Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalysts
2.2. HDC Tests
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of the Catalysts
3.3. Characterization
3.4. Gas-Phase HDC Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Kurylo, M.J.; Rodriguez, J.M.; Andreae, M.O.; Atlas, E.L.; Blake, D.R.; Butler, J.H.; Lal, S.; Lary, D.J.; Midgley, P.M.; Montzka, S.A.; et al. Scientific Assessment of Ozone Depletion: 2014; WMO: Geneva, Switzerland, 2014; ISBN 9789966076014. [Google Scholar]
- Zhao, J.; Chen, M. Leak Detection and Repair (LDAR) Standard Review for Self-Inspection and Management for VOC Emission in China’s Traditional Energy Chemical Industry. J. Environ. Prot. 2018, 9, 1155–1170. [Google Scholar] [CrossRef][Green Version]
- Fraas, A.G.; Egorenkov, A. A Retrospective Study of EPA’s Rules Setting Best Available Technology Limits For Toxic Discharges to Water Under the Clean Water Act. SSRN Electron. J. 2015, 15–41. [Google Scholar] [CrossRef]
- Baran, R.; Kamińska, I.I.; Śrębowata, A.; Dzwigaj, S. Selective hydrodechlorination of 1,2-dichloroethane on NiSiBEA zeolite catalyst: Influence of the preparation procedure on a high dispersion of Ni centers. Microporous Mesoporous Mater. 2013, 169, 120–127. [Google Scholar] [CrossRef]
- Zichittella, G.; Aellen, N.; Paunović, V.; Amrute, A.P.; Pérez-Ramírez, J. Olefins from Natural Gas by Oxychlorination. Angew. Chem. Int. Ed. 2017, 56, 13670–13674. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Bastante, A.; Álvarez-Montero, M.A.; Bedia, J.; Gómez-Sainero, L.M.; Rodriguez, J.J. Gas-phase hydrodechlorination of mixtures of chloromethanes with activated carbon-supported platinum catalysts. Appl. Catal. B Environ. 2015, 179, 551–557. [Google Scholar] [CrossRef]
- Chen, J.; Guo, T.; Li, K.; Sun, L. A facile approach to enhancing activity of Ni2P/SiO2 catalyst for hydrodechlorination of chlorobenzene: Promoting effect of water and oxygen. Catal. Sci. Technol. 2015, 5, 2670–2680. [Google Scholar] [CrossRef]
- López, E.; Ordóñez, S.; Sastre, H.; Díez, F.V. Kinetic study of the gas-phase hydrogenation of aromatic and aliphatic organochlorinated compounds using a Pd/Al2O3 catalyst. J. Hazard. Mater. 2003, 97, 281–294. [Google Scholar] [CrossRef]
- Martin-Martinez, M.; Gómez-Sainero, L.M.; Bedia, J.; Arevalo-Bastante, A.; Rodriguez, J.J. Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Appl. Catal. B Environ. 2016, 184, 55–63. [Google Scholar] [CrossRef]
- Bedia, J.; Gómez-sainero, L.M.; Grau, J.M.; Busto, M.; Martin-martinez, M.; Rodriguez, J.J. Hydrodechlorination of dichloromethane with mono- and bimetallic Pd-Pt on sulfated and tungstated zirconia catalysts. J. Catal. 2012, 294, 207–215. [Google Scholar] [CrossRef]
- de Pedro, Z.M.; Gómez-Sainero, L.M.; González-Serrano, E.; Rodríguez, J.J. Gas-Phase Hydrodechlorination of Dichloromethane at Low Concentrations with Palladium/Carbon Catalysts. Ind. Eng. Chem. Res. 2006, 45, 7760–7766. [Google Scholar] [CrossRef]
- Chang, W.; Kim, H.; Oh, J.; Ahn, B.J. Hydrodechlorination of chlorophenols over Pd catalysts supported on zeolite Y, MCM-41 and graphene. Res. Chem. Intermed. 2018, 44, 3835–3847. [Google Scholar] [CrossRef]
- Díaz, E.; Mccall, A.; Faba, L.; Sastre, H.; Ordoñez, S. Trichloroethylene Hydrodechlorination in Water Using Formic Acid as Hydrogen Source: Selection of Catalyst and Operation Conditions. Environ. Prog. Sustain. Energy 2012, 32, 1217–1222. [Google Scholar] [CrossRef]
- Bonarowska, M.; Kaszkur, Z.; Kępiński, L.; Karpiński, Z. Hydrodechlorination of tetrachloromethane on alumina- and silica-supported platinum catalysts. Appl. Catal. B Environ. 2010, 99, 248–256. [Google Scholar] [CrossRef]
- Amorim, C.; Wang, X.; Keane, M.A. Application of Hydrodechlorination in Environmental Pollution Control: Comparison of the Performance of Supported and Unsupported Pd and Ni Catalysts. Chin. J. Catal. 2011, 32, 746–755. [Google Scholar] [CrossRef]
- Lan, L.; Liu, Y.; Liu, S.; Ma, X.; Li, X.; Dong, Z.; Xia, C. Effect of the supports on catalytic activity of Pd catalysts for liquid-phase hydrodechlorination/hydrogenation reaction. Environ. Technol. (UK) 2019, 40, 1615–1623. [Google Scholar] [CrossRef]
- Álvarez-Montero, M.A.; Gómez-Sainero, L.M.; Juan-Juan, J.; Linares-Solano, A.; Rodriguez, J.J. Gas-phase hydrodechlorination of dichloromethane with activated carbon-supported metallic catalysts. Chem. Eng. J. 2010, 162, 599–608. [Google Scholar] [CrossRef]
- Bueres, R.F.; Asedegbega-Nieto, E.; Díaz, E.; Ordóñez, S.; Díez, F.V. Performance of carbon nanofibres, high surface area graphites, and activated carbons as supports of Pd-based hydrodechlorination catalysts. Catal. Today 2010, 150, 16–21. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, M.; Zhang, C.; Ren, K.; Xin, Y.; Zhao, M.; Xing, E. Selectivity Control on Hydrogenation of Substituted Nitroarenes through End-On Adsorption of Reactants in Zeolite-Encapsulated Platinum Nanoparticles. Chem. Asian J. 2018, 13, 2077–2084. [Google Scholar] [CrossRef]
- Kamińska, I.I.; Lisovytskiy, D.; Casale, S.; Śrębowata, A.; Dzwigaj, S. Influence of preparation procedure on catalytic activity of PdBEA zeolites in aqueous phase hydrodechlorination of 1,1,2-trichloroethene. Microporous Mesoporous Mater. 2017, 237, 65–73. [Google Scholar] [CrossRef]
- Śrebowata, A.; Tarach, K.; Girman, V.; Góra-Marek, K. Catalytic removal of trichloroethylene from water over palladium loaded microporous and hierarchical zeolites. Appl. Catal. B Environ. 2016, 181, 550–560. [Google Scholar] [CrossRef]
- Śrębowata, A.; Kamińska, I.I.; Casale, S.; Brouri, D.; Calers, C.; Dzwigaj, S. The impact of the hydrodechlorination process on the physicochemical properties of bimetallic Ag-CuBeta zeolite catalysts. Microporous Mesoporous Mater. 2017, 243, 56–64. [Google Scholar] [CrossRef]
- Śrebowata, A.; Baran, R.; Łomot, D.; Lisovytskiy, D.; Onfroy, T.; Dzwigaj, S. Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane. Appl. Catal. B Environ. 2014, 147, 208–220. [Google Scholar] [CrossRef]
- Imre, B.; Hannus, I.; Kiricsi, I. Comparative IR spectroscopic study of Pt- and Pd-containing zeolites in the hydrodechlorination reaction of carbon tetrachloride. J. Mol. Struct. 2005, 744, 501–506. [Google Scholar] [CrossRef]
- Hannus, I.; Halász, J. Hydrodechlorination over Zeolite Supported Catalysts—Clarification of Reaction Mechanism. J. Jpn. Pet. Inst. 2006, 49, 105–113. [Google Scholar] [CrossRef][Green Version]
- Imre, B.; Kónya, Z.; Hannus, I.; Halász, J.; Nagy, J.B.; Kiricsi, I. Hydrodechlorination of chlorinated compounds on different zeolites. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2002; Volume 142A, pp. 927–934. [Google Scholar]
- Elola, A.; Díaz, E.; Ordoñez, S. A new procedure for the treatment of organochlorinated off-gases combining adsorption and catalytic hydrodechlorination. Environ. Sci. Technol. 2009, 43, 1999–2004. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, C.; Bedia, J.; Bonal, P.; Rodriguez, J.J.; Gómez-Sainero, L.M. Chloroform conversion into ethane and propane by catalytic hydrodechlorination with Pd supported on activated carbons from lignin. Catal. Sci. Technol. 2018, 8, 3926–3935. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, C.; Bedia, J.; Andreoli, S.; Eser, S.; Rodriguez, J.J.; Gómez-Sainero, L.M. Selectivity to Olefins in the Hydrodechlorination of Chloroform with Activated Carbon-Supported Palladium Catalysts. Ind. Eng. Chem. Res. 2019, 58, 20592–20600. [Google Scholar] [CrossRef]
- Gómez-Sainero, L.M.; Palomar, J.; Omar, S.; Fernández, C.; Bedia, J.; Álvarez-Montero, A.; Rodriguez, J.J. Valorization of chloromethanes by hydrodechlorination with metallic catalysts. Catal. Today 2018, 310, 75–85. [Google Scholar] [CrossRef]
- Echeandia, S.; Pawelec, B.; Barrio, V.L.; Arias, P.L.; Cambra, J.F.; Loricera, C.V.; Fierro, J.L.G. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel 2014, 117, 1061–1073. [Google Scholar] [CrossRef]
- Sato, K.; Nishimura, Y.; Matsubayashi, N.; Imamura, M.; Shimada, H. Structural changes of Y zeolites during ion exchange treatment: Effects of Si/Al ratio of the starting NaY. Microporous Mesoporous Mater. 2003, 59, 133–146. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, H.; Sun, Z.; Fang, W.; Zhang, J.; Yang, L.; Zhang, Y.; Wang, L. Acidic Zeolite L as a Highly Efficient Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural in Ionic Liquid. ChemSusChem 2017, 10, 1669–1674. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Baibich, I.M.; Machado, N.R.C.F.; Mignoni, M.L.; Pergher, S.B.C. Decomposition of nitric oxide on Pd-mordenite. Catal. Today 2008, 133–135, 560–564. [Google Scholar] [CrossRef]
- Sato, K.; Nishimura, Y.; Honna, K.; Matsubayashi, N.; Shimada, H. Role of HY zeolite mesopores in hydrocracking of heavy oils. J. Catal. 2001, 200, 288–297. [Google Scholar] [CrossRef]
- Sato, K.; Nishimura, Y.; Shimada, H. Preparation and activity evaluation of Y zeolites with or without mesoporosity. Catal. Lett. 1999, 60, 83–87. [Google Scholar] [CrossRef]
- Cano, M.; Guarín, F.; Aristizábal, B.; Villa, A.-L.; González, L.-M. Catalytic activity and stability of Pd/Co catalysts in simultaneous selective catalytic reduction of NOx with methane and oxidation of o -dichlorobenzene. Catal. Today 2017, 296, 105–117. [Google Scholar] [CrossRef]
- Lambrou, P.S.; Polychronopoulou, K.; Petallidou, K.C.; Efstathiou, A.M. Oxy-chlorination as an effective treatment of aged Pd/CeO2-Al2O3catalysts for Pd redispersion. Appl. Catal. B Environ. 2012, 111, 349–359. [Google Scholar] [CrossRef]
- Chandra Shekar, S.; Krishna Murthy, J.; Kanta Rao, P.; Rama Rao, K.S. Selective hydrogenolysis of dichlorodifluoromethane on carboncovered alumina supported palladium catalyst. Catal. Commun. 2003, 4, 39–44. [Google Scholar] [CrossRef]
- Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65–77. [Google Scholar] [CrossRef]
- Feeley, J.S.; Sachtler, W.M.H. Palladium-enhanced reducibility of nickel in NaY. Zeolites 1990, 10, 738–745. [Google Scholar] [CrossRef]
- Seshu Babu, N.; Lingaiah, N.; Sai Prasad, P.S. Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B Environ. 2012, 111, 309–316. [Google Scholar] [CrossRef]
- McCusker, L.B.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780444530646. [Google Scholar]
- Velaga, B.; Parde, R.P.; Soni, J.; Peela, N.R. Synthesized hierarchical mordenite zeolites for the biomass conversion to levulinic acid and the mechanistic insights into humins formation. Microporous Mesoporous Mater. 2019, 287, 18–28. [Google Scholar] [CrossRef]
- Tangale, N.P.; Niphadkar, P.S.; Joshi, P.N.; Dhepe, P.L. Hierarchical K/LTL zeolite as solid base for aqueous phase hydrogenation of xylose to xylitol. Microporous Mesoporous Mater. 2019, 278, 70–80. [Google Scholar] [CrossRef]
- Treacy, M.M.J. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Pearce, H.A. Zeolite molecular sieves—Structure, chemistry and use. J. Chromatogr. A 1975, 106, 499. [Google Scholar] [CrossRef]
- Dantas Ramos, A.L.; da Silva Alves, P.; Aranda, D.A.G.; Schmal, M. Characterization of carbon supported palladium catalysts: Inference of electronic and particle size effects using reaction probes. Appl. Catal. A Gen. 2004, 277, 71–81. [Google Scholar] [CrossRef]
- Briggs, D.; Wanger, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; E. Muilenberg, G. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1981. [Google Scholar]
- Gamero, M.; Aguayo, A.T.; Ateka, A.; Pérez-Uriarte, P.; Gayubo, A.G.; Bilbao, J. Role of Shape Selectivity and Catalyst Acidity in the Transformation of Chloromethane into Light Olefins. Ind. Eng. Chem. Res. 2015, 54, 7822–7832. [Google Scholar] [CrossRef]
- Bonarowska, M.; Kaszkur, Z.; Łomot, D.; Rawski, M.; Karpiński, Z. Effect of gold on catalytic behavior of palladium catalysts in hydrodechlorination of tetrachloromethane. Appl. Catal. B Environ. 2015, 162, 45–56. [Google Scholar] [CrossRef]
- Sánchez, C.A.G.; Patiño, C.O.M.; de Correa, C.M. Catalytic hydrodechlorination of dichloromethane in the presence of traces of chloroform and tetrachloroethylene. Catal. Today 2008, 133, 520–525. [Google Scholar] [CrossRef]
- Bedia, J.; Arevalo-Bastante, A.; Grau, J.M.; Dosso, L.A.; Rodriguez, J.J.; Mayoral, A.; Diaz, I.; Gómez-Sainero, L.M. Effect of the Pt-Pd molar ratio in bimetallic catalysts supported on sulfated zirconia on the gas-phase hydrodechlorination of chloromethanes. J. Catal. 2017, 352, 562–571. [Google Scholar] [CrossRef]
- Martin-Martinez, M.; Gómez-Sainero, L.M.; Alvarez-Montero, M.A.; Bedia, J.; Rodriguez, J.J. Comparison of different precious metals in activated carbon-supported catalysts for the gas-phase hydrodechlorination of chloromethanes. Appl. Catal. B Environ. 2013, 132, 256–265. [Google Scholar] [CrossRef]
Catalyst | ABET (m2g−1) | Vmicro (cm3g−1) | AEXT (m2g−1) | Vpore (cm3g−1) |
---|---|---|---|---|
KL | 145 | 0.075 | 28 | 0.109 |
NaY | 342 | 0.177 | 67 | 0.287 |
HMOR | 293 | 0.164 | 34 | 0.194 |
HL | 98 | 0.043 | 33 | 0.094 |
HY | 174 | 0.041 | 59 | 0.186 |
Catalysts | TEM | NH3-TPD | ICP | |
---|---|---|---|---|
Mean Pd Particle Size (nm) | Dispersion (%) | Desorbed NH3 (mmolg−1) | Pd (%) | |
KL | 6.3 | 18 | 0.37 | 1.02 |
NaY | 4.2 | 26 | 1.49 | 0.97 |
HMOR | 1.9 | 57 | 2.29 | 0.98 |
HL | 1.4 | 79 | 1.75 | 0.99 |
HY | 2.3 | 48 | 1.96 | 1.03 |
Catalyst | Pd External Mass Content (%) | Pd0 (%) | Pdn+ (%) |
---|---|---|---|
KL | 0.38 | 72 | 28 |
NaY | 0.67 | 95 | 5 |
HMOR | 0.55 | 85 | 15 |
HL | 0.27 | 87 | 13 |
HY | 0.11 | 87 | 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Ruiz, C.; Bedia, J.; Grau, J.M.; Romero, A.C.; Rodríguez, D.; Rodríguez, J.J.; Gómez-Sainero, L.M. Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts. Catalysts 2020, 10, 199. https://doi.org/10.3390/catal10020199
Fernandez-Ruiz C, Bedia J, Grau JM, Romero AC, Rodríguez D, Rodríguez JJ, Gómez-Sainero LM. Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts. Catalysts. 2020; 10(2):199. https://doi.org/10.3390/catal10020199
Chicago/Turabian StyleFernandez-Ruiz, Carlos, Jorge Bedia, Javier Mario Grau, Ana Clara Romero, Daniel Rodríguez, Juan José Rodríguez, and Luisa María Gómez-Sainero. 2020. "Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts" Catalysts 10, no. 2: 199. https://doi.org/10.3390/catal10020199
APA StyleFernandez-Ruiz, C., Bedia, J., Grau, J. M., Romero, A. C., Rodríguez, D., Rodríguez, J. J., & Gómez-Sainero, L. M. (2020). Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts. Catalysts, 10(2), 199. https://doi.org/10.3390/catal10020199