Crude Glycerol/Guishe Based Catalysts for Biodiesel Production: Conforming a Guishe Biorefinery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elemental Analysis of Raw Materials
2.2. Pyrolysis Conditions Determination
2.3. Composition and Morphology by Microscopy
2.4. Fourier Transform Infrared Spectroscopy
2.5. Transesterification Assays
2.5.1. Biodiesel Yield
2.5.2. FAME Analysis
3. Materials and Methods
3.1. Materials and Treatments
3.2. Biochar Synthesis
3.3. Biochar Functionalization
3.4. Transesterification Reaction
3.5. Experimental Design
3.6. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, M. The Carbon Cycle, Fossil Fuels and Climate Change. Energy Clim. Chang. 2018, 1–26. [Google Scholar] [CrossRef]
- Helwani, Z.; Othman, M.R.; Aziz, N.; Fernando, W.J.N.; Kim, J. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol. 2009, 90, 1502–1514. [Google Scholar] [CrossRef]
- Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol. 2011, 102, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 2014, 154, 345–348. [Google Scholar] [CrossRef]
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef]
- He, Q.; McNutt, J.; Yang, J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renew. Sustain. Energy Rev. 2017, 71, 63–76. [Google Scholar] [CrossRef]
- Orozco-Núñez, S.I.; Díaz-Jimenez, L.; Carlos-Hernandez, S. The glycerol’s way. A brief review of opportunities. Lat. Am. Appl. Res. 2019, 49, 163–173. [Google Scholar]
- Fogler, H.S. Elements of Chemical Reaction Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Dhawane, S.H.; Al-Sakkari, E.G.; Kumar, T.; Halder, G. Comprehensive elucidation of the apparent kinetics and mass transfer resistances for biodiesel production via in-house developed carbonaceous catalyst. Chem. Eng. Res. Des. 2021, 165, 192–206. [Google Scholar] [CrossRef]
- Rocha, P.D.; Oliveira, L.S.; Franca, A.S. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew. Energy 2019, 143, 1710–1716. [Google Scholar] [CrossRef]
- Cheng, F.; Li, X. Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts 2018, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- González, M.E.; Cea, M.; Reyes, D.; Romero-Hermoso, L.; Hidalgo, P.; Meier, S.; Benito, N.; Navia, R. Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production. Energy Convers. Manag. 2017, 137, 165–173. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pina, C.D.; Rossi, M.; Pagliaro, M. Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 2014, 116, 1432–1439. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Carlos-Hernandez, S.; Jasso de Rodríguez, D.; Rodríguez-García, R. Conceptualization of a biorefinery for guishe revalorization. Ind. Crops Prod. 2019, 138, 111441. [Google Scholar] [CrossRef]
- Juarez, D.S.; López, M.L.F.; Sánchez-Robles, J.H.; Suárez, P.C.D.C.; Charles, A.V.R.; Jiménez, L.D. Variability of Saponins Concentration in Guishe Collected in Different Geographical Areas and Weather Conditions. J. Chem. Biochem. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.E.; Morales-Martínez, T. Chemical, structural and functional properties of lechuguilla (Agave lechuguilla Torr.). Rev. Mex. Cienc. For. 2017, 8, 100–122. [Google Scholar]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M. Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum. Renew. Energy 2016, 95, 542–551. [Google Scholar] [CrossRef]
- Hernández, R.; Lugo, E.C.; Díaz, L.; Villanueva, S. Extracción y cuantificación indirecta de las saponinas de “Agave lechuguilla” Torrey. eGnos. Rev. Digit. Cient. Tecnol. 2005, 3, 3–12. [Google Scholar]
- Kaewdaeng, S.; Sintuya, P.; Nirunsin, R. Biodiesel production using calcium oxide from river snail shell ash as catalyst. Energy Procedia 2017, 138, 937–942. [Google Scholar] [CrossRef]
- Vardast, N.; Haghighi, M.; Dehghani, S. Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and performance. Renew. Energy 2019, 132, 979–988. [Google Scholar] [CrossRef]
- Escalante, A.; Pérez, G.; Hidalgo, C.; López, C.; Campo, J.; Valtierra, E.; Etchevers, J. Biobarbon (Biochar) I Naturaleza, fabricación y uso en el suelo. Rev. Cient. Am. Lat. 2016, 34, 367–382. [Google Scholar]
- Dou, B.; Dupont, V.; Williams, P.T.; Chen, H.; Ding, Y. Thermogravimetric kinetics of crude glycerol. Bioresour. Technol. 2009, 100, 2613–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.; Reddy, K.R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and applications of biochar for environmental remediation: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939–969. [Google Scholar] [CrossRef]
- Ntaflou, M.; Vakros, J. Transesterification activity of modified biochars from spent malt rootlets using triacetin. J. Clean. Prod. 2020, 259. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Cao, L.; Tsang, D.C.W.; Zhang, S.; Ok, Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 2017, 246, 254–270. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, C.; Wang, X.; Cheng, B.; Mai, N.; Ren, J. Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catal. Today 2019, 319, 31–40. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Applied Catalysis A: General Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Chen, S.S.; Tsang, D.C.W.; Cao, L.; Song, H.; Kwon, E.E.; Ok, Y.S.; Zhang, S.; Poon, C.S. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal. Today 2018, 314, 52–61. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 2019, 17, 1447–1469. [Google Scholar] [CrossRef]
- Chellappan, S.; Nair, V.; Sajith, V.; Aparna, K. Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chin. J. Chem. Eng. 2018, 26, 2654–2663. [Google Scholar] [CrossRef]
- Kastner, J.R.; Miller, J.; Geller, D.P.; Locklin, J.; Keith, L.H.; Johnson, T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 2012, 190, 122–132. [Google Scholar] [CrossRef]
- Namchot, W.; Panyacharay, N.; Jonglertjunya, W.; Sakdaronnarong, C. Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts. Fuel 2014, 116, 608–616. [Google Scholar] [CrossRef]
- Kostić, M.D.; Bazargan, A.; Stamenković, O.S.; Veljković, V.B.; McKay, G. Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel 2016, 163, 304–313. [Google Scholar] [CrossRef]
Crude Glycerol | Guishe | ||
---|---|---|---|
Proximal analysis (%) | Moisture | 1.74 | 4.15 |
Volatiles | 17.25 | 15.18 | |
Ash | 6.25 | 32.15 | |
Fixed carbon | 74.73 | 48.48 | |
Elemental analysis (%) | Ca | ˂0.001 | 28.6 |
K | 3.13 | 0.62 | |
Mg | ˂0.001 | 0.39 | |
Si | nd | 0.997 | |
Fe | nd | 0.45 | |
Al | nd | 0.41 | |
S | nd | 0.28 | |
P | nd | 0.27 |
Catalysts | Elements (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | P | S | K | Ca | ||
Biochars | B-25-8 | 45.6 | 18.0 | 0.5 | 0.1 | 0.3 | 0.2 | 0.2 | 19.1 | 15.0 |
B-50-8 | 41.8 | 17.7 | 0.9 | 0.3 | 1.4 | 0.2 | 0.1 | 15.5 | 21.7 | |
B-75-8 | 50.6 | 17.5 | 0.6 | 0.1 | 0.5 | 0.3 | 0.2 | 4.7 | 24.6 | |
B-100-8 | 44.5 | 19.6 | 1 | 0.5 | 1.4 | 0.4 | 0.2 | 4.2 | 22.1 | |
Sulfonated biochars | BS-25-8 | 55.1 | 1.3 | 2.4 | 2.8 | 8.4 | 2.2 | 14.7 | 5.6 | 6.6 |
BS-50-8 | 57.0 | 1.7 | 2.2 | 3.5 | 5.1 | - | 19.1 | 2.5 | 8.1 | |
BS-75-8 | 76.3 | 1.1 | - | 4.8 | - | - | 8.7 | 2.8 | 5.6 | |
BS-100-8 | 64.4 | 1.9 | 3.9 | 3.3 | 9.7 | 9.2 | 9.2 | 2.9 | 14.6 |
Biochar | Elements (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | P | S | K | Ca | ||
Biochars | B-25-9 | 25.5 | 22.8 | 1.4 | 0.8 | 2.9 | 0.5 | 0.2 | 17.9 | 27.4 |
B-50-9 | 37.1 | 17.7 | 0.9 | 0.3 | 1.4 | 0.3 | 0.1 | 15.5 | 21.7 | |
B-75-9 | 43.5 | 18.0 | 0.8 | 0.6 | 2.6 | 0.3 | 0.1 | 6.3 | 26.6 | |
B-100-9 | 39.1 | 20.0 | 1.2 | 0. | 0.9 | 0.6 | 0.2 | 3.8 | 33.5 | |
Sulfonated biochars | BS-25-9 | 58.3 | 17.3 | - | - | 2.0 | - | 7.7 | 1.1 | 13.2 |
BS-50-9 | 73.1 | 14.3 | - | - | 0.3 | - | 3.8 | 0.8 | 7.4 | |
BS-75-9 | 83.1 | 8.1 | - | - | 0.3 | - | 3.3 | 0.4 | 4.6 | |
BS-100-9 | 65.8 | 3.4 | 0.3 | 1.5 | 11.2 | - | 7.3 | 2.4 | 4.7 |
Catalyst | Cat (% wt) | tret (min) | Methyl Ester | Condensed Formula | m/z | Area (%) |
---|---|---|---|---|---|---|
CH3NaO | 1 | 10.33 | Methyl palmitate | C17H34O2 | 270 | 9.12 |
12.77 | Methyl linoleate | C19H34O2 | 294 | 45.39 | ||
12.90 | Methyl oleate | C19H36O2 | 296 | 20.96 | ||
13.33 | Methyl stearate | C19H38O2 | 298 | 4.43 | ||
3 | 10.34 | Methyl linoleate | C17H34O2 | 270 | 9.50 | |
12.83 | Methyl oleate | C19H34O2 | 294 | 54.62 | ||
12.95 | Methyl stearate | C19H36O2 | 296 | 21.28 | ||
13.37 | Methyl linoleate | C19H38O2 | 298 | 5.99 |
Catalyst | Cat (% wt) | Methyl Ester | Condensed Formula | Area (%) |
---|---|---|---|---|
BS-100-8 | 1 | Methyl palmitate | C17H34O2 | 17.47 |
Methyl linoleate | C19H34O2 | 50.21 | ||
Methyl oleate | C19H36O2 | 27.48 | ||
Methyl stearate | C19H38O2 | 4.84 | ||
3 | Methyl palmitate | C17H34O2 | 9.65 | |
Methyl linoleate | C19H34O2 | 33.57 | ||
Methyl oleate | C19H36O2 | 18.11 | ||
BS-25-8 | 1 | Methyl palmitate | C17H34O2 | 6.26 |
Methyl linoleate | C19H34O2 | 45.88 | ||
Methyl stearate | C19H38O2 | 3.35 | ||
3 | Methyl pentadecanoate | C17H34O2 | 12.48 | |
Methyl linoleate | C19H34O2 | 45.09 | ||
Methyl oleate | C19H36O2 | 22.92 | ||
Methyl stearate | C19H38O2 | 3.70 | ||
BS-50-8 | 1 | Methyl palmitate | C17H34O2 | 7.66 |
Methyl linoleate | C19H34O2 | 41.13 | ||
3 | Methyl palmitate | C17H34O2 | 21.03 | |
Methyl linoleate | C19H34O2 | 17.13 | ||
Methyl petroselinate | C19H36O2 | 13.44 | ||
BS-75-8 | 1 | Methyl linoleate | C19H34O2 | 24.74 |
Methyl octadecenoate | C19H36O2 | 12.40 | ||
3 | Methyl palmitate | C17H34O2 | 6.33 | |
Methyl linoleate | C19H34O2 | 16.19 | ||
Methyl octadecenoate | C19H36O2 | 12.25 |
Catalyst | Cat (% wt) | Methyl Ester | Condensed Formula | Area (%) |
---|---|---|---|---|
BS-100-9 | 1 | Cyclopentanol undecanoic acid, methyl ester | C17H34O2 | 10.66 |
Butyl octyl phthalate | C20H30O4 | 21.96 | ||
Methyl linoleate | C19H34O2 | 23.76 | ||
Methyl octadecanoate | C19H36O2 | 15.47 | ||
3 | Butyl octyl phthalate | C20H30O4 | 35.21 | |
Methyl linoleate | C19H34O2 | 19.06 | ||
Methyl petroselinate | C19H36O2 | 13.87 | ||
Tert-butyl palmitate | C20H40O2 | 12.06 | ||
BS-25-9 | 1 | Methyl palmitate | C17H34O2 | 7.84 |
Butyl octyl phthalate | C20H30O4 | 12.17 | ||
Methyl linoleate | C19H34O2 | 20.38 | ||
Methyl octadecanoate | C19H36O2 | 13.99 | ||
3 | Methyl palmitate | C17H34O2 | 8.67 | |
Butyl octyl phthalate | C20H30O4 | 8.55 | ||
Methyl linoleate | C19H34O2 | 34.47 | ||
Methyl petroselinate | C19H36O2 | 19.11 | ||
BS-50-9 | 1 | Methyl palmitate | C17H34O2 | 5.67 |
Butyl octyl phthalate | C20H30O4 | 10.44 | ||
Methyl linoleate | C19H34O2 | 14.43 | ||
Methyl octadecanoate | C19H36O2 | 12.92 | ||
3 | Methyl palmitate | C20H30O4 | 9.66 | |
Butyl octyl phthalate | C19H34O2 | 16.06 | ||
Methyl linoleate | C19H36O2 | 29.19 | ||
Methyl octadecanoate | C20H40O2 | 22.62 | ||
BS-75-9 | 1 | Methyl palmitate | C17H34O2 | 6.37 |
Butyl octyl phthalate | C20H30O4 | 21.12 | ||
Methyl linoleate | C19H34O2 | 30.75 | ||
Methyl petroselinate | C19H36O2 | 9.37 | ||
3 | Cyclopentanol undecanoic acid, methyl ester | C17H34O2 | 7.06 | |
Methyl linoleate | C20H30O4 | 19.75 | ||
Methyl linoleate | C19H34O2 | 19.17 | ||
Terc-butil palmitate | C19H36O2 | 10.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Díaz, A.B.; Carlos-Hernández, S.; Díaz-Jiménez, L. Crude Glycerol/Guishe Based Catalysts for Biodiesel Production: Conforming a Guishe Biorefinery. Catalysts 2021, 11, 3. https://doi.org/10.3390/catal11010003
Figueroa-Díaz AB, Carlos-Hernández S, Díaz-Jiménez L. Crude Glycerol/Guishe Based Catalysts for Biodiesel Production: Conforming a Guishe Biorefinery. Catalysts. 2021; 11(1):3. https://doi.org/10.3390/catal11010003
Chicago/Turabian StyleFigueroa-Díaz, Andrea Belén, Salvador Carlos-Hernández, and Lourdes Díaz-Jiménez. 2021. "Crude Glycerol/Guishe Based Catalysts for Biodiesel Production: Conforming a Guishe Biorefinery" Catalysts 11, no. 1: 3. https://doi.org/10.3390/catal11010003
APA StyleFigueroa-Díaz, A. B., Carlos-Hernández, S., & Díaz-Jiménez, L. (2021). Crude Glycerol/Guishe Based Catalysts for Biodiesel Production: Conforming a Guishe Biorefinery. Catalysts, 11(1), 3. https://doi.org/10.3390/catal11010003