New Trends in the Conversion of CO2 to Cyclic Carbonates
Abstract
:1. Introduction
2. Carbon Dioxide to Carbonates
3. Carbonates from Diols
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nunez, C. Global Warming Solutions, Explained. Available online: https://www.nationalgeographic.com (accessed on 7 March 2020).
- Everything You Wanted to Know about Our Changing Climate but Were too Afraid to Ask. Available online: https://www.nrdc.org/stories/global-warming-101 (accessed on 5 March 2020).
- Global Climate Change. Available online: https://www.climate.nasa.gov (accessed on 4 March 2020).
- Lindsey, R. If Carbon Dioxide Hits a New High Every Year, Why isn’t Every Year Hotter than the Last? Available online: https://www.climate.gov (accessed on 7 March 2020).
- Zevenhoven, R.; Eloneva, S.; Teir, S. Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage. Catal. Today 2006, 115, 73–79. [Google Scholar] [CrossRef]
- Alper, E.; Orhan, O.Y. CO2 utilization: Developments in conversion processes. Petroleum 2017, 3, 109–126. [Google Scholar] [CrossRef]
- Cornils, B.; Herrmann, W.A.; Beller, M.; Paciello, R. Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J. Chem. Techn. Biotech. 2014, 89, 19–33. [Google Scholar] [CrossRef]
- Buttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Top Curr. Chem. 2017, 375, 50–106. [Google Scholar] [CrossRef]
- Leitner, W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical study. Coord. Chem. Rev. 1996, 155, 247–284. [Google Scholar] [CrossRef]
- Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res. 2002, 35, 706–716. [Google Scholar] [CrossRef]
- McGhee, W.D.; Pan, Y.; Riley, D.P. Highly selective generation of urethanes from amines, carbon-dioxide and alkyl chlorides. J. Chem. Soc. Chem. Com. 1994, 699–700. [Google Scholar] [CrossRef]
- Leitner, W. Carbon-dioxide as a raw-material-the synthesis of formic acid and its derivatives from CO2. Angew. Chem. Int. Ed. Engl. 1995, 34, 2207–2221. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(II) catalyst. Green Chem. 2017, 19, 4801–4962. [Google Scholar] [CrossRef]
- Montoya, C.A.; Gómez, C.F.; Paninho, A.B.; Nunes, A.V.M.; Mahmudov, K.T.; Najdanovic-Visak, V.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Nunes da Ponte, M.; Pombeiro, A.J.L. Cyclic carbonate synthesis from CO2 and epoxides using zinc(II) complexes of arylhydrazones of β-diketones. J. Catal. 2016, 335, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hadjichristidis, N.; Feng, X.; Gnanou, Y. Poly(urethane–carbonate) from Carbon Dioxide. Macromolecules 2017, 50, 2320–2328. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.L.; Sherwood, J.; Hunt, A.J.; Clark, J.H. Cyclic Carbonates as Green Alternative Solvents for the Heck Reaction. ACS Sust. Chem. Eng. 2014, 2, 1739–1742. [Google Scholar] [CrossRef]
- Beattie, C.; North, M.; Villuendas, P. Proline-Catalysed Amination Reactions in Cyclic Carbonate Solvents. Molecules 2011, 16, 3420–3432. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Guerin, W.; Diallo, A.K.; Kirillov, E.; Helou, M.; Slawinski, M.J.; Brusson, M.; Carpentier, J.F.; Guillaume, S.M. Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbonate. Macromolecules 2014, 47, 4230–4235. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.; Zhou, F.; Yang, B.; Alshammari, A.S.; Lu, L.; Deng, Y. Two-step synthesis of dimethyl carbonate from urea, ethylene glycol and methanol using acid–base bifunctional zinc-yttrium oxides. Fuel Process. Technol. 2014, 126, 359–365. [Google Scholar] [CrossRef]
- Selva, M.; Caretto, A.; Noe, M.; Perosa, A. Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products. Org. Biomol. Chem. 2014, 12, 4143–4156. [Google Scholar] [CrossRef]
- Khusnutdinov, R.I.; Shchadneva, N.A.; Mayakova, Y.Y. Reactions of diols with dimethyl carbonate in the presence of W(CO)6 and Co2(CO)8. Russ. J. Org. Chem. 2014, 50, 948–952. [Google Scholar] [CrossRef]
- Indran, V.P.; Saud, A.S.H.; Maniam, G.P.; Yusoff, M.M.; Taufiq-Yap, Y.H.; Rahim, M.H.A. Versatile boiler ash containing potassium silicate for the synthesis of organic carbonates. RSC Adv. 2016, 6, 34877–34884. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.A.; Pervova, M.G.; Pestov, A.V. Synthesis of alkylene carbonates in ionic liquid. Russ. J. Org. Chem. 2013, 49, 1859–1860. [Google Scholar] [CrossRef]
- Peña-López, M.; Neumann, H.; Beller, M. Iron-Catalyzed Synthesis of Five-Membered Cyclic Carbonates from Vicinal Diols: Urea as Sustainable Carbonylation Agent. Eur. J. Org. Chem. 2016, 3721–3727. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal. Today 2006, 115, 111–116. [Google Scholar] [CrossRef]
- Castro-Osma, A.J.; North, M.; Wu, X. Synthesis of Cyclic Carbonates Catalysed by Chromium and Aluminium Salphen Complexes. Chem. A Eur. J. 2016, 22, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Doro, F.; Winnertz, P.; Leitner, W.; Prokofieva, A.; Muller, T.E. Adapting a Wacker-type catalyst system to the palladium-catalyzed oxidative carbonylation of aliphatic polyols. Green Chem. 2011, 13, 292–295. [Google Scholar] [CrossRef]
- Gabriele, B.; Mancuso, R.; Salerno, G.; Veltri, L.; Costa, M.; Dibenedetto, A. A General and Expedient Synthesis of 5- and 6-Membered Cyclic Carbonates by Palladium-Catalyzed Oxidative Carbonylation of 1,2- and 1,3-Diols. ChemSusChem 2011, 4, 1778–1786. [Google Scholar] [CrossRef]
- Pearson, D.M.; Conley, N.R.; Waymouth, R.M. Palladium-Catalyzed Carbonylation of Diols to Cyclic Carbonates. Adv. Synth. Catal. 2011, 353, 3007–3013. [Google Scholar] [CrossRef]
- Bobbink, F.D.; Gruszka, W.; Hulla, M.; Das, S.; Dyson, P.J. Synthesis of cyclic carbonates from diols and CO2 catalyzed by carbenes. Chem. Commun. 2016, 52, 10787–10790. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. Direct Cyclic Carbonate Synthesis from CO2 and Diol over Carboxylation/Hydration Cascade Catalyst of CeO2 with 2-Cyanopyridine. ACS Catal. 2014, 4, 1893–1896. [Google Scholar] [CrossRef]
- Lim, Y.N.; Lee, C.; Jang, H.-Y. Metal-Free Synthesis of Cyclic and Acyclic Carbonates from CO2 and Alcohols. Eur. J. Org. Chem. 2014, 1823–1826. [Google Scholar] [CrossRef]
- de Caro, P.; Bandres, M.; Urrutigoïty, M.; Cecutti, C.; Thiebaud-Roux, S. Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties. Front. Chem. 2019, 308, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hirose, T.M.; Shimizu, S.; Qu, S.; Shitara, H.; Kodama, K.; Wang, L. Economical synthesis of cyclic carbonates from carbon dioxide and halohydrins using K2CO3. RSC Adv. 2016, 6, 69040–69044. [Google Scholar] [CrossRef]
- Chen, K.; Shi, G.; Dao, R.; Mei, K.; Zhou, X.; Li, H.; Wang, C. Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO2 at atmospheric pressure. Chem. Comm. 2016, 52, 7830–7833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Zinc(II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature. Green Chem. 2016, 18, 382–385. [Google Scholar] [CrossRef]
- Gu, Y.; Shi, F.; Deng, Y. Ionic Liquid as an Efficient Promoting Medium for Fixation of CO2: Clean Synthesis of α-Methylene Cyclic Carbonates from CO2 and Propargyl Alcohols Catalyzed by Metal Salts under Mild Conditions. J. Org. Chem. 2004, 69, 391–394. [Google Scholar] [CrossRef]
- Wu, J.; Kozak, J.A.; Simeon, F.; Hatton, T.A.; Jamison, T.F. Mechanism-guided design of flow systems for multicomponent reactions: Conversion of CO2 and olefins to cyclic carbonates. Chem. Sci. 2014, 5, 1227–1231. [Google Scholar] [CrossRef]
- Huang, S.Y.; Liu, S.G.; Li, J.P.; Wei, W.; Ning, Z.H.A.O.; Wei, W.E.I.; Sun, Y.H. Synthesis of cyclic carbonate from carbon dioxide and diols over metal acetates. J. Fuel Chem. Tech. 2007, 35, 701–705. [Google Scholar] [CrossRef]
- Büttner, H.; Steinbauer, J.; Werner, T. Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Bifunctional One-Component Phosphorus-Based Organocatalysts. ChemSusChem 2015, 16, 2655–2669. [Google Scholar] [CrossRef]
- Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Novel Route to Propylene Carbonate: Selective Synthesis from Propylene Glycol and Carbon Dioxide. Catal. Lett. 2004, 95, 45–49. [Google Scholar] [CrossRef]
- Cui, K.; Liang, Z.; Zhang, J.; Zhang, Y. Synthesis of Cyclohexene Carbonate Catalyzed by Polymer-Supported Catalysts. Synt. Comm. 2015, 45, 702–713. [Google Scholar] [CrossRef]
- Tomishige, K.; Tamura, M.; Nakagawa, Y. Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2-Cyanopyridine. Chem. Rec. 2019, 1354–1379. [Google Scholar] [CrossRef]
- Comerford, J.W.; Ingram, I.D.; North, V.M.; Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. 2015, 17, 1966–1987. [Google Scholar] [CrossRef]
- Bobbink, F.D.; Vasilyev, D.; Hulla, M.; Chamam, S.; Menoud, F.; Laurenczy, G. Intricacies of Cation–Anion Combinations in Imidazolium Salt-Catalyzed Cycloaddition of CO2 Into Epoxides. ACS Catal. 2018, 8, 2589–2594. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Li, Q.; Cui, X.; Wang, H.; Bu, Z.; Qiao, C.; Lin, T. Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalysts. J. CO2 Util. 2018, 24, 174–179. [Google Scholar] [CrossRef]
- Bobbink, F.D.; Dyson, P.J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. J. Catal. 2016, 343, 52–61. [Google Scholar] [CrossRef]
- Calabrese, C.; Giacalone, F.; Aprile, C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts 2019, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.; Mokrushina, L.; Arlt, W. Thermodynamic Constraints for the Utilization of CO2. Chem. Ing. Tech. 2014, 86, 497–503. [Google Scholar] [CrossRef]
- Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Catalytic performance and properties of ceria-based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem. 2004, 6, 206–214. [Google Scholar] [CrossRef]
- Tomishige, K.; Kunimori, K. Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: Effect of H2O removal from the reaction system. App. Catal. A Gen. 2002, 237, 103–109. [Google Scholar] [CrossRef]
- McGuire, T.M.; Lopez-Vidal, E.M.; Gregory, G.L.; Buchard, A. Synthesis of 5- to 8-membered cyclic carbonates from diols and CO: A one-step, atmospheric pressure and ambient temperature procedure. J. CO2 Util. 2018, 27, 283–288. [Google Scholar] [CrossRef]
- Kamphuis, A.J.; Picchionia, F.; Pescarmona, P.P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications. Green Chem. 2019, 21, 406–448. [Google Scholar] [CrossRef] [Green Version]
- Katritzky, A.R. Comprehensive Organic Functional Group Transformations: Synthesis: Carbon with One Heteroatom Attached by a Single Bond; Elsevier: Amsterdam, The Netherlands, 1995; Volume 2. [Google Scholar]
- Wu, L.; Wang, H.; Tu, Z.; Ding, B.; Xiao, Y.; Lu, J. Synthesis of Cyclic Carbonates from CO2 and Diols via Electrogenerated N-Heterocyclic Carbenes. Int. J. Electrochem. Sci. 2012, 7, 11540–11549. [Google Scholar]
- Okoturo, O.O.; VanderNoot, T.J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem. 2004, 568, 167–181. [Google Scholar] [CrossRef]
- Bobbink, F.D.; Das, S.; Laurenczy, G.; Dyson, P.J. Metal-Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angew. Chem. Int. Ed. 2014, 47, 12876–12879. [Google Scholar]
- Liu, J.; Li, Y.; Zhang, J.; He, D. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl. Catal. A Gen. 2016, 513, 9–18. [Google Scholar] [CrossRef]
- Zhang, J.; He, D. Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: The role of supports. J. Chem. Technol. Biotechnol. 2015, 90, 1077–1085. [Google Scholar] [CrossRef]
- Morikawa, H.; Yamaguchi, J.; Sugimura, S.; Minamoto, M.; Gorou, Y.; Morinaga, H.; Motokucho, S. Systematic synthetic study of four diastereomerically distinct limonene-1, 2-diols and their corresponding cyclic carbonates. Beilstein J. Org. Chem. 2019, 15, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Błażek, K.; Datta, J. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Critical Rev. Environ. Sci. Tech. 2019, 49, 173–211. [Google Scholar] [CrossRef]
Entry | Catalyst | SBET (m2 g−1) | Glycol Conversion (%) | Urea Conversion (%) | Selectivity (%) |
---|---|---|---|---|---|
1 | CaO | 9.5 | 43.7 | 79.9 | 82.2 |
2 | La2O3 | 21 | 48.3 | 87.4 | 82.4 |
3 | MgO | 7.4 | 56.0 | 94.1 | 89.8 |
4 | ZnO | 6.7 | 62.6 | 97.8 | 95.2 |
5 | ZrO2 | 33.4 | 20.6 | 70.8 | 43.9 |
6 | Al2O3 | 136.5 | 19.0 | 71.2 | 40.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, E.J.C.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts 2020, 10, 479. https://doi.org/10.3390/catal10050479
Lopes EJC, Ribeiro APC, Martins LMDRS. New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts. 2020; 10(5):479. https://doi.org/10.3390/catal10050479
Chicago/Turabian StyleLopes, Erivaldo J.C., Ana P.C. Ribeiro, and Luísa M.D.R.S. Martins. 2020. "New Trends in the Conversion of CO2 to Cyclic Carbonates" Catalysts 10, no. 5: 479. https://doi.org/10.3390/catal10050479
APA StyleLopes, E. J. C., Ribeiro, A. P. C., & Martins, L. M. D. R. S. (2020). New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts, 10(5), 479. https://doi.org/10.3390/catal10050479