; Alazab, M. Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system. Comput. Electr. Eng. 2022, 102, 108156. [Google Scholar] [CrossRef]
- Safara, F.; Souri, A.; Serrizadeh, M. Improved intrusion detection method for communication networks using association rule mining and artificial neural networks. IET Commun. 2020, 14, 1192–1197. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Moustafa, N.; Hawash, H.; Ding, W. Deep Learning Techniques for IoT Security and Privacy; Springer: New York, NY, USA, 2022; Volume 997. [Google Scholar]
- An, G.H.; Cho, T.H. Improving Sinkhole Attack Detection Rate through Knowledge-Based Specification Rule for a Sinkhole Attack Intrusion Detection Technique of IoT. Int. J. Comput. Netw. Appl. (IJCNA) 2022, 9, 169–178. [Google Scholar] [CrossRef]
- Cervantes, C.; Poplade, D.; Nogueira, M.; Santos, A. Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for Internet of Things. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; IEEE: New York, NY, USA, 2015; pp. 606–611. [Google Scholar]
- Asad, H.; Gashi, I. Dynamical analysis of diversity in rule-based open source network intrusion detection systems. Empir. Softw. Eng. 2022, 27, 1–30. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, K.; Li, W.; Du, S. A Realistic, Flexible and Extendible Network Emulation Platform for Space Networks. Electronics 2022, 11, 1236. [Google Scholar] [CrossRef]
- Naeemullah Khan, I.K.; Daghighi, E. Improved feature selection method for features reduction in intrusion detection systems. Mesopotamian J. Cybersecur. 2021, 2021, 15. [Google Scholar]
- Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- Gao, M.; Liao, T.; Lu, Y. Fully connected feedforward neural networks based CSI feedback algorithm. China Commun. 2021, 18, 43–48. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks, Sitges, Spain, 9–11 June 1995; Springer: New York, NY, USA, 1995; pp. 195–201. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Phansalkar, V.V.; Sastry, P.S. Analysis of the back-propagation algorithm with momentum. IEEE Trans. Neural Netw. 1994, 5, 505–506. [Google Scholar] [CrossRef]
- Mansfield, S.; Veenstra, K.; Obraczka, K. TerrainLOS: An outdoor propagation model for realistic sensor network simulation. In Proceedings of the 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), London, UK, 19–21 September 2016; IEEE: New York, NY, USA, 2016; pp. 463–468. [Google Scholar]
- Gupta, V.; Tovar, E.; Pereira, N. CoS: A New Perspective of Operating Systems Design for the Cyber-Physical World. In Proceedings of the Operating Systems Platforms for Embedded Real-Time Applications Workshop, Modena, Italy, 7 July 2012. [Google Scholar]
- Abdullahi, M.; Baashar, Y.; Alhussian, H.; Alwadain, A.; Aziz, N.; Capretz, L.F.; Abdulkadir, S.J. Detecting Cybersecurity Attacks in Internet of Things Using Artificial Intelligence Methods: A Systematic Literature Review. Electronics 2022, 11, 198. [Google Scholar] [CrossRef]
- Thakkar, A.; Lohiya, R. A survey on intrusion detection system: Feature selection, model, performance measures, application perspective, challenges, and future research directions. Artif. Intell. Rev. 2022, 55, 453–563. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M.A.; Ahmad, J.; Malik, A.W.; ur Rehman, A. Detection and prevention of Black Hole Attacks in IOT & WSN. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; IEEE: New York, NY, USA, 2018; pp. 217–226. [Google Scholar]
- Islam, U.; Muhammad, A.; Mansoor, R.; Hossain, M.S.; Ahmad, I.; Eldin, E.T.; Khan, J.A.; Rehman, A.U.; Shafiq, M. Detection of distributed denial of service (DDoS) attacks in IOT based monitoring system of banking sector using machine learning models. Sustainability 2022, 14, 8374. [Google Scholar] [CrossRef]
- Fernando, N.; Loke, S.W.; Avazpour, I.; Chen, F.F.; Abkenar, A.B.; Ibrahim, A. Opportunistic fog for IoT: Challenges and opportunities. IEEE Internet Things J. 2019, 6, 8897–8910. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, M.; Liu, X.; Xiong, N.N.; Liu, A.; Zhu, Y. Design and analysis of probing route to defense sink-hole attacks for Internet of Things security. IEEE Trans. Netw. Sci. Eng. 2018, 7, 356–372. [Google Scholar] [CrossRef]
- Goyal, M.; Dutta, M. Intrusion detection of wormhole attack in IoT: A review. In Proceedings of the 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Neu, D.A.; Lahann, J.; Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 2022, 55, 801–827. [Google Scholar] [CrossRef]
- Mihoub, A.; Fredj, O.B.; Cheikhrouhou, O.; Derhab, A.; Krichen, M. Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Comput. Electr. Eng. 2022, 98, 107716. [Google Scholar] [CrossRef]
Serial | Feature | Symbol | Role |
---|---|---|---|
1 | Source IP | Authentic source verification | |
2 | Destination IP | Integrity of the destination | |
3 | Information | The value of the data | |
4 | Active Session | Active time duration of the devices | |
5 | Transmission Mode | Suspicious communication from unauthorized devices | |
6 | Transmission Rate | Anomalous rate of data transmission | |
7 | Reception Rate | Anomalous rate of data reception | |
8 | Transmission to Reception Ratio | A ratio expresses the usual or anomalous bandwidth usage |
Attack | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | IDR |
---|---|---|---|---|---|
Blackhole | 92.7 | 92.63 | 93.01 | 92.28 | 96.45 |
DDoS | 92.9 | 92.86 | 93.03 | 92.61 | 95.41 |
Opportunistic Service | 95.2 | 95.19 | 95.2 | 95.04 | 90.17 |
Sinkhole | 93.3 | 93.28 | 93.3 | 93.07 | 91.7 |
Wormhole | 94.6 | 94.6 | 94.58 | 94.36 | 92.33 |
Average | 93.74 | 93.712 | 93.824 | 93.472 | 93.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awajan, A. A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers 2023, 12, 34. https://doi.org/10.3390/computers12020034
Awajan A. A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers. 2023; 12(2):34. https://doi.org/10.3390/computers12020034
Chicago/Turabian StyleAwajan, Albara. 2023. "A Novel Deep Learning-Based Intrusion Detection System for IoT Networks" Computers 12, no. 2: 34. https://doi.org/10.3390/computers12020034
APA StyleAwajan, A. (2023). A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers, 12(2), 34. https://doi.org/10.3390/computers12020034