TMSCl-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2002, 19, 742–746. [Google Scholar] [CrossRef]
- Hansch, C.; Sammes, P.G.; Taylor, J.B. Comprehensive Medicinal Chemistry, 1st ed.; Pergamon: Oxford, UK, 1990. [Google Scholar]
- Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Novel bioactive isoquinoline alkaloids from Carduus crispus. Tetrahedron 2002, 58, 6795–6798. [Google Scholar] [CrossRef]
- Reddy, N.S.S.; Reddy, B.J.M.; Reddy, B.S. A convergent and stereoselective total synthesis of (-)-crispine A, (-)-benzo[α]quinolizidine and (-)-salsolidine. Tetrahedron Lett. 2013, 54, 4228–4231. [Google Scholar] [CrossRef]
- Singh, H.; Singh, P.; Kumari, K.; Chandra, A.; K Dass, S.; Chandra, R. A review on noscapine, and its impact on heme metabolism. Curr. Drug Metab. 2013, 14, 351–360. [Google Scholar] [CrossRef]
- Ohtake, A.; Ukai, M.; Hatanaka, T.; Kobayashi, S.; Ikeda, K.; Sato, S.; Miyata, K.; Sasamata, M. In Vitro and In Vivo tissue selectivity profile of solifenacin succinate (YM905) for urinary bladder over salivary gland in rats. Eur. J. Pharmacol. 2004, 492, 243–250. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, L.; Wu, G.; Konig, H.; Lin, X.; Li, G.; Qiu, X.L.; Chen, C.F.; Hu, C.M.; Goldblatt, E. A novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia. EMBO. Mol. Med. 2013, 5, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Chen, P.-L.; Zhu, J. Compositions and Methods for Disruption of BRCA2-RAD51 Interaction. PCT Int. Appl. WO 2006044933, 27 April 2006. Available online: https://worldwide.espacenet.com/patent/search/family/035695666/publication/WO2006044933A2?
- Chung, T.-W.; Hung, Y.-T.; Thikekar, T.; Paike, V.V.; Lo, F.Y.; Tsai, P.-H.; Liang, M.-C.; Sun, C.-M. Telescoped synthesis of 2-Acyl-1-aryl-1, 2-dihydroisoquinolines and their Inhibition of the transcription Factor NF-κB. ACS Comb. Sci. 2015, 17, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, H.; Guo, X.E.; Qiu, X.-L.; Hu, C.-M.; Chamberlin, A.R.; Lee, W.-H. Synthesis, molecular modeling, and biological evaluation of novel RAD51 inhibitors. Eur. J. Med. Chem. 2015, 96, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, C.-J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via Cross-dehydrogenative coupling between sp3 C-H and sp2 C-H Bonds. J. Am. Chem. Soc. 2005, 127, 6968–6969. [Google Scholar] [CrossRef]
- Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Cross-Coupling hydrogen evolution reaction in homogeneous solution without noble metals. Org. Lett. 2014, 16, 1988–1991. [Google Scholar] [CrossRef]
- Patil, M.R.; Dedhia, N.P.; Kapdi, A.R.; Kumar, A.V. Cobalt (II)/N-Hydroxyphthalimide-catalyzed cross-dehydrogenative coupling reaction at room temperature under aerobic condition. J. Org. Chem. 2018, 83, 4477–4490. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, W.; Zhu, G.; Bao, G.; Zhang, B.; Hong, L.; Li, M.; Wang, R. Enantioselective dearomative arylation of Isoquinolines. ACS Catal. 2016, 6, 5290–5294. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Wang, Z.; Zhao, M.; Xu, J.; Huang, L.; Zhu, G.; Bao, G.; Sun, W.; Hong, L. Switchable skeletal rearrangement of dihydroisobenzofuran acetals with indoles. Org. Lett. 2019, 21, 4313–4317. [Google Scholar] [CrossRef]
- Davies, H.M.; Alford, J.S. Reactions of metallocarbenes derived from N-sulfonyl-1, 2, 3-triazoles. Chem. Soc. Rev. 2014, 43, 5151–5162. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, R.; Tang, X.Y.; Shi, M. Recent advances in the synthesis of heterocycles and related substances based on α-Imino Rhodium Carbene complexes derived from N-Sulfonyl-1, 2, 3-triazoles. Chem. Eur. J. 2016, 22, 17910–17924. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Zhai, H. The expanding utility of Rhodium-Iminocarbenes: Recent advances in the synthesis of natural products and related scaffolds. Chem. Eur. J. 2018, 24, 12757–12766. [Google Scholar] [CrossRef]
- Alford, J.S.; Davies, H.M. Mild aminoacylation of indoles and pyrroles through a three-component reaction with ynol ethers and sulfonyl azides. J. Am. Chem. Soc. 2014, 136, 10266–10269. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Z.Z.; Zhang, Y.S.; Tang, X.Y.; Shi, M. Rhodium (II)-Catalyzed Intramolecular Cycloisomerizations of Methylenecyclopropanes with N-Sulfonyl 1, 2, 3-Triazoles. Angew. Chem. Int. Ed. 2014, 53, 6645–6649. [Google Scholar] [CrossRef]
- Chuprakov, S.; Worrell, B.T.; Selander, N.; Sit, R.K.; Fokin, V.V. Stereoselective 1, 3-insertions of rhodium (II) azavinyl carbenes. J. Am. Chem. Soc. 2014, 136, 195–202. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Shi, Y.; Cheng, W.; Man, Z.; Yang, D.; Li, C.Y. Rhodium-Catalyzed Synthesis of 4-Bromo-1, 2-dihydroisoquinolines: Access to Bromonium Ylides by the Intramolecular Reaction of a Benzyl Bromide and an α-Imino Carbene. Angew. Chem. Int. Ed. 2016, 55, 4557–4561. [Google Scholar] [CrossRef]
- Kwok, S.W.; Zhang, L.; Grimster, N.P.; Fokin, V.V. Catalytic Asymmetric Transannulation of NH-1, 2, 3-Triazoles with Olefins. Angew. Chem. Int. Ed. 2014, 53, 3452–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, V.N.; Viart, H.M.-F.; Sarpong, R. Stereodivergent intramolecular C (sp3)-H functionalization of azavinyl carbenes: Synthesis of saturated heterocycles and fused N-heterotricycles. J. Am. Chem. Soc. 2015, 137, 8368–8371. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yao, W.; Liu, Y.; Wei, Q.; Chen, J.; Wu, X.; Xia, F.; Hu, W. A Rh (II)-catalyzed multicomponent reaction by trapping an α-amino enol intermediate in a traditional two-component reaction pathway. Sci. Adv. 2017, 3, e1602467. [Google Scholar] [CrossRef] [Green Version]
- Mi, P.; Kiran Kumar, R.; Liao, P.; Bi, X. Tandem O-H Insertion/[1,3]-Alkyl Shift of Rhodium Azavinyl Carbenoids with Benzylic Alcohols: A Route To Convert C–OH Bonds into C–C Bonds. Org. Lett. 2016, 18, 4998–5001. [Google Scholar] [CrossRef]
- Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.; Murakami, M. One-Pot Procedure for the Introduction of Three Different Bonds onto Terminal Alkynes through N-Sulfonyl-1, 2, 3-Triazole Intermediates. Angew. Chem. Int. Ed. 2013, 52, 3883–3886. [Google Scholar] [CrossRef]
- Schultz, E.E.; Lindsay, V.N.; Sarpong, R. Expedient Synthesis of Fused Azepine Derivatives Using a Sequential Rhodium (II)-Catalyzed Cyclopropanation/1-Aza-Cope Rearrangement of Dienyltriazoles. Angew. Chem. Int. Ed. 2014, 53, 9904–9908. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-F.; Dai, H.; Shan, L.; Li, C.-Y. Metal-Free Synthesis of (E)-Monofluoroenamine from 1-Sulfonyl-1, 2, 3-triazole and Et2O· BF3 via Stereospecific Fluorination of α-Diazoimine. Org. Lett. 2018, 20, 1054–1057. [Google Scholar] [CrossRef]
- Yang, J.M.; Zhu, C.Z.; Tang, X.Y.; Shi, M. Rhodium (II)-Catalyzed Intramolecular Annulation of 1-Sulfonyl-1, 2, 3-Triazoles with Pyrrole and Indole Rings: Facile Synthesis of N-Bridgehead Azepine Skeletons. Angew. Chem. Int. Ed. 2014, 53, 5142–5146. [Google Scholar]
- Bae, I.; Han, H.; Chang, S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J. Am. Chem. Soc. 2005, 127, 2038–2039. [Google Scholar] [CrossRef]
- Cho, S.H.; Chang, S. Rate-Accelerated Nonconventional Amide Synthesis in Water: A Practical Catalytic Aldol-Surrogate Reaction. Angew. Chem. Int. Ed. 2007, 46, 1897–1900. [Google Scholar] [CrossRef]
- Cho, S.H.; Chang, S. Room Temperature Copper-Catalyzed 2-Functionalization of Pyrrole Rings by a Three-Component Coupling Reaction. Angew. Chem. Int. Ed. 2008, 47, 2836–2839. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xie, J.; Yao, Y.; Mou, L.; Zhang, X.; Guo, X.; Sun, W.; Wang, Z.; Xu, J.; et al. Efficient synthesis of cyclic amidine-based fluorophores via 6p-electrocyclic ring closure. Chem. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Dodd, R.H.; Cariou, K. Ketenimines Generated from Ynamides: Versatile Building Blocks for Nitrogen-Containing Scaffolds. Chem. Eur. J. 2018, 24, 2297–2304. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, R.; Wang, Q.; Tang, X.-Y.; Shi, M. Cyclization of sulfide, ether or tertiary amine-tethered N-sulfonyl-1, 2, 3-triazoles: A facile synthetic protocol for 3-substituted isoquinolines or dihydroisoquinolines. Chem. Commun. 2015, 51, 16968–16971. [Google Scholar] [CrossRef]
- Shen, H.; Fu, J.; Gong, J.; Yang, Z. Tunable and Chemoselective Syntheses of Dihydroisobenzofurans and Indanones via Rhodium-Catalyzed Tandem Reactions of 2-Triazole-benzaldehydes and 2-Triazole-alkylaryl Ketones. Org. Lett. 2014, 16, 5588–5591. [Google Scholar] [CrossRef]
- Yuan, H.; Gong, J.; Yang, Z. A rhodium-catalyzed tandem reaction of N-sulfonyl triazoles with indoles: Access to indole-substituted indanones. Chem. Commun. 2017, 53, 9089–9092. [Google Scholar] [CrossRef]
- Li, G. CCDC 1832699: Experimental Crystal Structure Determination; Lanzhou University: Lanzhou, China, 2020. [Google Scholar] [CrossRef]
Entry a | 1a (eq.) | 2a (eq.) | Acid (50 mol%) | T(°C) | Solvent | Yield (%) b |
---|---|---|---|---|---|---|
1 | 1.0 | 1.2 | CF3CO2H | 0 | CHCl3 | 34 |
2 | 1.0 | 1.2 | AcOH | 0 | CHCl3 | - |
3 | 1.0 | 1.2 | ZnCl2 | 0 | CHCl3 | 39 |
4 | 1.0 | 1.2 | AlCl3 | 0 | CHCl3 | 58 |
5 | 1.0 | 1.2 | BF3.Et2O | 0 | CHCl3 | 24 |
6 | 1.0 | 1.2 | TMSCl | 0 | CHCl3 | 60 |
7 | 1.0 | 1.2 | TESOTf | 0 | CHCl3 | <10 |
8 | 1.2 | 1.0 | TMSCl | 0 | CHCl3 | 39 |
9 | 1.0 | 2.0 | TMSCl | 0 | CHCl3 | 76 |
10 | 1.0 | 2.0 | TMSCl | rt | CHCl3 | 84 |
11 | 1.0 | 2.0 | TMSCl | rt | CH2Cl2 | 92 |
12 | 1.0 | 2.0 | TMSCl | rt | DCE | 78 |
13 | 1.0 | 2.0 | TMSCl | rt | toluene | 77 |
14 | 1.0 | 2.0 | TMSCl | rt | Et2O | 51 |
15 | 1.0 | 2.0 | TMSCl | rt | MTBE | 64 |
16 | 1.0 | 2.0 | TMSCl | rt | THF | 50 |
Entry | R1 | R2 | 3 | Yield (%) b |
---|---|---|---|---|
1 | H | H | 3a | 92 |
2 | 4-Me | H | 3b | 68 |
3 | 5-Me | H | 3c | 83 |
4 | 5-OBn | H | 3d | 71 |
5 | 5-OMe | H | 3e | 77 |
6 | 5-F | H | 3f | 75 |
7 | 5-Cl | H | 3g | 82 |
8 | 6-Cl | H | 3h | 78 |
9 | 6-F | H | 3i | 77 |
10 | 6-Br | H | 3j | 86 |
11 | 6-Me | H | 3k | 78 |
12 | 7-OMe | H | 3l | 69 |
13 | 7-Me | H | 3m | 88 |
14 | 7-F | H | 3n | 77 |
15 | H | 4-F | 3o | 54 |
16 | H | 5-Cl | 3p | 57 |
17 | H | 5-F | 3q | 58 |
18 | H | 5-OMe | 3r | 72 |
19 | H | 6-Me | 3s | 63 |
20 | H | 6-F | 3t | 52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Lu, S.; Li, G.; Hong, L. TMSCl-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles. Catalysts 2020, 10, 392. https://doi.org/10.3390/catal10040392
Zhang M, Lu S, Li G, Hong L. TMSCl-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles. Catalysts. 2020; 10(4):392. https://doi.org/10.3390/catal10040392
Chicago/Turabian StyleZhang, Ming, Sicong Lu, Guofeng Li, and Liang Hong. 2020. "TMSCl-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles" Catalysts 10, no. 4: 392. https://doi.org/10.3390/catal10040392
APA StyleZhang, M., Lu, S., Li, G., & Hong, L. (2020). TMSCl-Catalyzed Tandem Reaction of Dihydroisobenzofuran Acetals with Indoles. Catalysts, 10(4), 392. https://doi.org/10.3390/catal10040392