Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Vanadium(V) Complex-Catalyzed Pictet-Spengler Reaction and Dehydrogenative Aromatization Sequence
3.2. Enanitoselective Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rafiee, F. Synthesis of phenanthridine and phenanthridinone derivatives based on Pd-catalyzed C–H activation. Appl. Organometal. Chem. 2017, 31, e3820. [Google Scholar] [CrossRef]
- Herbert, J.M.; Augereau, J.M.; Gleye, J.; Maffrand, J.P. Chelerythrine is a Potent and Specific Inhibitor of Protein Kinase C. Biochem. Biophys. Res. Commun. 1990, 172, 993–999. [Google Scholar] [CrossRef]
- Olemsted, J.; Kearns, D.R. Mechanism of Ethidium Bromide Fluorescence Enhancement on Binding to Nucleic Acids. Biochemistry 1977, 16, 3647–3654. [Google Scholar] [CrossRef] [PubMed]
- Park, G.Y.; Wilson, J.J.; Song, Y.; Lippard, S.J. Phenanthriplatin, a Monofunctional DNA-binding Platinum Anticancer Drug Candidate with Unusual Potency and Cellular Activity Profile. Proc. Natl. Acad. Sci. USA 2012, 109, 11987–11992. [Google Scholar] [CrossRef] [Green Version]
- Valk, J.-M.; Claridge, T.D.W.; Brown, J.M. Synthesis and Chemistry of a New P-N Chelating Ligand: (R) and (S)-6-(2′-Diphenylphosphino-1′-naphthyl)phenanthridine. Tetrahedron Asymmetry 1995, 6, 2597–2610. [Google Scholar] [CrossRef]
- Pictet, A.; Ankersmit, H. Ueber Phenanthridin. J. Chem. Ber. 1889, 22, 3339–3344. [Google Scholar] [CrossRef] [Green Version]
- Walton, J.C. Synthetic Strategies for 5- and 6-Membered Ring Azaheterocycles Facilitated by Iminyl Radicals. Molecules 2016, 21, 660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev. 2015, 44, 3505–3521. [Google Scholar] [CrossRef]
- Tumir, L.-M.; Stojković, M.R.; Piantanida, I. Come-back of phenanthridine and phenanthridinium derivatives in the 21st century. Beilstein J. Org. Chem. 2014, 10, 2930–2954. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, L.; Zhang, J.; Xie, M. Expeditious synthesis of phenanthridines through a Pd/MnO2-mediated C–H arylation/oxidative annulation cascade from aldehydes, aryl iodides and amino acids. Chem. Commun. 2020, 56, 2775–2778. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Han, W.-Y.; Zhang, D.-L.; Zhou, X.-J.; Bai, M.; Cui, B.-D.; Wan, N.-W.; Yuan, W.-C.; Chen, Y.-Z. Synthesis of Phenanthridines through Palladium-Catalyzed Cascade Reaction of 2-Halo-N-Ms-arylamines with Benzyl Halides/Sulfonates. Eur. J. Org. Chem. 2017, 996–1003. [Google Scholar] [CrossRef]
- Kishi, A.; Moriyama, K.; Togo, H. Preparation of Phenanthridines from o-Cyanobiaryls via Addition of Organic Lithiums to Nitriles and Imino Radical Cyclization with Iodine. J. Org. Chem. 2018, 83, 11080–11088. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-C.; Li, H.-S.; Gong, Y.-L.; Zhang, S.-P.; Zhang, J.-G.; Xu, S. Combination of PhI(OAc)2 and 2-Nitropropane as the Source of Methyl Radical in Room-Temperature Metal-Free Oxidative Decarboxylation/Cyclization: Construction of 6-Methyl Phenanthridines and 1-Methyl Isoquinolines. J. Org. Chem. 2018, 83, 15415–15425. [Google Scholar] [PubMed]
- Chen, W.-L.; Chen, C.-Y.; Chen, Y.-F.; Hsieh, J.-C. Hydride-Induced Anionic Cyclization: An Efficient Method for the Synthesis of 6-H-Phenanthridines via a Transition-Metal-Free Process. Org. Lett. 2015, 17, 1613–1616. [Google Scholar] [CrossRef]
- Yang, J.-C.; Zhang, J.-Y.; Zhang, J.-J.; Duan, X.-H.; Guo, L.-N. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. J. Org. Chem. 2018, 83, 1598–1605. [Google Scholar] [CrossRef]
- Pellissier, H. Enantioselective Vanadium-catalyzed Transformations. An Update. Coord. Chem. Rev. 2020. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Kaphan, D.M.; Marshall, C.L.; Stair, P.C.; Sattelberger, A.P.; Delferro, M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem. Rev. 2019, 119, 2128–2191. [Google Scholar] [CrossRef]
- Pellissier, H. Recent Advances in Enantioselective Vanadium-catalyzed Transformations. Coord. Chem. Rev. 2015, 284, 93–110. [Google Scholar] [CrossRef]
- Li, Z.; Yamamoto, H. Hydroxamic Acids in Asymmetric Synthesis. Acc. Chem. Res. 2013, 46, 506–518. [Google Scholar] [CrossRef]
- Plass, W. Chiral and Supramolecular Model Complexes for Vanadium Haloperoxidases: Host–guest Systems and Hydrogen Bonding Relays for Vanadate Species. Coord. Chem. Rev. 2011, 255, 2378–2387. [Google Scholar] [CrossRef]
- Volcho, K.P.; Salakhutdinov, N.F. Asymmetric Oxidation of Sulfides Catalyzed by Titanium and Vanadium Complexes in the Synthesis of Biologically Active Sulfoxides. Russ. Chem. Rev. 2009, 78, 457–464. [Google Scholar] [CrossRef]
- North, M.; Usanov, D.L.; Young, C. Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chem. Rev. 2008, 108, 5146–5226. [Google Scholar] [CrossRef] [PubMed]
- Bolm, C. Vanadium-catalyzed Asymmetric Oxidations. Coord. Chem. Rev. 2003, 237, 245–256. [Google Scholar] [CrossRef]
- Blanc, A.; Toste, F.D. Enantioselective Synthesis of Cyclic Ethers through a Vanadium-Catalyzed Resolution/Oxidative Cyclization. Angew. Chem. Int. Ed. 2006, 45, 2096–2099. [Google Scholar] [CrossRef]
- Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L. Dearomatization of tryptophols via a vanadium-catalyzed asymmetric epoxidation and ring-opening cascade. Chem. Commun. 2014, 50, 1231–1233. [Google Scholar] [CrossRef]
- Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L. Dearomatization of Indoles via a Phenol-Directed Vanadium-Catalyzed Asymmetric Epoxidation and Ring-Opening Cascade. Adv. Synth. Catal. 2015, 357, 3064–3068. [Google Scholar] [CrossRef]
- Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.; Takizawa, S.; Sasai, H. Efficient Enantioselective Synthesis of Oxahelicenes Using Redox/Acid Cooperative Catalysts. J. Am. Chem. Soc. 2016, 138, 11481–11484. [Google Scholar] [CrossRef]
- Neuhaus, W.C.; Kozlowski, M.C. Diastereoselective Synthesis of Benzoxanthenones. Chem. Asian J. 2020, 15, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, S.; Gröger, H.; Sasai, H. Vanadium in Asymmetric Synthesis: Emerging Concepts in Catalyst Design and Applications. Chem. Eur. J. 2015, 21, 8992–8997. [Google Scholar] [CrossRef]
- Sako, M.; Aoki, T.; Zumbrägel, N.; Schober, L.; Gröger, H.; Takizawa, S.; Sasai, H. Chiral Dinuclear Vanadium Complex-mediated Oxidative Coupling of Resorcinols. J. Org. Chem. 2019, 84, 1580–1587. [Google Scholar] [CrossRef]
- Sako, M.; Sugizaki, A.; Takizawa, S. Asymmetric Oxidative Coupling of Hydroxycarbazoles: Facile Synthesis of (+)-Bi-2-hydroxy-3-methylcarbazole. Bioorg. Med. Chem. Lett. 2018, 28, 2751–2753. [Google Scholar] [CrossRef] [PubMed]
- Sako, M.; Ichinose, K.; Takizawa, S.; Sasai, H. Short Syntheses of 4-Deoxycarbazomycin B, Sorazolon E, and (+)-Sorazolon E2. Chem. Asian J. 2017, 12, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, S.; Kodera, J.; Yoshida, Y.; Sako, M.; Breukers, S.; Enders, D.; Sasai, H. Enantioselective Oxidative-Coupling of Polycyclic Phenols. Tetrahedron 2014, 70, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, S.; Arteaga, F.A.; Yoshida, Y.; Kodera, J.; Nagata, Y.; Sasai, H. Vanadium-Catalyzed Enantioselective Friedel-Crafts-Type Reactions. Dalton Trans. 2013, 42, 11787–11790. [Google Scholar] [CrossRef] [PubMed]
- Zumbrägel, N.; Sako, M.; Takizawa, S.; Sasai, H.; Gröger, H. Vanadium-Catalyzed Dehydrogenation of N-Heterocycles in Water. Org. Lett. 2018, 20, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Cao, L.; Guan, H.; Liu, L. Iron-Catalyzed Aerobic Dehydrogenative Kinetic Resolution of Cyclic Secondary Amines. J. Am. Chem. Soc. 2019, 141, 6318–6324. [Google Scholar] [CrossRef]
Entry | V cat (10 mol%) | Solvent | Temp. (°C) | Yield of 5a (%) 1 |
---|---|---|---|---|
1 | rac-6a | THF | 50 | 31 2 |
2 | rac-6a | CH2Cl2 | reflux | 86 |
3 | rac-6a | Toluene | 50 | 89 |
4 | rac-6a | MeCN | 50 | 95 |
5 | (S)-6b | MeCN | 50 | 95 |
6 | (S)-6c | MeCN | 50 | 91 |
7 | (S)-6d | MeCN | 50 | 68 2 |
8 | (S)-6e | MeCN | 50 | 85 |
9 | (S)-6b | MeCN | 40 | 35 2 |
10 | (S)-6b | MeCN | 60 | 87 |
11 | (S)-6b | MeCN | 70 | 75 |
12 | - | MeCN | 50 | Trace |
13 | V2O5 or VOSO4 | MeCN | 50 | <15 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sako, M.; Losa, R.; Takiishi, T.; Vo-Thanh, G.; Takizawa, S.; Sasai, H. Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts 2020, 10, 860. https://doi.org/10.3390/catal10080860
Sako M, Losa R, Takiishi T, Vo-Thanh G, Takizawa S, Sasai H. Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts. 2020; 10(8):860. https://doi.org/10.3390/catal10080860
Chicago/Turabian StyleSako, Makoto, Romain Losa, Tomohiro Takiishi, Giang Vo-Thanh, Shinobu Takizawa, and Hiroaki Sasai. 2020. "Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence" Catalysts 10, no. 8: 860. https://doi.org/10.3390/catal10080860
APA StyleSako, M., Losa, R., Takiishi, T., Vo-Thanh, G., Takizawa, S., & Sasai, H. (2020). Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts, 10(8), 860. https://doi.org/10.3390/catal10080860